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ABSTRACT

A search is performed for the decay Λ0
b → pKη′ using pp collision data collected

with the LHCb detector at centre-of-mass energies of
√
s = 7 TeV and

√
s = 8 TeV,

corresponding to an integrated luminosity of 3 fb−1. The search is performed in
two decay channels; the η′ is reconstructed through the decays η′→ π+π−γ and
η′→ π+π−η . In the η′→ π+π−γ decay channel 117 ± 15(stat.) ± 10(sys.) signal
events are observed and 45 ± 8(stat.) ± 2(sys.) signal events are observed in the
η′→ π+π−η decay channel. The combined statistical significance of these signals is
12.0σ, therefore this is the first observation of the decay Λ0

b→ pKη′ . The branching
fraction of the decay Λ0

b→ pKη′ is measured relative to the decay B+→ K+η′ .
The ratio of branching fractions is measured to be

B(Λ0
b→ pKη′)

B(B+→ K+η′)
= 0.120± 0.013(stat.)± 0.013(sys.).

Using the world average value for the branching fraction of the decay B+→ K+η′

[1], the branching fraction of Λ0
b→ pKη′ is measured to be

B(Λ0
b→ pKη′) = 8.48± 0.88(stat.)± 0.97(sys.)× 10−6.

This is the first observation of a b-baryon decaying to an η′.
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CHAPTER 1

Introduction

This chapter provides an introduction to particle physics and the standard model

(SM) in Section 1.1, with a description of the Cabibbo Kobayashi Maskawa (CKM)

matrix and flavour physics in Section 1.2. This is followed by a description of the

theory and current status of η′– η mixing in Section 1.3. Motivation for the study

of charmless beauty hadron decays and a discussion of charmless B meson decays to

final states involving an η(′) is presented in Section 1.4. The motivation behind the

search for the decay Λ0
b→ pKη′ , which is the main topic presented in this thesis, is

given in Section 1.5.

1
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1.1 The Standard Model of Particle Physics

The first studies of elementary particles came with the discovery of the electron in

1897 by J.J. Thompson [2]. By applying a high voltage to a low pressure gas it was

possible to measure the mass to charge ratio of the electron, m/e, which was found

to be lower than any existing measurement at the time. The electron was the first

example of a lepton, a fundamental particle which does not interact via the strong

force.

Throughout the 20th century a whole plethora of strongly interacting particles,

collectively known as hadrons, were also discovered. The existence of neutrons and

protons was established by 1932 [3,4]. This was followed by the discoveries of pions,

kaons and lambda baryons, amongst others, before the start of the 1960s [5–7]. In

order to classify and explain the varying properties of these hadrons, the quark model

was proposed by Gell-Mann and Zweig in 1964 [8, 9]. This predicted the existence

of three new fundamental elementary particles (quarks) and proposed the recently

discovered hadrons were compositions of quarks. We now know these three particles

as the up, down and strange type quarks. This theory was validated in 1969 when

Deep Inelastic Scattering (DIS) experiments, at the Stanford Linear Accelerator

Centre (SLAC), showed that the proton was made of more fundamental constituent

point-like particles [10].

There had been speculation that there could be a fourth quark, to partner the strange

quark, nearly as soon as the quark model was proposed [11]. In 1974 the J/ψ meson,

a cc bound state, was simultaneously discovered at SLAC and Brookhaven National

Laboratory (BNL). This confirmed the existence of charm quarks. Even before the

discovery of the charm quark, the existence of a third generation of quarks was

predicted by Kobayashi and Maskawa [12]. In 1977 the first bb resonance, in the

form of the upsilon Υ (1S) particle, was discovered at the Fermi National Accelerator

Laboratory. This confirmed the existence of the third generation of quarks and paved
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Flavour Mass Charge/|e|
u (Up) 2.3+0.7

−0.5 MeV 2
3

d (Down) 4.7+0.5
−0.4 MeV −1

3

c (Charm) 1.28± 0.03 GeV 2
3

s (Strange) 96+8
−4 MeV −1

3

t (Top) 173.1± 0.6 GeV 2
3

b (Bottom) 4.18+0.04
−0.03 GeV −1

3

Table 1.1: A summary of the six quark flavours which are present in the SM, sepa-
rated by their generations [1].

the way to search for the partner of the bottom quark. Due to the high mass of the

top quark, 173.1± 0.6 GeV [1], it was not discovered until 1995 by the CDF and D0

collaborations [13, 14].

Overall, there are six known quarks, the properties of which are summarised in

Table 1.1. Particles composed of three quarks are known as baryons and those

composed of two are known as mesons. More recently, bound states composed of

four and five quarks have been observed [15, 16]. These are commonly known as

tetraquarks and pentaquarks respectively.

To accompany the electron, there are two other types of lepton, the muon and the

tau. For each flavour of lepton there is also a corresponding neutrino. The electron,

muon and tau leptons each carry −1|e| charge whereas the neutrinos are neutral; a

summary of the lepton properties is given in Table 1.2.

The best theory available to describe these fundamental particles and their interac-

tions is the SM. The SM is a quantum field theory which arises from the product of

the groups SU(3)C ⊗ SU(2)L ⊗U(1)Y. The SM is also a gauge theory, which means

particle interactions are mediated by the exchange of gauge bosons.

The strong force, which is described by Quantum Chromodynamics (QCD), is me-

diated by the exchange of gluons and is embedded in the special unitary group of
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Name Mass Charge/|e|
Electron, e 0.5109989461± 0.0000000031 MeV −1

Electron Neutrino, νe < 2 eV 0

Muon, µ− 105.6583745± 0.0000024 MeV −1

Muon Neutrino, νµ < 0.19 MeV 0

Tau, τ− 1776.86± 0.12 MeV −1

Tau Neutrino, ντ < 18.2 MeV 0

Table 1.2: A summary of the leptons present in the SM, separated by lepton flavour
[1].

degree three, SU(3)C. The strong force acts on colour charge, which can take one of

the values R,G or B for quarks and R̄, B̄ and Ḡ for anti-quarks. Gluons carry both

colour and anti-colour. The group SU(3)C is made of 32 − 1 = 8 linearly indepen-

dent hermitian 3× 3 matrices, which are known as the Gell-Mann matrices. These

describe the colour quantum numbers of gluons.

As the gluons themselves carry colour charge, self-interactions are possible. Conse-

quently, at long distances (low energies) the potential between two quarks is linearly

dependent on separation distance, meaning an infinite amount of energy would be

required for complete separation. This gives rise to colour confinement; quarks and

gluons are confined inside the QCD potential, meaning only colour-less objects can

be observed as free particles under normal conditions.

The product of the groups SU(2)L ⊗ U(1)Y describes the electroweak interactions,

which is the combined theory of electromagnetic and weak interactions. The gauge

bosons of the group SU(2)L, and mediator of the weak force, are the W(1,2,3) massless

vector boson fields. These couple to weak isospin T with coupling strength gW. The

gauge boson of the group U(1)Y, B, couples to hypercharge Y with strength g′W,

and is also a massless vector boson field. The weak isospin of left handed particles

is 1/2 and the weak isospin of right handed particles1 is 0. Each particle also has

1Here handedness is defined as chirality
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a third component of weak isospin, T3, which is −1/2 for down type quarks and

leptons but +1/2 for up type quarks and neutrinos. The hypercharge of a particle

is then given by

Y = 2(Q− T3), (1.1)

where Q is the electric charge of the particle.

The observed masses of the weak vector bosons as well as the massless photon

arise due to the Higgs mechanism [17, 18]. The introduction of a complex scalar

doublet field, which has a non-zero vacuum expectation value, causes a spontaneous

symmetry breaking. This leads to the appearance of the W±, Z and γ as linear

combinations of the W(1,2,3) and B fields. Explicitly these are given by:


γ

Z


 =


 cos θW sin θW

−sin θW cos θW




 B

W3


 ,

W± =
1√
2

(W1 ± iW2),

(1.2)

where θW is the Weinberg angle, which is given at lowest order by the relations,

cos θW =
gW√

g2
W + g

′2
W

=
mW

mZ

, (1.3)

where mW and mZ are the masses of the W and Z bosons respectively.

The Higgs mechanism also predicts the existence of a new scalar boson, the Higgs

boson. Unfortunately, the theory does not predict the mass of this boson. How-

ever after over 50 years of searches it was discovered by the ATLAS and CMS

experiments in 2012 [19, 20]. The most recent mass measurement gives mH =

125.09 ± 0.21(stat.) ± 0.11(syst.) GeV [21]. With the discovery of the Higgs bo-

son the SM was completed.
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1.2 Flavour Physics and the CKM Matrix

In the SM the only interaction that can change quark flavour is the weak interaction,

mediated by a W± boson. Flavour Changing Neutral Currents (FCNC), where the

weak decay is mediated by a Z boson, are forbidden at tree level in the SM. Examples

of flavour changing weak decay vertices are shown in Figure 1.1. Two decays which

involve these vertices are the decays K+→ µ+νµ and π+→ µ+νµ. It was observed

experimentally that the branching fraction of the K+ decay, relative to the π+ decay,

did not match theoretical predictions. This suggested that the coupling of the W±

may not be independent of quark flavour. Therefore in 1963 Cabibbo proposed that

the weak eigenstates of the down type quarks are admixtures of the mass eigenstates,

such that 
dW

sW


 =


 cos θc sin θc

-sin θc cos θc




d

s


 , (1.4)

where θc is the Cabibbo angle and dW, sW are the weak eigenstates [22]. The Cabibbo

angle has been experimentally measured to be θc ≈ 13◦. The weak eigenstates being

misaligned to the mass eigenstates leads to the coupling of the W boson, in the

case of the K+ decay, being proportional to sin θc. In the case of the π+ decay the

coupling is proportional to cos θc, which accounts for the differences between the

observed branching fractions and predictions which assume the coupling of the W±

is independent of quark flavour.

This formalism was extended to include three generations of quarks with the use

of a 3 × 3 matrix, the Cabibbo Kobayashi Maskawa (CKM) matrix [23]. With all

three generations of quarks included, the weak eigenstates of the down type quarks



7 Chapter 1. Introduction

s̄

u

W±
sin θc

d̄

u

W±
cos θc

Figure 1.1: Examples of weak decay vertices which involve a change of quark flavour.

are given by 


dW

sW

bW


 = VCKM




d

s

b


 ,




dW

sW

bW


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 ,

(1.5)

where VCKM is the CKM matrix. The CKM matrix can be parameterised by three

angles and one complex phase such that

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 , (1.6)

where cij = cos θij, sij = sin θij and θij is the mixing angle between the generation i

and j, and δ is the Kobayashi Maskawa (KM) phase. The KM phase accommodates

the violation of Charge-Parity (CP) symmetry in SM weak decays. When CP is
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conserved, a process is invariant under the combined operations of parity and charge

conjugation. However weak decays violate CP symmetry, as first observed in neutral

kaon decays in 1964 [24].

Another common way to parameterise the CKM matrix is the Wolfenstein parame-

terisation [25]. By defining:

λ = s12 =
|Vus|√

|Vud|2 + |Vus|2
, (1.7)

Aλ2 = s23 = λ|Vcb
Vus
|, (1.8)

Aλ3(ρ+ iη) = s13e
iδ = V ∗ub, (1.9)

the CKM matrix can be defined as

VCKM =




1− λ2

2
λ Aλ3(ρ− iη)

λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O

(
λ4
)
. (1.10)

The Wolfenstein parameterisation is useful for showing the hierarchy of the different

matrix elements.

All of the values of the elements of the CKM matrix have to be determined experi-

mentally and the current world averages2 are [1]

|VCKM| =




0.97417± 0.00021 0.2248± 0.0006 (4.09± 0.39)× 10−3

0.220± 0.005 0.995± 0.016 (40.5± 1.5)× 10−3

(8.2± 0.6)× 10−3 (40.0± 2.7)× 10−3 1.009± 0.031


 .

(1.11)

These values show that the CKM matrix is almost a diagonal matrix; the diagonal

2It should be noted that at the time of writing the PDG average for Vub, which is quoted here,
does not include a recent measurement by LHCb using Λ0

b→ pµ−νµ decays which is of comparable
precision to the world average [26].
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elements are all close to or compatible with unity. This means that vertices, and

consequently decays, which involve a change of quark flavour between generations

are heavily suppressed. This makes the study of b hadron decays to charmless final

states experimentally challenging.

The CKM matrix is unitary, otherwise the sum of interaction probabilities would

not be conserved. This imposes the relationships:

∑

i

VijV
∗
ik = δjk, (1.12)

and
∑

j

= VijV
∗
kj = δik (1.13)

between the matrix elements. Explicitly, this results in the relations:

|Vud|2 + |Vcd|2 + |Vtd|2 = 1,

|Vus|2 + |Vcs|2 + |Vts|2 = 1,

|Vub|2 + |Vcb|2 + |Vtb|2 = 1,

|Vud|2 + |Vus|2 + |Vub|2 = 1,

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1,

|Vtd|2 + |Vts|2 + |Vtb|2 = 1.

(1.14)

There are also six vanishing relations, of which the most useful for experimental

measurements is

V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0. (1.15)

Physically, this can be interpreted as imposing the non-existence of FCNC. As these

relationships are three complex numbers summing to zero, they can be represented

in the complex plane as so-called “unitary triangles”. The most commonly used

unitary triangle arises from dividing Equation. (1.15) by the most precisely measured
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quantity, V ∗cbVcd, which gives the relationship,

V ∗ubVud
V ∗cbVcd

+ 1 +
V ∗tbVtd
V ∗cbVcd

= 0. (1.16)

This results in the unitary triangle shown in Figure 1.2, where

ρ = ρ

(
1− 1

2
λ2

)
+O(λ4) and η = η

(
1− 1

2
λ2

)
+O(λ4). (1.17)

In the SM the unitary triangle is a closed triangle, the sum of the three angles

is 180◦. However in several extensions to the SM, such as those that introduce a

4th generation of quarks, the triangle does not close. It is therefore of interest to

measure precisely the three angles of the triangle and the lengths of each side in

order to test the SM. The lengths of the sides are determined by measurements of

the CKM elements. The three angles have to be determined by measuring Charge

Parity Violation (CPV) parameters and they are given by:

α = arg

(
− VtdV

∗
tb

VudV ∗ub

)
, (1.18)

β = arg

(
−VcdV

∗
cb

VtdV ∗tb

)
, (1.19)

γ = arg

(
−VudV

∗
ub

VcdV ∗cb

)
. (1.20)

The angle α has been determined by measuring time-dependent CP asymmetries

in b → uud decay modes. These measurements have predominantly been made

using the decay modes B→ ππ, B→ ρπ and B→ ρρ [27, 28]. The theoretically

cleanest way to determine the angle β is through measurements of time-dependent

CP violation in the interference between B0 decays with and without B0-B̄0 mixing,

in the channel b → cc̄s. The most precise results for β are achieved using the

B0→ J/ψK0
S decay mode [29].
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2 12. CKM quark-mixing matrix

Figure 12.1: Sketch of the unitarity triangle.

VCKM =

⎛
⎝

1 − λ2/2 λ Aλ3(ρ − iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎠ + O(λ4) . (12.5)

The CKM matrix elements are fundamental parameters of the SM, so their precise
determination is important. The unitarity of the CKM matrix imposes

∑
i VijV

∗
ik = δjk

and
∑

j VijV
∗
kj = δik. The six vanishing combinations can be represented as triangles

in a complex plane, of which those obtained by taking scalar products of neighboring
rows or columns are nearly degenerate. The areas of all triangles are the same, half of
the Jarlskog invariant, J [7], which is a phase-convention-independent measure of CP
violation, defined by Im

[
VijVklV

∗
il V

∗
kj

]
= J

∑
m,n εikmεjln.

The most commonly used unitarity triangle arises from

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0 , (12.6)

by dividing each side by the best-known one, VcdV
∗
cb (see Fig. 1). Its vertices are

exactly (0, 0), (1, 0), and, due to the definition in Eq. (12.4), (ρ̄, η̄). An important goal
of flavor physics is to overconstrain the CKM elements, and many measurements can
be conveniently displayed and compared in the ρ̄, η̄ plane. While the Lagrangian in
Eq. (12.1) is renormalized, and the CKM matrix has a well known scale dependence
above the weak scale [8], below µ = mW the CKM elements can be treated as constants,
with all µ-dependence contained in the running of quark masses and higher-dimension
operators.

Unless explicitly stated otherwise, we describe all measurements assuming the SM,
to extract magnitudes and phases of CKM elements in Sec. 12.2 and 12.3. Processes
dominated by loop-level contributions in the SM are particularly sensitive to new physics.
We give the global fit results for the CKM elements in Sec. 12.4, and discuss some
implications for beyond standard model physics in Sec. 12.5.

December 1, 2017 09:35

Figure 1.2: The unitary triangle most commonly used to illustrate the CKM matrix
[1].

The angle γ is the only phase which does not depend on CKM elements involving

the top quark. Therefore, it can be determined from tree level B meson decays.

Commonly, this measurement is made using the decay channels B+→ D0K+ and

B+→ D0K+, where both the D0 and the D0 decay to the same final state, such as

D0→ K+K−. The products of weak vertex factors in these decays are V ∗ubVcs and

V ∗cbVus respectively, which are both of the order λ3. Therefore both of these decays

have similar amplitudes, which means there is significant interference between them,

giving sensitivity to the CKM angle γ. By measuring the time-independent CP

asymmetry for these decays a measurement of γ can be made [30]. The current

world averages for direct measurements of the CKM angles, as calculated by the

Heavy FLavour AVeraging group (HFLAV) [31], are:

αdir = (84.9+5.1
−4.5)◦,

βdir = (22.2± 0.7)◦,

γdir = (73.5+4.2
−5.1)◦.

Global fits are performed to the unitary triangle by the CKMFitter group [32], using

a frequentist approach. These fits take many experimental measurements as input

parameters: direct measurements of the CKM matrix elements; the B0 and B0
s

mixing parameters ∆md and ∆ms; the K0 CP violation parameter εK; constraints
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ICHEP 16

CKM
f i t t e r

Figure 1.3: The results of a global fit of the unitary triangle, as performed by the
CKMFitter group [32]

from direct measurements of the angles α, β and γ; and several branching fraction

measurements which provide additional sensitivity. The result of the fit performed

by the CKM Fitter group, in the (ρ, η) plane, can be seen in Figure 1.3. The best

fit values for the angles are [32]:

α = (92.0+1.3
−1.1)◦,

β = (22.6+0.36
−0.35)◦,

γ = (65.4+0.97
−1.16)◦,

which are consistent with the direct measurements. Furthermore the sum of the

angles from the direct measurements are consistent with 180◦, therefore no deviations

from the SM have been observed.
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However, as more data is collected by the LHCb experiment the uncertainties on the

the unitary triangle angles will decrease and the SM will be tested more rigorously.

Until recent measurements by LHCb, γ was the least constrained angle of the unitary

triangle; the precision of the current world average is driven by the most recent LHCb

measurement, γ = (76.8+5.1
−5.7)◦ [33]. It is the physics goal of the LHCb experiment to

measure γ to degree level precision.

Another quantity which can be determined from the global fit is the total amount of

CP violation in the SM. This is quantified by the Jarlskog invariant which is given

by

J =
3∑

m,n=1

εikmεjlnIm
(
VijVklV

∗
ilV
∗
kj

)
, (1.21)

where Vij, Vkl, V
∗
il , V

∗
kj are the CKM matrix elements and εikm is the Levi-Civita ten-

sor3. An example of one possible term is Im (VudVcsV
∗
usV

∗
cd). The Jarlskog invariant

is equal to twice the area of the unitary triangle, and it is the same for every possible

phase convention. The global fit performed by CKMFitter also extracts the Jarlskog

invariant and the best fit value is J = (3.099+0.052
−0.063) × 10−5 [32]. This is consistent

with the standard model prediction, but it is also a factor of 109 too small to explain

the matter-antimatter imbalance observed in the universe. Therefore, the level of

CP violation seen in the SM is not sufficient and other undiscovered sources must

exist.

1.3 η′– η Mixing

The η′ and η particles are peculiar. They are light neutral mesons which are mem-

bers of the pseudoscalar nonet and they break SU(3)C flavour symmetry. Both the

composition of the η(′) wave functions and the large mass difference between the η

and η′ (M(η) = 547.862 ± 0.017 MeV, M(η′) = 957.78 ± 0.06 MeV) are long stand-

3Also known as the totally antisymmetric tensor
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ing puzzles [1, 34, 35]. The physical η′ and η states can be represented as linear

combinations of the SU(3)C singlet (η0) and octet(η8) states such that


 |η〉
|η′〉


 =


cos θp − sin θp

sin θp cos θp




|η8〉
|η0〉


 , (1.22)

where the singlet state is given by

|η0〉 =
1√
3
|uu+ dd+ ss〉 (1.23)

and octet state is given by

|η8〉 =
1√
6
|uu+ dd− 2ss〉. (1.24)

The rotation angle, θp, is the η′– η mixing angle. An often more convenient basis

for the η(′) wave functions is the quark flavour basis [36]. In this basis


 |η〉
|η′〉


 =


cosφp − sinφp

sinφp cosφp




|ηq〉
|ηs〉


 , (1.25)

where

|ηq〉 =
1√
2
|uu+ dd〉 (1.26)

and

|ηs〉 = |ss〉. (1.27)

The alternative η′– η mixing angle, φp, is given by,

φp = θp + arctan
√

2 ' θp + 54.7◦. (1.28)

In theory the η′ and η wave functions could also contain contributions from |cc〉 and

|bb〉 states, but the large masses of these quarks would make them highly suppressed.
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However, the massless nature of the gluon means a gluonic component, |gg〉, to the

wave function is not unreasonable. In fact, the size of the |gg〉 component in the

η′ wave function is a long debated and unanswered puzzle [37, 38]. A large |gg〉
component is often proposed as a solution to the problem of the surprisingly large

η′ mass [39,40].

It is assumed that the η meson has a zero or negligible |gg〉 component due to its

much smaller mass. The |gg〉 component can be introduced to the η′ wave function

with the addition of the gluonic mixing angle φG, which allows the η′ wave function

to be given by

|η′〉 ' cosφG sinφp|ηq〉+ cosφG cosφp|ηs〉+ sinφG|gg〉, (1.29)

and the η wave function remains as

|η〉 ' cosφp|ηq〉 − sinφp|ηs〉. (1.30)

Theoretical calculations of the η(′) mixing angles are challenging. However, lattice

QCD has been used to make predictions of the η′– η mixing angle; a calculation

giving the result θp = −14.1±2.8◦ is reported in Ref. [41] and a value of φp = 42±1◦

is reported in Ref. [42]. These calculations are consistent given Equation. (1.28).

Experimental measurements of φp and φG have been made by the LHCb collab-

oration using B0
(s) → J/ψη(′) decays. The mixing angles are obtained from the

expressions:

tan4 φp =
R

Rs

, cot4 φG = RRs, (1.31)

where,

R(s) =

(
Φη

(s)

Φη′

(s)

)3 B(B0
(s)→ J/ψη′)

B(B0
(s)→ J/ψη)

(1.32)

and Φη(′)

(s) are the phase space factors for the B0
(s) → J/ψη(′) decays [43]. Us-
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Reference φp φG Measurements Used
A. Bramon et al. [46] (37.8± 1.7)◦ assumed 0◦ B (J/ψ→ PV )

R. Escribano et al. [47] (44.6± 4.1)◦ (32+11
−22)◦ B (J/ψ→ PV )

A. Bramon et al. [48] (37.7± 2.4)◦ assumed 0◦ B (V → Pγ)
R. Escribano et al. [49] (41.4± 1.3)◦ (12± 13)◦ B (V → Pγ), B (P→ V γ)
F. Ambrosino et al. [50] (40.5± 0.6)◦ (20.3± 3.5)◦ B (V → Pγ), B (P→ V γ)
V. Anisovich et al. [51] (37.7± 2.6)◦ 16.4◦ ≤ φG ≤ 20.3◦ B (D+

s → η(′)`ν), η(′)→ γγ∗

F. Cao et al. [52] (39.8± 1.8)◦ assumed 0◦ η(′)→ γγ∗

T. Feldman et. al. [53] (39.3± 1.0)◦ assumed 0◦ Many (see reference)
A. Bramon et. al. [54] (39.2± 1.3)◦ assumed 0◦ Many (see reference)

Table 1.3: A summary of selected phenomenological results for the two η′ mixing
angles, φp and φG. V denotes a vector meson and P denotes a pseudoscalar meson.

ing 3 fb−1 of proton-proton collision data, the results are φp = (43.5+1.4
−2.8)◦ and

φG = (0± 24.6)◦ [44]. This result for φp is consistent with the theoretical predic-

tions from lattice QCD. The value for φG is consistent with no |gg〉 component to

the η′ wave function, but it is not excluded.

Using B0 → J/ψη(′) decays, the Belle collaboration has also set a limit on φp;

φp < 42.2◦ at the 90% confidence level [45]. This result is consistent with the LHCb

measurement of φp, but it should be noted that the Belle result neglects phase space

factors and assumes the |gg〉 contribution to the η′ wavefunction is negligible.

Many phenomenological results have been reported, where other experimental mea-

surements have been reinterpreted to determine the η′– η mixing angles. A selection

of these results are summarised in Table 1.3.

Overall there is agreement between theory, experiment and phenomenological results

that φp ≈ 40◦, with all results falling in the range 37.7◦ − 44.6◦. This indicates

strong mixing between the η and η′. However, for the case of φG there is no such

agreement; some phenomenological results suggest that φG is consistent with zero

whilst others report results which are inconsistent with no |gg〉 component to the

η′ wavefunction. Interestingly, the φG result which reports the strongest evidence

for a |gg〉 contribution is a matter of contention; the authors of Ref. [49] disagree
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with the result presented in Ref. [50] because of two additional parameters included

to account for the overlap of the vector and pseudoscalar meson wavefunctions in

P → V γ and V → Pγ decays. Considering all the results available, there is a

suggestion that a small |gg〉 component to the η′ wavefunction could be present.

However, the available data are not sufficiently precise to clarify this and therefore

further experimental input is required.

1.4 Charmless b Hadron Decays

Charmless b-hadron decays provide fertile ground for searching for physics beyond

the standard model. These decays can typically proceed via either b→ s, d gluonic

loop level diagrams (gluonic penguins) or b→ u tree level diagrams. The tree level

diagrams are heavily suppressed by a factor of Vub, which is the smallest element

of the CKM matrix (see Equation. (1.11)). Consequently, the tree and loop level

diagrams often have similar amplitudes. This means that the rates of these processes

are sensitive to new physics, entering via the loop diagrams, which can be indirectly

detected by measuring branching fractions.

Also, the interference between the tree and loop level diagrams provides sensitivity to

CPV effects. As we know that the amount of CPV in the SM is insufficient to explain

the observed antimatter-matter imbalance in the universe, new physics may also

introduce additional sources of CPV. Therefore, measuring CPV observables and

making comparisons to SM predictions provides another way to infer the presence

of new physics. Furthermore, the study of charmless b-hadron decays can greatly

improve our knowledge of low energy QCD. This, in turn, improves the predictions

of SM values and makes distinguishing new physics from SM processes possible.

The study of charmless b hadron decays to final states involving an η(′) particle

has greatly added to our understanding of non-perturbative QCD whilst also intro-
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ducing some unexpected puzzles. For example the branching fraction of the decay

B+→ K+η′ is unexpectedly large [1],

B(B+→ K+η′) = (7.06± 0.25)× 10−5, (1.33)

both compared to other charmless B meson decays and relative to the corresponding

η decay mode where

B(B+→ K+η) = (2.4± 0.4)× 10−6. (1.34)

These decays can proceed through both gluonic penguin diagrams and tree level di-

agrams, as shown in Figure 1.4. The same pattern of suppressed branching fractions

for the η mode is seen with neutral B meson decays [1] where

B(B0→ K0
Sη
′) = (6.6± 0.4)× 10−5 � B(B0→ K0

Sη) = 1.23+0.27
−0.24 × 10−6. (1.35)

Many explanations for this have been proposed [55], one of which is the presence

of a gluon component in the η′ wavefunction, which is discussed in Section 1.3.

This would allow the decay B+→ K+η′ to proceed through additional Feynman

diagrams such as that shown in Figure 1.4c, which could enhance the decay rate to

η′ mesons [56,57].

In order to calculate the decay rate of a general b-hadron decay involving a b→ s

transition, it is common to use the Operator Product Expansion (OPE) approach.

In this approach the amplitude of a two body decay is given by

A(B→ P1P2) = 〈P1P2|Heff |B〉, (1.36)

where Heff is an effective Hamiltonian. For the decay B+→ K+η′ , the effective
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Figure 1.4: Allowed Feynman diagrams for the decay B+→ K+η′ .
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Hamiltonian is given by

Heff =
GF√

2

[
VubV

∗
us (c1Ou1 + c2Ou2 ) + VcbV

∗
cs (c1Oc1 + c2Oc2)− VtbV ∗ts

10∑

i=3

ciOi

]
+ h.c.,

(1.37)

where ci are the Wilson coefficients andOi are operators [55]. The Wilson coefficients

describe the perturbative short distance effects above a given energy scale, which in

B decays is usually chosen to be mb. As new physics is expected to be present at

high energies, any new physics effects are likely to appear in the Wilson coefficients.

The operators, on the other hand, describe long distance non-perturbative strong

interaction effects. More specifically: the tree level b→ u transitions are described

by O1 and O2; gluonic loop level diagrams are described by the operators O3−6; and

electroweak penguin diagrams are described by the operators O7−10.

The challenging part of this approach is calculating the hadronic matrix elements,

〈K+η′|Oi|B+〉. One method for doing so is the factorisation approach, within which

the hadronic matrix elements can be expressed as

〈K+η′|Oi|B+〉 = 〈η′|q̄γµγ5q|0〉〈K+|s̄γµ (1− γ5) b|B+〉

= if qη′
(
m2
B −m2

K

)
FBK

0

(
m2
η′

)
,

(1.38)

or

〈K+η′|Oi|B+〉 = 〈K+|s̄γµγ5u|0〉〈η′|ūγµ (1− γ5) b|B+〉

= ifK
(
m2
B −m2

η′

)
FBη′

0

(
m2
K

) (1.39)

depending on which operator is present in the matrix element [55]. FBK
0 , FBη′

0 are

hadronic form factors, which can be calculated using QCD sum rules on the light-

cone [58–61] or perturbative QCD [62]. The decay constants, fη′ , fK , have been

measured experimentally; for kaons fK has been determined to be fK = 159.8 ±
1.4 MeV [1]. The η′ decay constants are less straightforward due to η′– η mixing. In
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the quark flavour basis they are given by:

fuη′ = fu sinφp,

f sη′ = fs cosφp,
(1.40)

where fu and fs have been determined phenomenologically to take the values fu =

139.8 ± 2.6 MeV and fs = 175 ± 8 MeV [53]. The mixing angle, φp, has been mea-

sured by LHCb to have the value φp = (43.5+1.4
−2.8)◦ [44] and many phenomenological

studies are summarised in Table 1.3. Using these values the decay amplitude, and

subsequently the branching fraction, can be calculated.

1.5 The Decay Λ0
b→ pKη′

The Λ0
b baryon is the lightest baryon containing a bottom quark in the standard

model, with a quark content of (udb) and a mass of 5619.60± 0.17 MeV [1]. Before

the advent of the LHC opportunities to study Λ0
b baryon decays were very limited.

The only colliders which produced Λ0
b baryons were the Tevatron and LEP, but in

both cases the samples of Λ0
b baryons available were limited in statistics. At the

LHC copious amounts of bb pairs are produced4, and approximately 15% hadronise

to form a Λ0
b baryon [64]. This means the LHCb experiment has the first opportunity

to study precisely the properties of charmless Λ0
b decays.

The decay of a beauty baryon to a final state involving an η(′) has never been

observed, making this a completely unexplored area of charmless b physics. A search

for the decays Λ0
b→ Λη(′) was previously performed by LHCb using 2 fb−1 of 8 TeV

data and 1 fb−1 of 7 TeV data5. This resulted in 3σ evidence for the decay Λ0
b→ Λη

4σ(pp→ bb) = 284± 53µb at 7 TeV [63]
5The Λ baryon has a quark content (uds) and mass of 1115.683± 0.006 MeV [1]
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[57], with a measured branching fraction of

B(Λ0
b→ Λη) = 9.3+7.3

−5.3 × 10−6. (1.41)

This is consistent with theoretical predictions, but has large uncertainties [65, 66].

The QCD sum rule approach for evaluating the Λ0
b → Λ form factors is weakly

favoured. No evidence for the decay Λ0
b→ Λη′ was seen and an upper limit on the

branching fraction was set,

B(Λ0
b→ Λη′) < 3.1× 10−6 (1.42)

at 90% confidence level. This is also consistent with theoretical predictions [65,66].

The next step forwards in the search for the decay of a beauty baryon to an η(′)

is searches for the decays Λ0
b → pK−η(′). In these decays it is highly likely there

will be a rich resonant structure of excited Λ∗ resonances, such that the decay

proceeds Λ0
b→ (Λ∗→ pK−)η(′). An amplitude analysis of the decay Λ0

b→ pK−J/ψ

revealed contributions from 13 Λ∗ resonances [16]. The resonant Feynman diagrams,

which are shown in Figure 1.5, are identical to those for Λ0
b → Λη(′). However,

experimentally these decays are quite different. The presence of the long lived

neutral Λ particle caused low trigger efficiencies in the search for Λ0
b → Λη(′), but

this is not present in the decays Λ0
b→ pK−η(′). Therefore, a search for the decays

Λ0
b→ pK−η(′) should have improved sensitivity.

In this thesis a search for the decay Λ0
b→ pKη′ is presented, with the decay B+→

K+η′ used as a normalisation channel. A measurement of the branching fraction

could help understand the puzzle of enhanced branching fractions in B → Kη′

decays; both the gluonic loop level and tree level resonant diagrams are the same

except for the presence of an additional spectator quark. Furthermore, it would add

information that could be used to understand η′– η mixing and it would be the first
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ū

u

d d

u u

W−
η′

K−

p

Λ0
b

(d) Non resonant decay.

Figure 1.5: Allowed Feynman diagrams for the decay Λ0
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opportunity to constrain Λ0
b→ η′ form factors.

With a sufficiently large signal yield, it could also be possible to perform an ampli-

tude analysis to measure the properties of any intermediate resonances, which have

not been investigated before for a Λ0
b → pK− + pseudoscalar decay. Furthermore

it would be of significant interest to measure CPV parameters for this decay, given

that the first evidence for CPV in the baryon sector was recently reported in charm-

less Λ0
b decays [67]. However it is unlikely a signal yield large enough to perform

these measurements will be seen using the data currently available, but as it is part

of the LHCb physics programme to collect significantly larger data samples in the

future these measurements may become possible.
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Figure 2.1: The CERN accelerator complex showing the LHC and the chain of
injectors used to supply it with protons.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [68] is the highest energy particle accelerator

ever built. The 27km circumference ring, which straddles the French-Swiss border

at the European Organisation for Nuclear Research (CERN), is currently capable

of accelerating protons to a centre of mass energy
√
s = 13 TeV. This is achieved

whilst delivering an instantaneous luminosity of more than 1034 cm−2 s−1 and collid-

ing bunches of protons at a rate of 40 MHz.

The chain of accelerators required to supply the LHC with protons is depicted in

Figure 2.1. Protons are isolated by using an electric field, which strips the elec-

trons from hydrogen atoms. These protons are then accelerated to an energy of

50 MeV by a linear accelerator known as “Linac 2” before they are injected into a

synchrotron accelerator known as the “Proton Synchrotron Booster” (PSB), where

they are accelerated to an energy of 1.4 GeV. The “Proton Synchrotron” (PS) fur-

ther accelerates the protons to an energy of 25 GeV before they are injected into
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the “Super Proton Synchrotron” (SPS) where they are accelerated to an energy of

450 GeV. At this energy, they are injected into the LHC.

The LHC itself is situated 100m underground and uses 1232 superconducting dipole

magnets to steer two proton beams around the circumference of the ring in opposite

directions. These Niobium-Titanium magnets are supercooled to a temperature of

1.9K(−271.3◦C) and achieve field strengths greater than 8T. The beams nominally

consist of 2808 bunches of protons, each of which will contain 1.2× 1011 protons at

the start of a fill. These protons are accelerated to a maximum energy of 6.5 TeV

using 8 RF cavities per beam. In order to maximise the number of interactions per

bunch crossing, and consequently the instantaneous luminosity, quadrupole magnets

are used to keep the proton bunches tightly packed together.

Proton-Proton (pp) collisions take place at four interaction points around the cir-

cumference of the LHC. At each of these interaction points there is an experimental

hall and particle detector. Two of these interaction points are occupied by Gen-

eral Purpose Detectors (GPD), known as ATLAS and CMS. These are hermetic

detectors; they have an angular coverage of 4π steradians. They are used to study

a wide variety of physics topics. At another interaction point there is the ALICE

experiment, which is a detector specialised for heavy ion physics. The final inter-

action point is occupied by the LHCb experiment, which is dedicated to studying

hadrons containing beauty and charm quarks and is described in further detail in

Section 2.2.

The first pp collisions took place at the LHC during 2009, at the lower energy of
√
s = 900 GeV. During 2010 the first collisions took place at the energy

√
s =

7 TeV, but the corresponding integrated luminosity of the data taken by the LHCb

experiment was only 38 pb−1 during this commissioning year [69]. In 2011 the first

full year of physics data taking took place at an energy of
√
s = 7 TeV; a dataset

corresponding to an integrated luminosity of 1.11 fb−1 was collected by LHCb [69].
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b̄

b
Figure 2.2: The Feynman diagram for the production of a bb pair through the gluon-
gluon fusion process, which is dominant at the LHC.

This was followed by the collection of a dataset corresponding to an integrated

luminosity of 2.08 fb−1 at an energy of
√
s = 8 TeV during 2012 [69]. The data

collected by the LHCb experiment during 2011 and 2012 is collectively known as

the Run I dataset.

During a long shutdown period that took place in 2013 and 2014, upgrades to

the LHC were installed with the aim of increasing the beam energy. In 2015 the

LHC started producing proton-proton collisions again with an upgraded collision

energy of
√
s = 13 TeV, this was the beginning of Run II. However, LHCb was only

able to collect a data set corresponding to an integrated luminosity of 0.328 fb−1

during 2015. In 2016 however, the LHCb collaboration was able to collect a dataset

corresponding to an integrated luminosity of 1.67 fb−1. With the further 1.8 fb−1

of data collected during 2017 and the planned data taking in 2018, it is expected

that a dataset with a total integrated luminosity of 5.4 fb−1 will be collected during

Run II.
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2.2 The LHCb Experiment

As the primary aims of the LHCb experiment involve studying hadrons containing

b quarks, it is crucial the LHCb detector has a high acceptance for b-hadrons. The

dominant process for the production of heavy quarks at LHC energies is gluon-

gluon fusion, for which the Feynman diagram is shown in Figure 2.2. The values of

Bjorken-x1 for the two virtual gluons contributing to this diagram are given by

x1 =
mT√
s

(eyQ + eyQ̄) and x2 =
mT√
s

(
e−yQ + e−yQ̄

)
, (2.1)

where mT =
√
m2
Q + p2

T, mQ is the mass of the heavy quark, pT is the transverse

momentum of the heavy quark,
√
s is the centre of mass energy of the pp collision

and yQ(yQ̄) are the rapidities of the quark(anti-quark) [70].

The consequences of the expressions given in Equation (2.1) are two fold. Firstly

it can be seen in Figure 2.3 that the gluon Parton Distribution Function (PDF)

increases significantly at low Bjorken-x, which means it is likely that a gluon con-

tributing to the production of heavy quarks will have a small value of Bjorken-x. In

this scenario, given that the mass of a b-quark is 4.18 GeV [1], the transverse mo-

mentum and rapidity of the heavy quark must also be small. Secondly, this means

that the rapidity of the two heavy quarks produced in the gluon-gluon fusion process

are highly correlated.

Figure 2.4 shows the production angles of b and b quarks at
√
s = 8 TeV as deter-

mined using Pythia 8 [71]. It is clear that, as expected, the production angles of

bb pairs are highly correlated and that production is concentrated close to the LHC

beam pipe. Consequently, despite the LHCb detector only covering the pseudorapid-

ity range 2 < η < 5, 25% of bb pairs are produced within the detector acceptance.

The advantage of only covering this limited pseudorapidity range is significantly

1Bjorken-x is the fraction of a proton’s momentum carried by a given parton
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Figure 2.3: Parton Distribution Functions (PDFs), which show the momentum dis-
tributions of the partons. A rapid increase in the gluon PDF can be seen at low
Bjorken-x. The product of Bjorken-x and the distribution function is plotted on the
y-axis because momentum sum rules dictate that

∑
i

∫ 1

0
xfi(x)dx = 1, where fi(x)

is the distribution function for the parton i [72].

reduced material costs, allowing the use of higher precision instrumentation.

Another key requirement of the LHCb detector is the ability to reconstruct displaced

vertices. The mean lifetimes of B0 mesons, B0
s mesons and Λ0

b baryons are all

approximately 1.5ps [1], which means these neutral hadrons travel ≈ 1 cm inside

the LHCb detector before they decay. Consequently, the decay of such hadrons (to

charged particles) leaves a secondary vertex in the LHCb tracking system which is

displaced from the initial proton-proton collision. A high reconstruction efficiency

for these displaced vertices is crucial to maximise the signal to background ratio of

the data collected. The precise reconstruction of displaced vertices is essential for

measurements of particle lifetimes and time dependent CP violation, both of which

are key physics goals of the LHCb experiment [73].
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One design choice partially motivated by this requirement is the use of a lower

instantaneous luminosity than the GPD. In 2012 the LHCb experiment took data

at an instantaneous luminosity of 4×1032 cm−2s−1, which is significantly lower than

the 20 − 60 × 1032 cm−2s−1 luminosity range used by the GPD during the same

period. One of the key advantages of using a lower instantaneous luminosity is

an increased efficiency for the reconstruction of displaced vertices, because pile-up

levels are significantly reduced. It also results in a lower radiation environment

which allows precision apparatus to be placed closer to the beam pipe.

The instantaneous luminosity of LHCb, ATLAS and CMS throughout the duration

of a single fill of the LHC is shown in Figure 2.5. The instantaneous luminosity

of the GPD decreases with time because, as collisions take place, the number of

protons in each bunch reduces. Conversely, the instantaneous luminosity at LHCb is

deliberately kept constant (within 5%). This is achieved by introducing a transverse

offset between the beams, which gradually decreases throughout the duration of a

fill. This allows the same trigger conditions to be used throughout a fill and the

constant detector occupancy reduces systematic uncertainties [69].

A schematic diagram of the LHCb detector is shown in Figure 2.6; the beam line

runs horizontally through the centre of the detector2 and collisions take place within

the vertex locator (VELO), which is described further in Section 2.2.1 The magnet

is a warm dipole magnet with an integrated field strength of 4Tm, for tracks 10m in

length, which bends the trajectory of charged particles in the x− z plane [74]. The

polarity of the magnet is switched periodically to cancel any discrepancies between

the detection of particles and anti-particles. The tracking system, which is described

further in Section 2.2.2, is composed of a silicon microstrip detector upstream of the

magnet (TT), and three further tracking stations (T1, T2 and T3) downstream of the

magnet [75]. The two Ring Imaging Cherenkov sub detectors (RICH1 and RICH2)

2LHCb uses a right-handed coordinate system, with z defined along the beam axis entering
the detector, y vertical and x horizontal towards the inside of the LHC ring. Cylindrical polar
coordinates (r,φ,z) are also used, as appropriate. The angle θ is defined relative to z.
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Figure 2.5: The instantaneous luminosity of LHCb, ATLAS and CMS throughout
the duration of a single fill of the LHC [69].

give LHCb a unique particle identification ability; these systems are described in

Section 2.2.4. The calorimeter system is described in Section 2.2.3 and consists

of: a scintillator pad pre-shower detector (SPD/PS); shashlik style electromagnetic

sampling calorimeter and a lead-scintillator hadronic calorimeter [73]. The muon

system, which is described in Section 2.2.5, has five stations (M1-M5) and is a

combination of multi wire proportional chambers and triple-GEM detectors [76].

The trigger system, which is described in Section 2.2.6, consists of a hardware trigger

followed by two levels of software triggers [77].

2.2.1 Vertex Locator

The primary purpose of the LHCb vertex locator (VELO) is to identify and recon-

struct displaced secondary vertices, which are a distinctive characteristic of many b

and c hadron decays. The accurate reconstruction of these displaced vertices is es-

sential for achieving a high signal to background ratio and precise Impact Parameter

(IP) and decay time resolution. The VELO consists of 21 circular silicon microstrip
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Figure 1: View of the LHCb detector [23].

The spectrometer magnet, required for the momentum measurement of charged particles,
is a warm dipole magnet providing an integrated field of about 4 Tm, which deflects charged
particles in the horizontal plane. The field of the spectrometer magnet also has an impact
on the trajectory of the LHC beams. Three dipole magnets are used to compensate for
this e↵ect and to ensure a closed orbit for the beams [25].

The tracking system consists of the VErtex LOcator (VELO), situated around the
interaction region inside a vacuum tank, and four planar tracking stations: the Tracker
Turicensis (TT) upstream of the dipole magnet, and tracking stations T1–T3 downstream
of the magnet. Silicon microstrips are used in TT and the region close to the beam-pipe
(Inner Tracker, IT) of stations T1–T3, whereas straw tubes are employed for the outer
parts (Outer Tracker, OT). Charged particles require a minimum momentum of 1.5 GeV/c
to reach the tracking stations, T1–T3.

The VELO contains 42 silicon modules arranged along the beam, each providing a
measurement of the r (R sensors) and � (� sensors) coordinates. The pitch within a
module varies from 38µm at the inner radius of 8.2 mm, increasing linearly to 102µm
at the outer radius of 42 mm. For detector safety, the VELO modules are retracted by
29 mm in the horizontal direction during injection of the LHC beams and are subsequently
moved back, using a fully automated procedure once stable conditions have been declared.
From the declaration of stable beams the VELO takes, on average, 210 seconds to close.
During LHC Run I approximately 750 closing procedures were performed.

The TT and IT detectors use silicon microstrip sensors with a strip pitch of 183µm
and 198 µm, respectively. The TT is about 150 cm wide and 130 cm high, with a total

5

Figure 2.6: A schematic diagram of the LHCb detector [69].

modules positioned along the beamline, a schematic diagram of the VELO position-

ing relative to the beam line is shown in Figure 2.7. As the VELO is positioned just

7 mm from the LHC beams, it is situated inside the LHC beam pipe. Therefore, it

is mounted in a separate vacuum chamber which is separated from the LHC vacuum

by an RF box. The close proximity of the VELO to the LHC beams also means

they have to be retracted, to the position described as “fully open” in Figure 2.7,

until stable beams are declared. This significantly reduces the radiation dose that

the VELO receives.

Each VELO module consists of two silicon detectors positioned back to back, one of

which is an R sensor and the other a Φ sensor. The R sensors consist of microstrips

positioned in concentric semi-circles that provide information on the radial position

of tracks. The Φ sensors consist of microstrips which are positioned radially with a

pitch that varies linearly between 38µm at the inner and 102µm at the outer edges

of each VELO module; these provide information on the azimuthal angle of tracks.
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Figure 2.7: Top: Positioning of VELO modules along the beam axis, which runs in
the Z direction. Bottom Left: Cross section of the LHCb vertex locator in the fully
closed position. Bottom Right: A single VELO module in the open positions [73].
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By combining the R and Φ information with the known positions of the modules

along the Z axis (beam line) a 3D spatial reconstruction of tracks traversing the

VELO can be performed. The reconstructed tracks can then be extrapolated back

to their origin vertex and provide precise measurements of impact parameters3 and

particle lifetimes. The use of this circular geometry, rather than a rectilinear detector

system, was motivated by the fact that track reconstruction can be performed faster

in this coordinate system. The fast reconstruction of VELO tracks is crucial for the

efficient triggering of events with displaced vertices.

The IP resolution has been assessed using prompt tracks; prompt tracks originate

from the primary vertex, therefore any non-zero values of IP are due to experimental

resolution. Figure 2.8 shows the IP resolution as a function of 1
pT

for 2012 data and

simulation. This demonstrates excellent performance; an IP resolution of < 35µm

is achieved for tracks with pT > 1 GeV [78].

The decay time resolution of the VELO has also been assessed using prompt tracks,

specifically events with two muon tracks and two kaon tracks that mimic B0
s→ J/ψφ

decays. Figure 2.9 shows the decay time resolution of the VELO for 2011 data and

simulated events. This again demonstrates excellent performance with a decay time

resolution of 50 fs. Crucially, this is small enough to resolve B0
s -B

0
s oscillations [78].

2.2.2 Tracking

The purpose of the tracking system is to reconstruct the paths of charged particles

and measure their momenta. Accurate momentum measurements are crucial to the

majority of the physics programme of LHCb because they have a direct impact on

the invariant mass resolution of reconstructed hadrons. For example, in order to

3The impact parameter of a particle is defined as the transverse distance of closest approach
between the trajectory of a particle and the primary vertex.
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Figure 2.8: Impact parameter resolution of the VELO, as measured using prompt
tracks in 2012 data and simulation [78].

Figure 2.9: Decay time resolution of the VELO. This is measured using prompt
events which mimic B0

s→ J/ψφ→ µ+µ−K+K− decays in 2011 data and simulation
[78].
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Figure 2.10: A schematic diagram of the LHCb tracking stations. The ST modules
are shown in purple; the TT is in the foreground and the cross shaped IT modules
are shown at the centre of the three larger tracking stations. The turquoise areas of
T1-T3 are the OT. [73]

achieve a resolution of 10 MeV on the reconstructed B0
s mass in B0

s→ D−s π
+ decays,

a momentum resolution of δp
p
≈ 0.4% is required [73].

The LHCb tracking system utilises two different technologies: silicon microstrip de-

tectors and straw drift tubes. There is one tracking station upstream of the magnet

known as the Tracker Turicensis (TT) which uses solely silicon microstrips. The

T1-T3 tracking stations, which are downstream of the magnet (see Figure 2.6), are

further divided into the inner tracker (IT) and outer tracker(OT). The IT occupies

an area 120cm wide and 40cm high in a cross-shaped arrangement around the beam

pipe and also uses silicon microstrips. Together, the IT and TT form the silicon

tracker (ST). The OT occupies an area 5× 6m2 and uses straw drift tubes; the use

of silicon microstrips for an area the size of the OT would have been too expensive,

therefore silicon microstrips are reserved for areas with the highest particle densi-

ties. A schematic diagram showing the IT, OT and TT can be seen in Figure 2.10.

Each tracking station is formed of four layers, with the two outer layers orientated

vertically and the inner two layers tilted ±5◦ with respect to the vertical.
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The silicon microstrips used in the TT and IT are single sided p+-on-n sensors

and have a pitch of 183µm and 198µm respectively. The TT uses 143360 readout

strips up to 38 cm in length, whereas the IT uses 129024 readout strips which are

between 11cm and 22cm long. The TT and IT have active areas of 8.4m2 and 4.0m2

respectively. The ST was designed to have a single hit resolution of 50µm because

below this level momentum resolution is dominated by multiple scattering. Another

key design requirement was radiation hardness; the TT (IT) needs to survive a

fluence of 5× 1014 cm−2(2× 1012 cm−2) 1 MeV neutron equivalent dose. In order to

meet this requirement the ST has to be kept at temperatures below 5◦C.

When charged particles traverse a drift tube the gas is ionised and ionisation elec-

trons drift to the anode at the centre of the tube and produce an electrical signal.

By measuring the time difference between the signal on the anode and the beam

crossing time (the drift time) the distance of the charged particle’s trajectory from

the centre of a drift tube can be inferred. By combining information from all the

drift tubes in the OT the trajectories of charged particles can be reconstructed. The

straw drift tubes used in the OT are arranged into two staggered layers, as shown

in Figure 2.11. Each drift tube has an inner diameter of 4.9 mm and is filled with a

mixture of Argon(70%) and CO2(30%). This mixture was chosen to ensure a drift

time of less than 50ns and a drift-coordinate resolution of 200µm.

Overall, the LHCb tracking system provides excellent momentum resolution; in

Run I the momentum resolution was found to vary from δp
p

= 0.5% for tracks

with p = 5 GeV up to δp
p

= 1.1% for tracks with p = 200 GeV [69]. The track

reconstruction efficiency depends on momentum, pseudorapidity, total number of

tracks in an event and also the number of reconstructed primary vertices in an

event. In the kinematic range 5 GeV < p < 200 GeV and 2 < η < 5 the average

track reconstruction efficiency was measured in Run I to be 96% [69].
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Figure 2.11: The arrangement of straw drift tubes used in the OT

2.2.3 Calorimeters

The main purposes of the calorimeter systems are: to provide discrimination be-

tween photons, electrons, neutral pions and hadrons; reconstruct the position and

energy of photons, electrons and neutral pions; and provide fast transverse energy

measurements for use in the L0 trigger. The first substantial part of the calorimeter

system is an electromagnetic sampling calorimeter (ECAL) which makes use of the

shashlik design [79]. The role of the ECAL is to provide position and energy mea-

surements of photons, electrons and neutral pions. The next major component is

a hadronic sampling calorimeter (HCAL), which provides position and energy mea-

surements of hadrons, and is positioned downstream of the ECAL. These energy

measurements are crucial for effective triggering at the L0 hardware trigger level.

In order to provide discrimination between charged hadrons, photons and electrons,

longitudinal separation is added with the use of pre-shower detectors upstream of

the ECAL.

The pre-shower detectors consist of a plane of high granularity scintillator pads

(SPD) followed by a 15 mm(2.5X0) lead converter. The role of the lead converter

is to induce showers from photons which are then detected by the pre-shower de-

tector (PS), which is another plane of scintillator pads positioned between the lead

converter and the ECAL. The use of the PS/SPD system, in combination with the

calorimeters, provides discrimination between particle species. Photons will typi-
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Figure 2.12: The differing signals left in the calorimeter systems and SPD/PS de-
tectors by photons, electrons and charged hadrons. [80]

cally leave no hits in the SPD but hits in the PS and ECAL, whilst electrons will

typically leave hits in the SPD, PS and ECAL. Charged hadrons will typically leave

hits in the SPD but no hits (or very few) in both the PS and ECAL. A diagram sum-

marising the differing signatures of electrons, photons and charged hadrons is shown

in Figure 2.12. This shows the importance of the SPD/PS for particle identification.

The ECAL is segmented laterally into three different cell sizes; 40.4mm square cells

are used closest to the beam pipe, 60.6mm cells are used slightly further from the

beam pipe and 121.2mm cells are used to cover the outer areas of the calorimeter.

The positioning of the different cell sizes is shown in Figure 2.13. Each calorimeter

cell consists of 66 alternating layers of lead and scintillator sheets. The lead sheets

are 2mm thick and the purpose of this small radiation length material is to induce

an electromagnetic shower within a short distance. The scintillator sheets are 4mm

thick and their role is to provide light signals that are proportional to the energy

of an electromagnetic shower. The light signals are collected by wavelength shifting

fibres (WLS), which both transport the light signal to photomultiplier tubes (PMT)

at the rear of the cell and shift the wavelength of the light to a range suited to the

operating range of the PMT. With knowledge of within which cell the shower was

detected and information on the size of the shower, both the position and energy

of incident particles can be reconstructed. The ECAL is 42cm and 25 radiation
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Outer section : 

Inner section : 

121.2 mm cells 

2688 channels 

40.4 mm cells 

1536 channels 

Middle section : 

60.6 mm cells 

1792 channels 

Outer section : 

Inner section : 

262.6 mm cells 

608 channels 

131.3 mm cells 

860 channels 

Figure 2.13: Left (Right): The lateral segmentation and different sized cells used in
the ECAL (HCAL). [73]

lengths deep; full containment of electromagnetic showers is required to reach the

design energy resolution of σE/E = 10%/
√
E ⊕ 1%, which translates to a mass

resolution of 65 MeV for the important decay B0→ K∗0γ.

Conversely, the energy resolution of the HCAL is not as important because, given

a mass hypothesis, the energy of a charged hadron is determined from the far more

precise momentum measurements made by the tracking system. Therefore, full

shower containment is not necessary and the HCAL is only 5.6 hadronic interaction

lengths deep. This is also partly due to the limited space available for the HCAL. The

HCAL uses a similar shashlik sampling calorimeter design to the ECAL, but in this

case iron is used as an absorber material. The cell sizes are also different; only two

different cell sizes are used, which are 131.3mm (262.6mm) in the inner(outer) region

as shown in Figure 2.13. The energy resolution of the HCAL has been measured in

test beams to be σE/E = (69± 5)%/
√
E ⊕ (9± 2)% [73].

2.2.4 Charged Particle Identification

Another key requirement of the LHCb detector is to identify correctly different

charged hadron species; the ability to positively identify protons, kaons and pions

is crucial to the LHCb physics programme. This is achieved through the use of two

ring imaging Cherenkov detectors, RICH1 and RICH2. When a charged particle



43 Chapter 2. The LHCb Experiment and the Large Hadron Collider

Momentum (GeV/c)Momentum (GeV/c)
210 102

50

45

40

35

30

25

20

15

K p

C
he
re
nk
ov
A
ng
le
(m
ra
d)

µ

220
200
180
160
140
120
100
80
60
40
20
0

Figure 2.14: Reconstructed Cherenkov angle as a function of momentum. The
discrimination between different particle species can very clearly be seen. [81]

traverses a medium at a speed greater than the speed of light in that medium,

Cherenkov photons are emitted. The angle, θc, at which these Cherenkov photons

are emitted is given by

cos θc =
1

βn
, (2.2)

where n is the refractive index of the medium and β = v/c. The refractive index of

the medium used in the RICH1(RICH2) sub detector is 1.0014(1.0005). Given that β

can be expressed as β = p√
p2+m2

, the Cherenkov angle has a dependence on the mass

of the particle. Consequently, by measuring the angle at which Cherenkov photons

are emitted in a medium with a well known refractive index, different particle species

can be positively identified. This principle is illustrated in Figure 2.14, which shows

the reconstructed Cherenkov angle for several particle species as a function of track

momentum.

The RICH systems both detect Cherenkov photons by using a series of mirrors to

focus the photons onto an array of dedicated and novel Hybrid Photon Detectors

(HPDs) [82]. The HPDs are vacuum phototubes which accelerate photoelectrons,

emitted from the photocathode, onto a silicon pixel detector. The HPDs offer a

high granularity (2.5 × 2.5mm2) and 25 ns timing resolution, which are properties
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necessary for successful operation of the RICH detectors.

The RICH1 sub detector is positioned upstream of the magnet between the VELO

and TT (see Figure 2.6) and covers the low to intermediate momentum range of

2 − 40 GeV. The RICH2 detector is positioned downstream of the magnet after

the tracking stations but before the calorimeters and covers the high momentum

range of 15− 100 GeV. The RICH1 sub-detector uses C4F10 gas as a radiator, along

with a 50mm thick sheet of silica aerogel at the entrance to the sub-detector [83].

The sheet of aerogel is used to ensure kaon identification can still be performed at

low momentum; the threshold for a kaon to radiate Cherenkov light in C4F10 is

9.3 GeV [81]. The RICH2 sub-detector uses a gas mixture of 95% CF4 and 5% CO2,

the CO2 is added to quench scintillation.

The information from the RICH detectors is used by performing a fit to the distri-

bution of hits in the RICH sub-detectors under various particle hypotheses for each

track; the Particle Identification (PID) hypothesis which maximises the global likeli-

hood is assigned to the track. The quality of the PID assigned is quantified using the

difference in Log-Likelihood when the fit is performed with a given PID hypothesis,

and when the fit is performed with the pion ID hypothesis. These likelihood differ-

ences are known as the Delta Log Likelihood (DLL) variables; for example DLLpπ

is given by

DLLpπ = log(Lp)− log(Lπ), (2.3)

where Lp is the likelihood of the fit under the proton hypothesis and Lπ is the

likelihood of the fit under the pion hypothesis.

To further improve the use of the PID information available, a neural network is

trained to create global particle ID variables. The neural network makes use of

the DLL variables as an input, and also uses information from the calorimeter and

tracking systems to make best use of all the information from the LHCb detector.

The output of the neural network is then normalised to give the ProbNN set of
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variables. These variables are simply the probability of a given particle being of the

type assigned in the PID hypothesis, for example Kaon ProbNNk is the probability

of a track which has been assigned a kaon hypothesis truly being a kaon.

However, neither the DLL nor ProbNN variables are well modelled in MC. This

is because the interaction of the particles with the RICH detector involves several

complex second order processes which are not well simulated. Consequently, the MC

cannot be used to calculate efficiencies; data calibration samples have to be used to

determine the efficiency of cuts placed on PID variables. The calibration samples

are from decays where the PID of the tracks involved can be determined through

kinematics alone. These samples can then be used to determine PID efficiencies as

a function of kinematic variables (see Section. 4.3.3), allowing per-event efficiencies

to be assigned to the MC based on the signal kinematics.

Overall, the RICH detectors provide LHCb with unprecedented particle identifica-

tion ability; averaged over the momentum range 2−100 GeV kaons can be positively

identified with a ≈ 85% efficiency with just a 3% pion mis-identification rate. The

impact of this performance on physics analyses is profound. For example, Fig-

ure 2.15 shows the reconstructed invariant mass of B→ h+h− decays with (right)

and without (left) PID requirements applied. The channel B0 → π+π− is a key

decay channel for measurements of time dependent CP violation but, as shown in

Figure 2.15, without PID information it would be exceptionally difficult if not im-

possible to study due to mis-ID backgrounds [73,84].

2.2.5 Muon System

The efficient and accurate reconstruction of muons is imperative for many key

physics results. These include, but are not limited to: precision measurements

of CP asymmetries in decays such as B0→ J/ψ (µ+µ−)K0
S , searches for very rare
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Figure 2.15: A comparison of the B→ h+h− invariant mass distribution without
(left) and with (right) the use of PID information. The signal decay under study,
B0→ π+π−, is represented by the turquoise dotted line. Background contributions
from: B0→ K+π− red dashed-dotted line; B0→ 3−body orange dashed-dotted line;
B0
s→ K+K− yellow/gold solid line; B0

s→ K+π− brown line; Λ0
b→ pK− purple line

and Λ0
b→ pπ− green line are also shown. The full fit function is represented by the

solid blue line [81].

decays such as B→ µ+µ− and lepton universality tests such as R(K∗0) [85–87]. The

LHCb muon system is composed of five detector stations (M1-M5). As can be seen

in Figure 2.6, the first muon station (M1) is positioned upstream of the calorimeters

whilst stations M2-M5 are positioned downstream of the calorimeters. The muon

station positioned upstream of the calorimeter improves the resolution of the pT

measurement used in the trigger by ≈ 25%− 35%4 [76].

With the exception of the inner part of M1, each muon station is equipped with 276

Multi-Wire Proportional Chambers (MWPC). The inner region of M1 uses 12 triple

Gas Electron Multiplier (GEM) gaseous detectors because this region receives the

highest radiation dose, and it could not be guaranteed that MWPCs in this region

would survive the required 10 years of operation. The muon stations are separated

into logical regions in order to provide spatial information. Each muon station is

separated by 80cm of iron, meaning that only muons with p > 6 GeV will penetrate

all five muon stations.

4M1 is not used in the offline reconstruction of muons because tracks from M2-M5 can be
extrapolated back to the T1-T3 tracking stations which provides a more precise momentum mea-
surement
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Figure 2.16: Muon reconstruction efficiency for each region of the muon stations,
as measured in 2010 and 2011/12 data [69]. The efficiency for a given region is
estimated by searching for hits around the predicted trajectory of a track based on
extrapolating from hits in every other muon station. The efficiency is taken as the
fraction of regions for which hits are found.

The design muon reconstruction efficiency requirement was 95%, which means each

muon station individually must have an efficiency of > 99%. The actual efficiency

of the muon reconstruction has been measured in 2010, 2011 and 2012 data sepa-

rately; a plot showing this efficiency for each region of the muon stations is shown in

Figure 2.16. The lower efficiencies in 2011/2012 data are caused by dead time in the

detector readout, which was a consequence of running at twice the detector design

luminosity in these years. However, the combined response for muon identification

and reconstruction was still performed with an efficiency > 95% for all three years

of detector operation [69].

2.2.6 Trigger

The LHC collides proton bunches at a rate of 40 MHz, but the maximum rate at

which data from the LHCb detector can be read out is ≈ 5 kHz [73]. Therefore,
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Figure 2.17: The LHCb trigger system in 2012 data taking [77]. A bunch crossing
rate of 40 MHz is reduced to 5 kHz.

a trigger system is required to select which events are stored. An overview of the

LHCb trigger system is shown in Figure 2.17. There is firstly a hardware trigger,

known as the L0 trigger, which reduces the event rate from 40 MHz to 1 MHz. There

are then two levels of software trigger known as the High Level Triggers (HLT); the

HLT1 reduces the event rate to ≈ 80 kHz and the HLT2 reduces the event rate to

5 kHz. These three trigger systems are described further in the following sections.

2.2.6.1 L0 Trigger

In order to make decisions at a rate of 40 MHz, the L0 trigger is implemented in

dedicated electronics. The L0 trigger can be further divided into three separate

systems: the L0-Calorimeter trigger, L0-Muon trigger and L0-PileUp trigger.
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The L0-Calorimeter trigger makes use of information from the ECAL, HCAL, SPD

and PS to select hadrons, electrons and photons. The transverse energy, ET , of

particles which leave deposits in the calorimeters is computed in clusters of 2 × 2

cells. The highest ET HCAL cluster forms a L0Hadron candidate, and if the ET

of the candidate is above a fixed threshold it is selected. In 2011 the L0Hadron

threshold was 3.5 GeV and in 2012 the threshold was increased to 3.62 GeV; the

increase was necessary due to the increase in beam energy [69]. As described in

Section 4.2.1, the majority of candidates used in this analysis are selected by the

L0Hadron trigger. The efficiency of the L0Hadron trigger as a function of pT for

various hadronic signatures is shown in Figure 2.18.

The highest ET ECAL cluster is also reconstructed and if there is either one or two

PS hits in front of the cluster but no SPD hits then it forms a L0Photon candidate.

In the event there are both PS and SPD hits in front of the ECAL cluster, the cluster

is considered a L0Electron candidate. Both L0Photon and L0Electron candidates

were required to meet an ET threshold of 2.5 GeV during 2011 data taking and

3.0 GeV during 2012 data taking. The L0Photon trigger is not used in this analysis,

despite the presence of a photon in the final state, because the L0Photon threshold

is tuned to select events where high pT photons from radiative decays are a defining

characteristic.

2.2.6.2 HLT1

The HLT uses the same software framework as the offline reconstruction but with

some simplifications due to CPU time constraints. At HLT1, the VELO recon-

struction, track reconstruction and the matching of hits in the VELO to hits in the

tracking stations are all performed. However, VELO tracks pointing a long way

from the beamline are not reconstructed and the Kalman filter, used to perform

track fits, operates with a simplified geometry and fewer iterations [88]. Further-
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Figure 2.18: The efficiency of the L0Hadron trigger (left) and the HLT1 inclusive
track trigger (right) for various hadronic decays as a function of pT [69].

more, only tracks with a significant IP and with a pT > 0.5 GeV or pT > 1.25 GeV5

are matched to the tracking stations. As described in Section 4.2.1, this analy-

sis makes use of an inclusive beauty and charm track trigger at the HLT1 level

(Hlt1TrackAllL0Decision). This trigger line requires one good quality track with

pT > 1.6− 1.7 GeV (depending on year of data taking) and IP > 0.1mm. The band-

width used by this trigger is around 58 kHz, which is the largest of any HLT1 line

but it is also the most efficient for non-leptonic physics channels. The efficiency of

the inclusive HLT1 track trigger for various hadronic decays is shown in Figure 2.18.

2.2.6.3 HLT2

At the HLT2 level the event rate is sufficiently low to allow the use of the “forward

tracking” algorithm [89] for all VELO tracks and the calculation of many higher level

topological variables. In order to create an efficient generic beauty trigger, these

variables are combined using a Bonsai Boosted Decision Tree (BBDT) [90]. One

potential problem with the use of a Boosted Decision Tree (BDT) is instabilities due

to statistical fluctuations in the training samples used or finite detector resolutions.

This would be highly undesirable because it could lead to reduced performance

and/or selection efficiencies that may be unreliable. To avoid this a BBDT uses

5there are two separate selection requirements which define two types of reconstructed track
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Figure 2.19: Performance of the BBDT based HLT2 generic beauty trigger (TopoN-
Body) for B0→ K+π− and B0→ D+π− decays. The performance of the exclusive
B0→ hh trigger is also shown [69].

discretised data, where the width of the binning for each variable is greater than the

detector resolution. This mitigates detector resolution effects and also lowers the

impact of instabilities arising from statistical fluctuations, because it reduces the

number of ways in which the data can be split. This also means the different splits

can be saved in memory, which greatly improves the CPU performance making the

use of this algorithm in the trigger feasible. This approach has been shown to have

comparable stability and efficiency to a cut based approach whilst providing reduced

background retention rates.

There are separate BBDT based generic beauty triggers trained to select two, three

and four body decays because the observables characterising a decay vertex depend

on the number of particle tracks associated with it. However, as all of these triggers

are trained to select partially reconstructed beauty decays these triggers are not

mutually exclusive. In this analysis, all three n-body triggers are used. The perfor-

mance of the two-body trigger for B0→ K+π− and B0→ D+π− decays is shown

in Figure 2.19; a signal efficiency greater than 60% for tracks with pT > 5 GeV is

achieved, which is good performance given the reduction in bandwidth required.
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In any HEP experiment the accurate simulation of both the physics processes and

the subsequent response of the detector is crucial for optimising selections, evaluat-

ing their efficiencies and carrying out detector performance studies. Almost every

physics measurement makes use of simulated samples, therefore the validation of

the simulation process is of paramount importance. As well as ensuring the simu-

lated reconstructed quantities are consistent with data, e.g calorimeter energies or

impact parameters of tracks, any change in results between different versions of the

simulation software also needs to be fully understood. This chapter begins with a

brief introduction to the simulation framework and methods used by LHCb. This

is followed by a description of the validation work that has been performed for elec-

tromagnetic interactions of particles with the LHCb detector. More specifically, two

benchmarking tests of the Geant4 toolkit [91] have been developed; a simple test

that emulates the LHCb electromagnetic calorimeter is described in Section 3.3 and

a test of multiple scattering in thin sheets of silicon is discussed in Section 3.4.

3.1 The Simulation of the LHCb detector

The complexity of the calculations required to perform simulations in HEP and

the naturally repetitive nature of the experiments mean a Monte Carlo approach

to simulation is by far the most efficient, most natural and often the only viable

method. The LHCb simulation package, known as Gauss [92], is no exception. The

full simulation of an event within Gauss comprises three stages: the generation of

the underlying pp collision; the decay of hadrons and leptons; and the interaction

of final state particles with the LHCb detector.

The generation of the pp collisions and the outgoing particles is performed using

Pythia [71]. This is an external generic event generator which has an LHCb specific

tuning applied; variable hyperparameters are adjusted such that the generated kine-
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matic distributions match those seen in data as closely as possible. The next stage is

the decay of unstable particles, which is simulated with the EvtGen package [93].

This package was originally designed for the BaBar experiment and can simulate a

wide variety of decay amplitudes. Unlike at BaBar, B0 and B0
s meson production is

incoherent at LHCb, therefore some modifications to EvtGen are implemented to

account for this. The EvtGen package is also responsible for the time evolution of

particles.

The final stage of the simulation is the tracking and interaction of particles with

the LHCb detector. This task is handled by the Geant4 toolkit [91], and it is this

stage of the simulation process that is the subject of the validation work presented

in this chapter. Information about the particles created by the previous stages of the

simulation is passed to Geant4, along with a detailed description of the detector

geometry. Geant4 then simulates the passage of a particle through the detector

by stepping it through the geometry being modelled.

Before any step is taken, the step size is calculated for every possible physical pro-

cess considered, in the material in question, and the smallest is chosen. For any

given physical processes the step length is determined purely by cross sections; the

distribution of distance traveled before the next interaction takes place is calculated

and sampled for a specific scenario. On the other hand, for some physical processes

(such as multiple scattering) not every interaction is simulated, instead statistical

effects are applied after a step has been taken. In this case the step length is chosen

as a balance between accuracy and CPU time. After a step is taken the probabilities

of all physics processes having taken place are calculated, for the step size used, and

random numbers are generated to decide if they take place. This includes, but is

not limited to: energy loss, changes of direction and production of secondary parti-

cles. This process is then repeated until the particle exits the geometry, loses all its

energy or is annihilated.
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The full simulation process is then finalised by passing information about energy

deposits in sensitive detector volumes from Geant4 to a separate package known

as Boole. This package emulates the response of the detector readout electronics

to the energy deposited in the sensitive material of the detector. The simulated

electronic signals can then be processed in the same manner as data to produce the

same reconstructed quantities.

The full simulation process with Gauss consumes a significant amount of CPU time,

which is not an unlimited resource. When potential sources of background are being

considered, some can be ruled out based on variables which are calculable without

a full detector simulation. In order to understand which backgrounds need to be

considered in the analysis presented in this thesis, the RapidSim fast simulation

package is use to understand the kinematics of potential backgrounds [94]. This

package uses a phase-space model to simulate the kinematics of heavy hadron decay

chains, and fixed-order next-to leading-log (FONLL) calculations to reproduce the

correct kinematics of the heavy hadron (the boost of the heavy hadron). Smearing

effects are then applied to the final state particles to simulate the finite momentum

resolution of the LHCb detector.

The RapidSim package allows the kinematics of a potential background decay to

be studied quickly, and then ruled out if it is removed by kinematic selection re-

quirements. This saves a significant amount of CPU time compared to performing a

full simulation with Gauss. However, RapidSim can not be used to estimate signal

efficiencies or determine fit models. Therefore, only fully simulated (with Gauss)

samples are used for these purposes.
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3.2 Geant4 Physics Lists

For any interaction process there is often a variety of physics models available within

Geant4 that can be used to perform the simulation. The model which offers best

performance, in terms of accuracy and CPU time, is dependent on the geometry

and particles being simulated. With the large variety of physical processes that

are simulated and several models for each, there is a plethora of possible ways to

simulate the same scenario. Therefore, Geant4 provides standard combinations of

models known as “physics lists”. Each Physics List (PL) is a complete set of models

chosen to give optimal simulation performance for a common physics scenario e.g.

LHC physics, medical physics or low energy simulations.

The electromagnetic PL used by LHCb, EMLHCb (the hadronic models are specified

separately) is a custom version of a standard PL designed for HEP applications,

known as EM standard option1. A key feature of this PL is the use of the Minimal

option for multiple scattering step limitation, which is often the limiting factor for

the length of step taken. The multiple scattering step limit, L, in Geant4 is defined

as

L = min [Fr ×max (R (T ) , λ (T )) , Fs × s,D/FG] , (3.1)

where Fr is a tunable range factor, R(T ) is the particle range, λ(T ) is the inverse

transport cross section, T is the kinetic energy of the particle, Fs and s are geo-

metrical safety factors, D is the distance to a geometrical boundary and FG is a

tunable geometrical factor [95]. With the use of the Minimal step limitation option

the value of Fr is changed from the default value of 0.04 to 0.2. The advantage of

this is that far fewer steps are taken by Geant4, which leads to a significant reduc-

tion in CPU time. The LHCb experiment simulates of the order of 1010 events per

year, therefore this reduction in CPU time is crucial. The disadvantage of using the

Minimal option, however, is a reduction in accuracy and a lack of stability against

production cuts [96].
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During the simulation process many secondary particles can be created, especially in

electromagnetic showers. Without production cuts these would all be fully tracked

and simulated, despite many low energy particles having negligible effect on the

physics results. This would be a very computationally expensive process. Therefore

production cuts are applied, which require any secondary particles to have enough

energy to travel a minimum distance in order for them to be tracked. In LHCb simu-

lations a production cut of 5 mm is used, which vastly reduces the computation time

required to simulate each event. The main customisation made to the EM standard

option1 PL for use by LHCb is the removal of production cuts for secondary par-

ticles produced in the photoelectric effect, Compton scattering, gamma conversion

and positron annihilation electromagnetic processes. This customisation is made

in order to increase the accuracy of the simulation of the RICH sub detectors. A

detailed study of the effect of production cuts on the number of hits simulated in

several LHCb sub-detectors can be found in Ref. [97].

3.3 Calorimeter Test

The simulation of the LHCb electromagnetic calorimeter (ECAL) is particularly

important for any physics results with electrons or photons in the final state. With

the advent of the anomalies seen in lepton flavour universality tests, where the

ratio of decay rates of b mesons to muons and electrons is measured, the simulation

of the ECAL is going to become increasingly important [86, 98]. This calorimeter

test benchmarks the simulation of the ECAL, as performed by Geant4 without

introducing the full complexity of the detector as modelled in Gauss, allowing

early comparisons to be made when a new version of Geant4 is adopted. By

making these comparisons any unexpected changes to the simulation results can be

accounted for at an early stage.
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Figure 3.1: The geometry of the model calorimeter simulated by the calorimeter
test. The red represents active plastic scintillator layers and the green represents
passive lead layers.

The scenario simulated by the calorimeter test is electrons fired into the front face

of a model calorimeter at normal incidence. The model calorimeter is a sampling

calorimeter consisting of 66 alternating layers of both lead and plastic scintillator;

the lead layers are 2 mm thick and the scintillator layers are 4 mm thick. A diagram

showing this geometry is given in Figure 3.1. This geometry is deliberately chosen

to model the design of the LHCb ECAL as closely as possible [73].

The main aim of this test is to use calorimeter resolution as a metric for compar-

ison. The fractional resolution of an electromagnetic sampling calorimeter can be

parameterised, in the absence of electronic noise, as

σ

E
=

A√
E
⊕ C, (3.2)

where σ
E

is the fractional resolution of the calorimeter, A and C are free parameters

of the model and ⊕ represents addition in quadrature. By determining the values of

A and C for this model calorimeter, quantitative comparisons of different Geant4

versions can be made.

The A term in Equation (3.2) arises from statistical fluctuations in the electromag-

netic shower induced by the sampling calorimeter. In an electromagnetic shower,

many particles are produced and the energy measured by the calorimeter is the sum

of the energies deposited by each particle. However in a sampling calorimeter only

a fraction of the shower takes place in active regions, therefore only a fraction of

the shower particles are actually measured. Consequently the number of shower
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particles that are measured is subject to Poisson sampling fluctuations with a stan-

dard deviation of
√
N , where N is the number of shower particles in the active

region. Assuming the calorimeter response is linear (which it should be) the number

of shower particles produced is proportional to energy, therefore σ
E
∝
√
N
N
∝ 1√

E
.

In a sampling calorimeter it is sampling fluctuations that typically dominate the

resolution except at very high energies, thus the A term is usually by far the largest

term in Equation (3.2).

The C term in Equation (3.2) arises due to shower leakage from the calorimeter. At

a given energy the amount of energy lost from the calorimeter is subject to event-

by-event fluctuations, which leads to broadening of the resolution. However, the

total amount of energy lost from the calorimeter is proportional to the energy of the

incident particle and this dominates over the event-by-event effects. This leads to the

standard deviation of measured energies due to shower leakage being proportional to

incident energy, and consequently energy independent for the fractional resolution.

In order to extract the fractional resolution as a function of energy, electrons are

fired into the calorimeter at a range of energies. At each energy, the distribution of

the total energy deposited in scintillator layers is stored and a Gaussian fit to this

distribution is performed. An example of one of these fits is shown in Figure 3.2.

The fractional resolution at each incident energy is then taken as σ
µ
, where σ and µ

are the standard deviation and mean, respectively, extracted from the Gaussian fit.

A minimum χ2 fit of the function shown in Equation. (3.2) is then performed, with

the values of A and C left free to vary.

3.3.1 Calorimeter Test Results

Three versions of Geant4 have been compared whilst using the EMLHCb PL, namely

Geant4 v9.5.2, v9.6.4 and v10.3.3. The fractional resolution as a function of energy
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Figure 3.2: The distribution of total energy deposited in the scintillator layers of
the ECAL at an incident electron energy of 25 GeV. The Gaussian fit performed to
extract the standard deviation of the distribution is overlayed.

Geant4 version A C SF @ 25 GeV
v9.5.2 (9.50± 0.02)% (0.474± 0.007)% 0.12417± 0.00003
v9.6.4 (9.10± 0.02)% (0.478± 0.006)% 0.13149± 0.00003
v10.3.3 (9.10± 0.02)% (0.477± 0.006)% 0.13988± 0.00003

Table 3.1: Results from fits of fractional resolution against energy. A and C are the
free parameters of the model given in Equation (3.2).

for all three versions can be seen in Figure 3.3, the numerical results of the fits are

shown in Table 3.1. It is clear there are significant differences between Geant4

versions v9.5.2 and v9.6.4; there was a step change in the stochastic (A) term be-

tween these two versions. However, there was no change in the stochastic (A) term

between Geant4 v9.6.4 and v10.3.3. The statistical significance of the discrepancy

between v9.5.2 and v9.6.4 is 20.8σ; there is no doubt this discrepancy is due to

changes to the modelling of the calorimeter within Geant4.

This has been investigated further by studying the average Sampling Fraction (SF) of

the model calorimeter for each version of Geant4. In this case, the SF is defined as

the fraction of the incident electron’s energy which is deposited in scintillator layers.

This has very little dependence on the energy of the incident electron, therefore
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Figure 3.3: Plot of fractional resolution against 1/
√
E for Geant4 v9.5.2, v9.6.4

and v10.3.3.

the SF at an electron energy of 25 GeV is chosen for comparison, these results are

also shown in Table 3.1. The SF results have progressively increased with each new

version of Geant4.

The best way to assess whether these changes are an improvement is to compare the

simulated resolution to that obtained in data. However, the test beam data available

for the LHCb ECAL only gives a range of values for the A term of the fractional

resolution, 8.5% < A < 9.5% [73]. Furthermore, only a simplified scenario and

reconstruction is simulated in this test. For these reasons, a meaningful comparison

with data is not possible. Instead, a comparison with simulations performed with

the emstandard opt0 PL is made. This PL provides optimal accuracy and stability

against production cuts, but cannot be used in production due to the significantly

larger amount of CPU time it requires. When this test is run with the Geant4

v10.3.3 and the emstandard opt0 PL the fractional resolution results obtained are:
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A = 7.84 ± 0.02% and C = 0.459 ± 0.005%. Very similar results are found when

Geant4 v9.5.2 is used with the same PL. Therefore, the change in calorimeter

resolution observed is progress towards optimal accuracy with the EMLHCb PL whilst

keeping CPU time roughly the same.

The consequence of these changes is that the calorimeter calibration in Gauss has

to be reviewed and potentially updated every time a new version of Geant4 is

introduced. Even though the resolution has not changed between v9.6 and v10.3,

the change in SF means a re calibration is necessary. This ensures that the energy

deposits simulated by Geant4 can still be used to reconstruct the energy of the

incident particle.

3.4 Multiple Scattering Test

After consultation with the Geant4 authors, it was suggested the most likely reason

for the observed resolution changes is alterations to the multiple scattering models.

Therefore, a dedicated test of multiple scattering was needed. It has been seen

that the modelling of the multiple scattering process has a strong influence on the

accuracy of the Impact Parameter (IP) resolution. As the IP is used extensively to

isolate secondary vertices in the LHCb detector, it is crucial the modelling of the IP

is not degraded.

When a charged particle traverses material there is a non-zero probability that it

will undergo elastic Coulomb scattering from a nucleus within the material. The

differential cross section for this process is given by

dσ

dΩ
=

(
1

4πε0

)2
z2e4

M2c4β4

1

sin4(θ/2)
, (3.3)

where Ω is solid angle, z is the atomic number of the material, M is the mass
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Figure 3.4: The lateral displacement and angular dispersion when a charged particle
traverses a medium [1].

of the charged particle and θ is the angle through which the charged particle is

scattered [99].

Except for cases where the scattering material is a very thin film, the charged particle

will scatter multiple times before exiting the material. Hence, multiple coulomb

scattering, which is more commonly known as just multiple scattering, occurs. The

net effect is a lateral displacement as well as a scattering angle, as depicted in

Figure 3.4. In this case a statistical treatment has to be used to obtain a distribution

for the scattering angle, which is defined as θ in Figure 3.4. One such statistical

treatment is Molière theory, which has been shown to give very good agreement with

data over a wide range of particles, materials and energies [100, 101]. Several other

theories have been shown to produce consistent results; Lewis theory also provides

moments for the spatial displacement distribution [102]. Both the Moliere and Lewis

theories give a scattering angle distribution that is Gaussian for the central 98% of

scattering angle values, but the tails of the distribution fall off more slowly than

a Gaussian function due to the 1/ sin4(θ/2) term in Equation 3.3. The width of

the central Gaussian is defined as θ0 which can be approximated by the Highland
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formula

θ0 =
14.1 MeV

pv
z

√
L

LR

[
1 +

1

9
log10

( L
LR

)]
, (3.4)

where p is the incident particle’s momentum, v is the incident particle’s velocity, L

is the length of the material and Lr is the radiation length of the material. This

formula is an empirical formula that arises from fits to Molière theory [103].

When one simulates multiple scattering, in a similar way to the theoretical models,

it is rarely possible to simulate every individual collision. It is only possible if

the number of scatters is small and a large amount of CPU time is available. For

the latter reason, this type of simulation based on simulating every single scatter

was not implemented until 2005. Unfortunately, there is still a limited number of

applications where this is a viable option. The UrbanMsc models get around this

by using a “condensed” simulation of multiple scattering, which involves simulating

one step of the particle’s path at a time and applying net effects at the end of each

step [95]. More specifically, the angle through which the particle has been scattered

and the lateral displacement are applied at the end of each step as part of the

multiple scattering simulation. The scattering angle is sampled from distributions

calculated using Lewis theory but no theory of a full displacement distribution exists.

Therefore, Geant4 uses its own, approximate, algorithms to calculate the lateral

displacement after each step [104].

Another approach to simulating multiple scattering, which has been implemented

more recently, is to use a “mixed” approach. This involves sampling scatters, where

the scattering angle θ is below a threshold θmax, in a similar way to the “con-

densed” approach discussed previously. However, if the scattering angle is above

θmax then a single scattering approach is used. This is implemented in Geant4 as

the WentzelVI model.

To carry out a direct investigation of multiple scattering, a test based on an example

provided by the authors of Geant4 was setup to fire particles into a square sheet
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θ

Figure 3.5: The setup of the multiple scattering test. θ is the angle under investi-
gation by this test.

of material at normal incidence and study the angle of the scattered particle to the

normal as it exits the material on the opposite side. A diagram of this is shown in

Figure 3.5. The type of material used, the width of the material and the thickness

of the material can all be specified. In this case the setup used was a 300µm thick

sheet of silicon designed to model the LHCb VELO as closely as possible. This is

the area of the detector where precise tracking measurements sensitive to multiple

scattering take place; the IP is largely dictated by measurements in the VELO.

The aim of this test is to measure the parameter θ0 of the scattered particles’ angular

distribution for electrons at a range of energies and use it as a metric with which to

compare Geant4 versions. The θ0 parameter is then estimated at each energy by

calculating the standard deviation of the central 98% of scattering angles, effectively

measuring the width of the central Gaussian component of the scattering angle

distribution. In order to estimate an uncertainty on the θ0 parameter the test is

re-run 1000 times at each energy, the mean of the resulting θ0 values is used for

comparison and the uncertainty on the mean is assigned as the RMS/
√

1000.
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Figure 3.6: θ0 as a function of the inverse of the incident electron energy.

3.4.1 Multiple Scattering Test Results

This test has been performed at 14 energies in the range 1 – 100 GeV for the

three versions of Geant4 introduced in Section 3.3 (with the EMLHCb PL): v9.5.2,

v9.6.4 and v10.3.3. The θ0 parameter as a function of the inverse of the incident

electron energy can be seen in Figure 3.6, and the numerical results can be found

in Table 3.2. These results show, firstly, that there is no change in the scattering

angle between Geant4 v9.6.4 and v10.3.3. However, it does show that there was

a difference in scattering angle between Geant4 v9.5.2 and v9.6.4. This change is

prevalent at low energies. The most likely reason for this change is the fact that the

multiple scattering model used for electrons and positrons above 100 MeV changed

from the UrbanMsc95 model in v9.5.2 to the WentzelVI model in v9.6.4. This

observation meant that particularly close attention was paid to reconstructed physics

quantities which are sensitive to multiple scattering, such as the IP resolution, when

the validation of the full simulation package was carried out.
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Energy/ GeV
θ0/mrad

v 9.5.2 v9.6.4 v10.3.3
1 0.5809± 0.0031 0.6065± 0.0031 0.6051± 0.0029
2 0.2901± 0.0015 0.3033± 0.0015 0.3025± 0.0015
3 0.1931± 0.0009 0.2023± 0.0010 0.2017± 0.0010
4 0.1447± 0.0008 0.1517± 0.0008 0.1512± 0.0007
5 0.1156± 0.0006 0.1214± 0.0006 0.1210± 0.0006
7 0.0824± 0.0004 0.0867± 0.0004 0.0865± 0.0004
9 0.0641± 0.0003 0.0674± 0.0004 0.0672± 0.0003
12 0.0480± 0.0003 0.0506± 0.00025 0.0504± 0.0003
15 0.0383± 0.0002 0.0405± 0.00020 0.0404± 0.0002
20 0.0287± 0.0002 0.0304± 0.00015 0.0303± 0.0002
25 0.0229± 0.0001 0.0243± 0.00012 0.0242± 0.0001
30 0.0191± 0.0001 0.0202± 0.00010 0.0202± 0.0001
40 0.01431± 0.00008 0.01524± 0.00008 0.0151± 0.0001
100 0.00577± 0.00003 0.00607± 0.00002 0.00605± 0.00003

Table 3.2: Results from the multiple scattering test, showing θ0 at various energies
for the three Geant4 versions tested.

3.5 Conclusions

The standalone benchmarking of Geant4 that has been described in this Chapter

has highlighted several differences between the three Geant4 versions tested. The

sampling calorimeter test has seen a change of around 4% in the fractional resolution

of a simplified model of the LHCb calorimeter between Geant4 v9.5.2 and v9.6.4.

A change in SF has also been observed between all three Geant4 versions. The

change between v9.5.2 and v9.6.4 is strongly believed to be caused by the change

from a “condensed” multiple scattering model to a “mixed” model for electrons

and positrons with an energy above 100 MeV. The consequence of these changes

is that the calorimeter calibration has to be re-performed in MC with each release

of a new simulation package. Changes to the multiple scattering models have been

probed directly with the test described in Section 3.4. This showed a change in the

scattering angles of electrons in thin sheets of silicon, particularly at low energies,

between Geant4 v9.5.2 and v9.6.4. However, no change was observed between

v9.6.4 and v10.3.3. The observation of this change in the behaviour of Geant4



68 Chapter 3. Validation of Simulation of Electromagnetic Processes

meant that extra care was taken to validate reconstructed physics quantities which

are sensitive to multiple scattering.

The objective of these tests is to perform early sanity checks when a new version

of Geant4 is released (rather than tuning the MC), and the discovery of the ne-

cessity to re-calibrate the calorimeter in MC shows that these tests are capable of

achieving this objective. Without these tests the change in SF would have either

gone undetected or, if reconstructed quantities behaved differently, it would have

taken significant effort to pin down the cause of any discrepancy. In the latter case,

a significant amount of CPU time could also be wasted regenerating MC samples

which have been simulated with the wrong calorimeter calibration. To ensure that

these tests are always run efficiently in the future, they have been integrated into the

LHCb Performance and Regression testing platform (LHCbPR) [105]. This means

the tests are automatically run periodically on a dedicated server and the results

can be viewed on a web page, allowing any changes or discrepancies to be flagged

up at the earliest opportunity.



CHAPTER 4

Analysis Strategy in the Search for Λ0
b→ pKη′

This chapter describes the strategy used to search for the decay1 Λ0
b→ pKη′ , and

either measure or set a limit on its branching fraction. Firstly, an overview of the

strategy is outlined. This is followed by a description of the event selection, efficiency

calculations and background studies.

4.1 Introduction

The aim of this analysis is to perform a “blind” search for the rare and as-yet

unobserved decay Λ0
b → pKη′ in a combination of two channels; where the η′

is reconstructed through the decay η′→ π+π−γ and where the η′ is reconstructed

through the decay η′→ π+π−η (η→ γγ ). These two channels are used because they

1The search is also performed for the charge conjugate decay Λ0
b → pK+η′; the inclusion of

charge conjugate decays is implied throughout this thesis

69
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are the decay modes with the highest branching fractions that can be reconstructed

at LHCb. The only other decay mode with a comparable branching fraction is

η′ → π0π0η, but reconstruction of the η′ through purely neutral particles is not

feasible with the LHCb detector. The branching fraction of the decay Λ0
b→ pKη′

will be measured, or a limit set, relative to the well-known decay B+ → K+η′

(η′→ π+π−γ ) [1]. The ratio of branching fractions is measured, as opposed to an

absolute branching fraction, because many systematic uncertainties cancel when the

ratio is taken. For example, the bb production cross section has a ∼ 10% systematic

uncertainty which cancels in the ratio [106].

The B+→ K+η′ decay has a branching fraction of (7.06± 0.25)× 10−5 [1], which

means a signal yield of > 10K events is expected. Furthermore only minimal combi-

natorial background has been seen in other LHCb analyses of this decay, making it

an ideal control channel for this search [107,108]. Combinatorial background occurs

when random combinations of tracks and photons are combined to create fake signal

candidates. It can usually be described by smooth, non-peaking, functions which

makes it simple to model. The decay B0→ K∗0η′ was originally investigated as

a potential control channel, motivated by its greater similarity to the number of

tracks in the rare decay signal final state, but it was found to suffer from significant

peaking backgrounds in the signal region. Furthermore, the lower branching fraction

(B = (3.1± 0.9)× 10−6) leads to an estimated signal yield of <200 events [1].

The data samples used in this search are the full Run I dataset. This consists of data

taken at
√
s = 8 TeV in 2012 corresponding to an integrated luminosity of 2.0 fb−1

and data taken at
√
s = 7 TeV in 2011 corresponding to an integrated luminosity of

1.0 fb−1. The data samples for both the rare channels and the control channels are

processed during the same processing campaign, meaning the same reconstruction

software is used in both cases. This is important to ensure any mis-modelling of

reconstructed variables in simulation cancels in the branching fraction ratio.
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An event selection is developed to maximise sensitivity to the rare Λ0
b decays, and as

similar selection as possible is applied to the control channel. This is developed with

the analysis blind; events with an invariant mass in the range2 5494 MeV < M(Λ0
b) <

5744 MeV (5444 MeV < M(Λ0
b) < 5794 MeV) in the η′→ π+π−γ (η′→ π+π−η ) rare

channel are concealed until the selection and fit models are finalised. The selection

is described in detail in Section 4.2, but consists of: using hadronic and multi-body

topological trigger lines; requirements on the quality of reconstructed photons; the

use of a multivariate binary classifier; requirements which make use of the LHCb

PID system and mass vetoes for specific (mainly charm) backgrounds.

The signal yields are then extracted with a simultaneous extended maximum like-

lihood fit to the invariant mass of Λ0
b candidates and B+ candidates. In the latter

case (control channel), the fit is also performed to the mass of the η′ candidates.

A simultaneous fit across all three decay channels is used so that parameters can

be shared between decay channels, which improves the stability of the fit. This is

described in detail in Section 5.1.

The ratio of branching fractions, which it is the aim of this analysis to determine,

is given by

R =
B(Λ0

b→ pKη′)

B(B+→ K+η′)
=


εcNγ

εγNc

(
fu
fΛ0

b

)

γ

+
εcNη

εηNc

(
fu
fΛ0

b

)

η


× Bγ

Bγ + Bη
, (4.1)

where:

• εc and Nc are the total efficiency and the signal yield of the control channel,

• εγ and Nγ are the efficiency and signal yield for the rare channel where η′→
π+π−γ ,

• εη and Nη are the efficiency and signal yield for the rare channel where η′→
2The invariant mass resolution of Λ0

b candidates in the η′→ π+π−η channel is worse, hence
the different blind regions
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π+π−η ,

• Bγ = B (η′→ π+π−γ ) = 0.291± 0.005 [1],

• Bη = B (η′→ π+π−η ) ×B(η→ γγ ) = 0.169± 0.007 [1],

•
(

fu
f
Λ0
b

)

γ(η)

is the B+/Λ0
b fragmentation fraction in the η′ → π+π−γ(η′ →

π+π−η) channel as measured by LHCb but determined separately for each

channel (see Section 4.1.1) [109]. This is the fraction of b-quarks, produced in

the proton-proton collision, which hadronise to produce a B+/Λ0
b hadron.

As shown in Equation. (4.1), the efficiencies of each decay channel are required to

measure the ratio of branching fractions. In the rare channels, the M(pK−) spectrum

is expected to contain a rich resonant structure which is not a priori understood [16],

but needs to be taken into account when the efficiencies are determined. As no

amplitude model for these resonances exists at the time of writing, the simulated

samples used in this analysis are generated uniformly across the phase space of the

decays(also refered to as just “phase space” for brevity). The use of phase space

Monte Carlo to determine efficiencies is not guaranteed to be accurate as there

are likely to be variations in efficiency across the phase space of the decay, and

intermediate M(pK−) resonances would lead to a non-uniform population of the

phase space. Corrections for the variation of efficiency across the phase space of the

decay need to be applied, which leads to a two step unblinding procedure. Prior

to unblinding phase space dependent efficiencies will be determined as a function of

the variables m′′ and cos(θη′p), which are justified in Section 4.3. m′′ is given by

m′′ =
mη′p −mmin

η′p

mmax
η′p −mmin

η′p

, (4.2)

where mη′p is the invariant mass of the p and η′ system, mmin
η′p = mη′ + mp and

mmax
η′p = mΛ0

b
−mK− . cos(θη′p) is the cosine of the helicity angle of the η′p system,

which is the angle between the η′ and the K− in the rest frame of the η′p system.
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The simultaneous mass fit (combined fit to both the Λ0
b decay channels and the

B+ decay channel) will first be performed to extract raw signal yields and Wilks’

theorem [110] will be used to decide if the yield in either channel separately has a

significance greater than 3σ.

In any channel where this is the case, a background subtraction will be performed

using the sPlot method and the resulting sWeights will be used to calculate a phase

space corrected efficiency [111].

When there is more than one source of events contributing to the distribution of

a discriminating variable m, the sPlot method allows these different sources to be

statistically separated. After a maximum likelihood fit to the discriminating variable

is performed, the sWeight for a source s and an event e is given by

sWs(e) =

∑Ns
j=1 Vsjfj (me)∑Ns
k=1Nkfk (me)

, (4.3)

where Ns is the number of sources of events, V is the covariance matrix of the fit,

fx is the Probability Density Function (PDF) of source x evaluated at the value of

m for event e (me) and Nk is the event yield of source k. sWeights are constructed

such that

NnMn(ȳ)δy ≡
∑

e∈δy
sWs(e), (4.4)

whereNn is the total number of events in the data sample, Mn is the true distribution

of a variable of interest y for the source s, ȳ is the value of y at the centre of a bin with

width δy and
∑

e∈δy sWs(e) is the sum of sWeights for events falling in a given bin of

y. In practice this means plotting the distribution of the variable y weighted by the

sWeights for a source s will produce, on average, the true distribution of the variable

y for the source s. In this analysis the reconstructed masses of Λ0
b candidates will

be used as discriminating variables to determine the true distribution of the phase

space variables m′′ and cos(θη′p) for signal decays.
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One caveat that comes with the use of sWeights is that all yields must be free

in the fit from which the covariance matrix V is extracted. This means that the

yields of background components can not be fixed or constrained. Consequently, the

complexity of fit possible whilst still maintaining stability is significantly limited.

In any channel where the significance is < 3σ, the signal yield is unlikely to be large

enough to perform a correction. Therefore, the phase space integrated efficiency will

be calculated and a systematic uncertainty will be assigned for the variation of the

efficiency over the phase space of the decay.

A second simultaneous mass fit will then be performed with an identical fit model

but with the efficiency and fragmentation fraction information included such that

the ratio of BFs, as given in equation 4.1, is a parameter of the fit which is free to

vary. This allows the ratio of BFs, R, and the corresponding likelihood function to

be extracted directly from the fit. In the case of observing a combined significance

< 3σ, upper limits will be set on the BF by convolving the likelihood function with

a Gaussian of width equal to the total systematic uncertainty and integrating in the

physical region.

4.1.1 Λ0
b/B

+ fragmentation fraction

The ratio of fragmentation fractions
f
Λ0
b

fu
used in Equation (4.1) is assumed to be

identical to
f
Λ0
b

fd
under isospin symmetry, which has been measured by LHCb [109].

The LHCb measurement shows that
f
Λ0
b

fd
has a pseudorapidity dependence that can

be described by the equation [109],

fΛ0
b

fd
= (0.387± 0.033) + (0.067± 0.013)(η − η̄), (4.5)

and η̄ = 3.198. Although this only depends on Λ0
b production kinematics, the

different decay products mean the η distribution measured by the LHCb detector
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η′→ π+π−γ η′→ π+π−η
< η > 3.6273± 0.0004 3.6697± 0.0003
f
Λ0
b

fd
0.416± 0.033 0.419± 0.033

Table 4.1: The mean pseudorapidity and fragmentation fraction used for each Λ0
b

decay channel, averaged over both years of data taking. See text for a description
of how these are calculated.

will be slightly different in each channel. Therefore, separate fragmentation fractions

are used in each channel.

In order to calculate these fragmentation fractions simulation of the signal decays

without the effects of the detector (“generator level”), but with the requirement that

the decay products are within angular acceptance of the LHCb detector3 is used to

calculate a mean pseudorapidity, < η >, in each decay channel. The mean pseudo-

rapidity is averaged over both years of data taking and then used in Equation (4.5)

to calculate a fragmentation fraction for each channel; these values are shown in

Table 4.1. It should be noted that the approximately 8% uncertainty on these frag-

mentation fractions is expected to be one of the dominant systematic uncertainties

on the branching fraction measurement.

4.1.2 Global Decay Chain Fitting

The default approach to determining quantities such as the B+/Λ0
b kinematics and

decay time is to start from the measurements of the final state particles and prop-

agate the kinematics up the decay chain to the mother particles. Explicitly, in the

case of the Λ0
b → pKη′ decay, the kinematics of the η′ resonance are determined

by summing the four vectors of the daughter particles and then the Λ0
b kinematics

are calculated by summing the four vectors of the p, K− and η′. However, this

means that none of the information from upstream of the final state particles is

3Subsequently, this acceptance requirement will be referred to as satisfying the
DaughtersInLHCb criteria.
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used when calculating the kinematics of any intermediate resonances. In order to

improve the resolution on quantities of interest, such as the masses and lifetimes

of parent particles, the entire decay chain is parameterised using quantities such as

vertex positions, track kinematics and calorimeter clusters. A least squares fit to

the entire decay chain is then performed using a Kalman filter [88], known as Decay

Tree Fitter (DTF). This approach also allows additional physics constraints to be

incorporated, such as constraining the mass of any intermediate resonances to the

PDG value and the requirement that the mother particle originated at the primary

vertex.

In all channels the decay chain is refitted with the DTF tool, with the η′ mass

constrained to the PDG value and the mother particle constrained to originate from

the Primary Vertex (PV) of the Proton-Proton (pp) collision. In the case of the

η′ → π+π−η channel, it is also possible to constrain the mass of the η to the

known value [1], but this additional constraint is not used because it causes a high

fraction of fits to fail. The main benefit of this is a significantly improved B+/Λ0
b

mass resolution, but the χ2 of the fit is also a powerful variable for discriminating

between signal and background.

When the phase space variables (m′′ and cos(θη′p)) are calculated, DTF is further

utilised. When the variables are determined using kinematics which are calculated

without constraints on the decay chain, there are candidates which are reconstructed

outside the allowed kinematic boundaries. This can lead to m′′ outside the allowed

range and erroneous values of cos(θη′p). Therefore, the entire decay chain is fitted

with both the Λ0
b mass and η′ mass constrained in addition to requiring the Λ0

b

to originate from the PV. The daughter kinematics which result from this fit are

then used to calculate m′′ and cos(θη′p); the constraint on the Λ0
b mass ensures the

kinematics stay within allowed regions of the phase space.
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4.2 Selection

When pp collisions take place the large majority of the candidates reconstructed are

background candidates, where other processes mimic the signal decays of interest to

this analysis. It is the goal of the event selection to achieve the best expected signal

significance by optimising the relative number of signal and background candidates

selected.

4.2.1 Trigger Selection

In all channels, including the control channel, candidates are required to pass trigger

decisions at all levels. As the primary purpose of the trigger system is to select which

pp collision data to record, it is an event which passes a trigger selection rather than

a candidate. Consequently, candidates can be split into two categories, Trigger In-

dependent of Signal(TIS) and Trigger on Signal(TOS). When it is the physics objects

(tracks, calorimeter clusters etc.) associated with a given candidate which caused

an event to pass a trigger selection, the trigger decision is defined as TOS. When

an event passes a trigger selection based on physics objects not associated with a

candidate, the trigger decision is defined as TIS. A more detailed description of the

LHCb trigger system and a description of the trigger lines used in this analysis can

be found in Section 2.2.6.

At L0 candidates are required to pass either the L0HadronDecision TOS or the

L0Global TIS trigger decision. The L0HadronDecision trigger line makes use of

the hadronic calorimeter information to select events which contain at least one

high transverse energy (ET ) hadron. The ET threshold used is 3620 MeV in 2012

data and 3500 MeV in 2011 data. The L0Global TIS requirement simply requires

the candidate to have passed any other L0 trigger decision as TIS.
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Candidates are also required to pass the Hlt1TrackAllL0Decision TOS decision at

the HLT1 level. This decision ensures there is at least one high pT track in the event.

More specifically, there has to be at least one track with pT > 1.6 GeV present. At the

HLT2 level candidates are required to pass either the Hlt2Topo2BodyBBDTDecision TOS,

Hlt2Topo3BodyBBDTDecision TOS or Hlt2Topo4BodyBBDTDecision TOS trigger de-

cision. These trigger selections use a multivariate classifier, trained on topological

variables, to select multibody decays. Further details about BBDT trigger deci-

sions can be found in Ref. [77]. The overall efficiencies of these trigger requirements

are (43.29 ± 0.21)%, (38.65 ± 0.13)% and (28.76 ± 0.15)% for the B+ → K+η′ ,

Λ0
b→ pKη′ (η′→ π+π−γ ) and Λ0

b→ pKη′ (η′→ π+π−η ) channels respectively. A

full breakdown of the trigger efficiencies is given in Section 4.3.2.

4.2.2 Pre-Selection

The pre-selection consists of several loose cuts applied in order to reject background

and select working data samples of a sensible size. These cuts, known as “Stripping”

cuts, are largely all applied during the centralised data processing campaigns. As

different “Stripping Lines” are used in the rare and control channels, the selection

requirements differ for some variables. In particular, there are no requirements

on the di-pion intermediate resonance in the rare channels. This is because the

decay η′→ π+π−γ (which is the only one used to reconstruct the control channel)

predominantly proceeds through a ρ0 resonance, whereas the decay η′ → π+π−η

does not.

Table 4.2(4.3) shows the pre-selection requirements for the rare (control) channel.

The definitions of the variables used are:

• pT: Signal candidates have a harder transverse momentum (pT) distribution

than background candidates meaning a cut on pT removes a lot of background.
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• ProbNN: The information from the RICH PID systems and all other sub

detectors is combined, with the use of a neural network, to produce a single

PID variable for charged particles(see Section 2.2.4). The requirements used

here are to make a positive identification of a track as being of the required

particle species, which reduces background from mis-identified(mis-ID) tracks.

• Ghost Probability: “Ghost” tracks occur when random hits in the detec-

tor are reconstructed to form a track which is not associated with a physical

particle. These are suppressed by applying the cut ProbNN Ghost <0.5; the

ProbNN Ghost variable is the output of a neural network trained using infor-

mation from several sub-detector systems.

• IP χ2: The Impact Parameter (IP) is the transverse distance of closest ap-

proach between a track’s trajectory and the PV. Units of χ2 are equivalent to

σ2, therefore a requirement of IP χ2 >n is requiring the IP χ2 to be greater

than
√
n standard deviations. The Λ0

b/B
+ particles will travel a measurable

distance in the detector, meaning all tracks should appear to originate from

a displaced secondary vertex. Cuts on IP χ2 are useful for rejecting tracks

which were produced in the pp collision and requiring the Λ0
b/B

+ candidate is

consistent with being produced in the pp collision. The Best Primary Vertex

(BPV) means the most likely PV; when BPV is specified it is the distance to

the BPV, but otherwise it is the distance to any PV.

• χ2/ndf: The χ2/ndf is of the track fit. Cuts on χ2/ndf are used to reject

poorly reconstructed tracks and ghost tracks.

• χ2
vtx/DOF: The χ2/ndf of the vertex fit performed when tracks are combined.

• DOCA χ2: The Distance of Closest Approach in units of χ2, which is equiv-

alent to standard deviations. This is calculated as the distance of closest

approach between all possible pairs of particles. It is possible for background
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Table 4.2: Pre-selection requirements used in the rare channels.

Particle Variable Requirement

Track pT p/K− >500 MeV,
π+/π− >300 MeV

Ghost Prob < 0.5
ProbNN > 0.1

BPV IP χ2 > 20.0
(p/ K− Only)

χ2/ndf < 3.0

γ CL >0.1

η m(η) ±50 MeV

η′ pT >2000 MeV
χ2

vtx/DOF <10.0
DOCA χ2 < 10
m(η′) ±100 MeV

Λ0
b χ2

vtx/DOF < 15
DOCA χ2 < 15

pT > 1000 MeV
DIRA >0.9995

BPV IP χ2 <20
m(Λ0

b) ±750 MeV

candidates to be created from tracks which did not originate from the same

vertex; requiring a minimum distance between them reduces this background.

• DIRA: The Direction Angle is the cosine of the angle between the Λ0
b/B

+ mo-

mentum vector and the vector between the Λ0
b/B

+ decay vertex and most likely

PV. This is particularly effective at suppressing combinatorial background.

• mcorr: The corrected B+ mass which is defined as: mcorr =
√
m2 + |Pmiss

T |2 +

|Pmiss
T | where m is the invariant mass of the B+ candidate and Pmiss

T is the

missing momentum transverse to the line of flight of the B+ decay.

• γ CL: The confidence level of a reconstructed photon being a true photon.

This variable is the output of a neural network trained to discriminate between

real photons and background from both electrons and non-electromagnetic

deposits. A full description can be found in Ref. [112].
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Table 4.3: Pre-Selection requirements imposed on the control channel.

Particle Variable Requirement

Tracks pT π+/π− >400 MeV
K− >1000 MeV

Ghost Prob < 0.5
ProbNN > 0.1

(BPV) IP χ2 > 16.0 (20.0)

γ CL >0.1

Di-Pion χ2
vtx/ndf < 6.0

Resonance pT >600 MeV
(ρ0) m(ρ0) <1100 MeV

η′ m(η′) ±100 MeV
pT >2000 MeV

B+ χ2
vtx/ndf <6
pT > 2500 MeV

DOCA χ2 < 15
BPV IP χ2 < 20

DIRA > 0.9995
mcorr <7000 MeV
m(B+) ±750 MeV

4.2.2.1 Cross Checks with pre-selected B+→ K+η′ events

This section describes the use of the control channel to investigate the modelling

of pre-selection variables and the reliability of efficiencies in MC. The modelling of

variables is investigated by performing a fit to the B+ mass distribution of pre-

selected candidates, extracting sWeights4 and comparing weighted distributions in

data to MC [111]. The fits performed are a simple 1D fit; for the purposes of this

fit a ±2σ cut is made around the η′ mass, where σ = 12.85 MeV which is taken

from a fit to MC. The signal shape is modelled with a sum of two Crystal Ball (CB)

functions with opposite side tails, from here on referred to as a Double Crystal Ball

(DCB) function. A CB function is a Gaussian function in its central region with

a power law tail, which is incorporated to model bremsstrahlung radiation effects.

4sWeights are described in Section 4.1
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Explicitly, a CB function is given by

CB(t;n, α, σ) = N ·





exp(−t2/2σ2) if t/σ > −α
(
n
|α|

)n
(n−α

2

|α| − t
σ
)−n exp(−α2/2) if t/σ ≤ −α,

(4.6)

where t = m−µ, with m being invariant mass; σ is the width of the central Gaussian;

α defines how far from the mean (µ) the power law tail starts and n is the index

of the tail. N is the normalisation factor but, as the sum of two CB functions is

used, a fit fraction f = N1

N1+N2
is defined. This controls the relative contribution of

each CB. The polarity of α is defined to be different in each of the CB functions,

enforcing opposite side tails, but the mean µ and σ are shared between both CB

functions.

The background is modelled with a 2nd order Chebychev polynomial, which is given

by,

P(x; a, b) =
3

2 (3− b)
(
1 + ax+ b

(
2x2 − 1

))
, (4.7)

where a and b are parameters of the fit which are free to vary. x is given by,

x = 2
mK−π+π−γ −mmin

mmax −mmin

− 1, (4.8)

where mK−π+π−γ is the invariant mass of the B+ candidate, mmin is the minimum

of the fit range and mmax is the maximum of the fit range. The projections of this

fit can be seen in Figure 4.1.

The variable comparisons made between background subtracted data and MC are

shown in Figure 4.2. With the exception of the M(π+π−) distribution, these all

show reasonable agreement. The disagreement in the M(π+π−) distribution has no

effect on the efficiency calculations because the cut applied is M(π+π−) < 1100 MeV,

which is above the endpoint of this distribution in both data and MC.

Another cross check made is a comparison of the expected and observed number of
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Figure 4.1: Mass distributions of control channel events passing the pre-selection.
The Top(Bottom) plot is 2012(2011) data and the lower panel of each plot is the
pull distribution Data−Fit

σfit
, with the solid red horizontal lines representing ±3σ. The

green dashed lined shows the background component, the red dashed line shows the
signal component and the blue solid line shows the total fit function. The fit shown
is used to extract sWeights and perform the cross checks described in Section 4.2.2.1.
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Figure 4.2: A comparison between 2012 MC and background subtracted data for
pre-selected B+→ K+η′ candidates. The same plots for 2011 data are shown in
Appendix A.
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B+→ K+η′ events after the pre-selection. The observed yield in each year of data

taking is extracted from the extended maximum likelihood fits shown in Figure 4.1.

The expected yield can be calculated using Equation 4.9,

N exp
presel = 2×L× σ(pp→ bb̄)× fu×B(B+→ K+η′)×B(η′→ π+π−γ)× εpresel (4.9)

where L, σ(pp→ bb̄) and εpresel are the integrated luminosity, bb̄ production cross

section and pre-selection efficiency respectively for a given year of data taking. fu

is the B+ fragmentation fraction, which is the fraction of b quarks that hadronise

with an up quark to create a B+ meson.

The pre-selection efficiency, εpresel, is factorised as follows,

εpresel = εgeom × εoffline × εtrigger × εPID (4.10)

where:

• εgeom is the efficiency of requiring daughter particles to be within the LHCb

acceptance at “generator level”;

• εoffline is the combined efficiency of the candidate reconstruction and of all

the cuts shown in Table 4.3 except the PID cuts;

• εtrigger is the efficiency of the trigger requirements described in Section 4.2.1;

• εPID 5 is the efficiency of the PID requirements applied to the charged hadrons.

The values of these efficiencies are shown in Table 4.4 along with the value of εpresel.

All of these efficiencies are calculated using truth matched MC6, except εPID; as

outlined in Section 2.2.4 the PID variables are not well modelled in MC. Therefore,

5It should be noted that this PID efficiency is not used in the final branching fraction calculation
as the efficiency of these loose cuts is assessed along with the tighter cuts applied later in the
selection.

6Truth matching is performed by requiring: the true ID of all daughter particles and intermedi-
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Table 4.4: Control channel pre-selection efficiencies used in the calculation of the
expected number of events. Each efficiency is defined relative to the previous effi-
ciency.

Efficiency 2012 2011
εgeom (17.89± 0.03)% (17.58± 0.03)%
εoffline (3.45± 0.02)% (3.72± 0.03)%
εL0Trigger (55.99± 0.26)% (58.66± 0.35)%
εHLT1 (83.72± 0.25)% (84.69± 0.34)%
εHLT2 (92.68± 0.20)% (86.28± 0.35)%
εPID (94.17± 0.04)% (93.71± 0.05)%
εtotal (0.2526± 0.0021)% (0.2626± 0.0030)%

Table 4.5: Comparison of expected and observed yields in the B+→ K+η′ channel.

Value 2012 2011

L 2.057± 0.072 fb−1 1.017± 0.036 fb−1

σ(pp→ bb̄) 298± 36µb 284± 53µb
fu 40.5± 0.6% [113]

B (B+→ K+η′ ) (70.6± 2.5)× 10−6

B (η′→ π+π−γ ) (29.1± 0.5)× 10−2

εpresel (0.2526± 0.0021)% (0.2626± 0.0030)%
εη
′window (73.69± 0.35)% (74.17± 0.49)%

Expected Events 18990± 2436 9359± 1795
Observed Events 14936± 339 5637± 169

Ratio Expected/Observed 1.27± 0.17 1.66± 0.32

background-subtracted data are used as calibration samples to determine εPID; a

full description of the PID efficiency calculation procedure is given in Section 4.3.3.

Table 4.5 shows the values of the individual components used in the calculation of

the expected yields, the resulting overall expected yields and the observed yields.

In 2012(2011) data there is a 1.6σ(2.1σ) excess of expected events.

In theory any of the terms in Equation (4.9) could be the cause of this discrepancy,

however only discrepancies that will not cancel in the efficiency ratio (with the rare

channels) are problematic. The luminosity and cross section will fully cancel in

the efficiency ratio and the branching fractions are well measured so these are not

ate resonances to match the decay generated; the true ID of each particle’s mother to be consistent
with the decay generated; and all the daughters of a given mother particle are required to originate
from the same mother candidate.
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Table 4.6: Breakdown of L0 TIS and TOS efficiencies for the control and signal
channels.

Efficiency B+→ K+η′ η′→ π+π−γ Signal η′→ π+π−η Signal

2012 Conditions:
εL0Hadron TOS (68.24± 0.32)% (61.00± 0.23)% (55.17± 0.30)%
εL0Global T IS (55.86± 0.34)% (62.76± 0.23)% (66.76± 0.29)%

εL0Hadron TOS(only) (44.14± 0.34)% (37.24± 0.23)% (33.24± 0.29)%

εL0Global T IS(only) (31.76± 0.32)% (38.99± 0.23)% (44.83± 0.30)%

εL0Hadron TOS&&L0Global T IS (24.10± 0.29)% (23.77± 0.20)% (21.92± 0.25)%

2011 Conditions:
εL0Hadron TOS (71.08± 0.42)% (61.97± 0.30)% (56.45± 0.39)%
εL0Global T IS (55.56± 0.47)% (63.61± 0.30)% (66.71± 0.37)%

εL0Hadron TOS(only) (44.43± 0.47)% (36.39± 0.30)% (33.28± 0.37)%

εL0Global T IS(only) (28.92± 0.42)% (38.03± 0.30)% (43.55± 0.39)%

εL0Hadron TOS&&L0Global T IS (26.65± 0.41)% (25.58± 0.27)% (23.17± 0.33)%

expected to contribute significantly to this small excess. The fragmentation fraction

fu is a world average7 of measurements from LEP, CDF and LHCb [113]; this is

not expected to be the cause of this discrepancy. This just leaves the pre-selection

efficiencies εpresel.

One possible source of the discrepancy between observed and expected events seen

in Table 4.5 is the L0 trigger efficiencies. It is known that these are not always well

reproduced in MC. Nominally, as described in section 4.2.1 events are required to

pass either the L0Global TIS or L0Hadron TOS requirements in order to pass the

L0 trigger selection. To understand whether any data/MC discrepancies are likely

to fully cancel in the ratio of control to rare channel efficiencies, the L0 TIS/TOS

trigger requirements are studied. Table 4.6 shows the efficiencies of the individual

L0 TIS/TOS trigger requirements and the efficiency of requiring events to pass both

the TIS and TOS requirement for each channel and year of data taking. These are

all measured relative to εoffline, and are assessed using MC. These values show that

the efficiencies of the trigger decisions differ between the channels, therefore a full

cancellation of data/MC discrepancies is not guaranteed.

7It should be noted that the value used for this cross check is not used in the final branching
fraction measurement because the Λ0

b fragmentation fraction has a pseudorapidity dependence,

therefore the LHCb measurement of
f
Λ0
b

fd
is used [109]
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Table 4.7: Comparison of the fraction of events passing the TIS/TOS L0 trigger cut
between MC and sWeighted data. All numbers are Ntrigger/Npresel where Npresel is
the number of events passing the pre-selection and Ntrigger is the number passing the
pre-selection and the given trigger requirement.

Efficiency 2012 2011
Data MC Data MC

εL0Hadron TOS 0.655± 0.007 0.698± 0.004 0.667± 0.10 0.735± 0.005
εL0Global T IS 0.556± 0.007 0.550± 0.004 0.538± 0.011 0.537± 0.006

εL0Hadron TOS(only) 0.444± 0.007 0.450± 0.003 0.462± 0.011 0.463± 0.006

εL0Global T IS(only) 0.345± 0.007 0.302± 0.004 0.333± 0.010 0.265± 0.005

εL0Hadron TOS&&L0Global T IS 0.211± 0.006 0.249± 0.003 0.205± 0.009 0.272± 0.005

To check whether the efficiencies of the individual TIS/TOS trigger decisions are

compatible between data and MC, the sWeights extracted from the fits shown in

Figure 4.1 are used. These fits are performed with the full pre-selection applied,

therefore the values in Table 4.7 are the efficiencies of the trigger decisions relative

to εpresel (rather than εoffline). As the pre-selection includes the nominal trigger

selection, the events which pass any of the studied trigger decisions are a subset

of those passing the nominal trigger decision (TIS||TOS). In order to make a com-

parison to MC, the full pre-selection is applied to MC and the same efficiencies are

assessed in MC. Table 4.7 shows a comparison of these efficiencies between data and

MC. These numbers show that the largest discrepancy between data and MC is the

efficiency of the requirement L0Hadron TOS&&L0Global TIS. This discrepancy will

have minimal impact on the nominal trigger efficiencies because it is the overlap be-

tween the TIS and TOS trigger decisions, and the nominal decision used is TIS||TOS.

However, a systematic uncertainty is assigned to account for any residual data/MC

discrepancy in the efficiency ratios. This is assessed using data calibration samples;

a full description is given in Section 5.6.1.1.

Another possible source of non-cancellation in εpresel is the HLT 2 trigger efficiencies;

the extra track in the signal channels could mean a significant fraction of events are

only triggered by the HLT2Topo4BodyBBDTDecision line which would not be the

case in the control channel. Therefore, any discrepancy in the efficiency of this
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Table 4.8: Breakdown of relative HLT2 efficiencies for the control and signal chan-
nels.

Efficiency B+→ K+η′ η′→ π+π−γ Signal η′→ π+π−η Signal

2012 Conditions:
εHLT2Topo2Body (96.18± 0.15)% (87.91± 0.18)% (85.46± 0.28)%
εHLT2Topo3Body (80.97± 0.31)% (94.44± 0.13)% (87.80± 0.26)%
εHLT2Topo4Body (0.031± 0.014)% (63.9± 0.27)% (50.75± 0.39)%

εHLT2Topo2Body||HLT2Topo3Body 100.0% (99.04± 0.05)% (98.86± 0.08)%

εHLT2Topo4Body(only) 0.0% (0.96± 0.05)% (1.14± 0.08)%

2011 Conditions:
εHLT2Topo2Body (96.28± 0.21)% (88.56± 0.23)% (86.16± 0.37)%
εHLT2Topo3Body (75.05± 0.47)% (90.38± 0.22)% (83.67± 0.40)%
εHLT2Topo4Body (0.76± 0.09)% (55.41± 0.36)% (45.24± 0.53)%

εHLT2Topo2Body||HLT2Topo3Body 100.0% (99.26± 0.06)% (98.97± 0.11)%

εHLT2Topo4Body(only) 0.0% (0.74± 0.06)% (1.03± 0.11)%

trigger line would not cancel in the efficiency ratio. Table 4.8 shows the relative

HLT 2 efficiencies for each individual trigger line for all channels. This shows that

the fraction of events passing the HLT 2 cut in the signal channels that only pass

the HLT2Topo4BodyBBDTDecision line is < 1.2% for all channels. Therefore, any

discrepancy in the HLT2Topo4BodyBBDTDecision efficiency will have a negligible

effect on the overall efficiency ratio.

The PID efficiencies are accurate as they are determined using calibration samples

from data. Furthermore, the variables involved in other pre-selection cuts, as shown

in Figures 4.2, are well modelled. Therefore, the selection and PID efficiencies are

not considered to be the cause of the observed discrepancy.

Unfortunately the exact cause of this discrepancy is not known despite extensive

cross checks. Similar levels of discrepancy have been seen by two previous LHCb

analyses (Ref. [107] and Ref. [108]) using the B+→ K+η′ decay channel. In the

former, the assumption that this discrepancy will cancel in the ratio of branching

fractions was tested by performing the same comparison for B+→ φK+ decays. The

same level of discrepancy was seen. The assumption that this discrepancy cancels

in the ratio of efficiencies was validated by making a measurement of the ratio of
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branching fractions B(B+→ K+η′)/B(B+→ φK+) and multiplying by the world

average value for B (B+→ φK+). A value compatible with the world average value

for B (B+ → K+η′ ) was recovered, thus showing that the ratio of efficiencies is

reliable. Therefore, adopting the same approach as in the previous publications

that see this discrepancy in the control channel, it is assumed that these factors are

the same for the control channel and rare channels, meaning the efficiency ratios are

reliable. Therefore, no additional systematic uncertainty is assigned specifically for

this discrepancy.

4.2.3 Multivariate Selection

After the pre-selection, large levels of combinatorial background remain in all chan-

nels. In order to make the best possible use of the information available and max-

imise the sensitivity of the selection, a Boosted Decision Tree (BDT) based multi-

variate selection is developed to reject combinatorial background. The BDTs trained

make use of the AdaBoost algorithm within the TMVA package [114,115]. The use

of a gradient boosted decision tree and a multi layer perceptron neural network were

also considered, but the AdaBoost algorithm gave slightly better performance and

is less susceptible to over training8. Separate BDTs are trained for each year of data

taking and decay channel, with MC used for the signal training sample and upper

mass sideband data used for the background training sample. In the case of the

rare channels the upper sideband (USB) is defined as 5819 MeV < mΛ0
b
< 6200 MeV

and in the control channel it is defined as 5500 MeV < mB+ < 5900 MeV. The

lower sideband (LSB) (M(pK− η′) <mΛ0
b
) is not used because there could be par-

tially reconstructed backgrounds present and the primary purpose of this BDT is to

separate signal and combinatorial background.

Each training sample is split into two separate samples, Sample A and Sample B

8Over training occurs when the BDT learns statistical fluctuations in the training sample,
causing it to have decreased performance when applied to a separate data sample
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(based on odd or even eventNumber). For each year of data taking and each channel

two BDTs are used; one is trained on Sample A and applied to Sample B whilst the

opposite process is used for the second BDT. This is done to avoid introducing bias

arising from classifying events with a BDT that was trained with the same set of

events as those that are being classified.

Many variables are considered for inclusion in the BDT, but only those that provide

an appreciable level of discrimination between signal and background are retained;

variables that have a TMVA variable importance <0.01 are removed. The Receiver

Operator Curve (ROC) integral of the trained BDT is then studied for various sets

of the remaining variables until an optimal set is found. The ROC curve is a plot of

signal efficiency vs. background rejection; a perfect ROC curve would show 100%

signal efficiency for 100% background rejection, which would have an integral of 1.

The variables chosen are summarised in Table 4.9 and the distributions for signal and

background training samples are shown in Figure 4.3 and Figure 4.4. A description

of the variables used is as follows:

• P sin(θDIRA)
P sin(θDIRA)+

∑
pT

, “Pointing Angle” : P is the momentum of the Λ0
b ; sin(θDIRA)

is the sine of the DIRA angle which is defined in Section 4.2.2; and
∑
pT is a

sum of the transverse momenta of all stable Λ0
b daughter particles. Explicitly,

these are the p,K−,π+, π− and photon(s).

• ln (χ2
vtx) : The natural logarithm of the χ2 of the fit performed to the Λ0

b decay

vertex.

• ln(τχ2): The natural logarithm of the χ2 of the fit used to extract the Λ0
b

lifetime.

• ln(1− cos(θDIRA)): The natural logarithm of one minus the cosine of θDIRA.

• ln(pT) : The natural logarithm of the transverse momentum of the candidate

particle, in units of MeV. This is used for the Λ0
b , proton, kaon and photon(s).
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Table 4.9: Variables used in the BDTs trained to discriminate between signal and
combinatorial background.

Variables used

Λ0
b

P sin(θDIRA)
P sin(θDIRA)+

∑
pT

ln (χ2
vtx)

ln(τχ2)
ln (1− cos (DIRA))

ln(pT)
η

ln(DTFχ2)
p, K− ln(pT)
γ ln(pT)

CL

• ln(Λ0
bη): The natural logarithm of the pseudorapidity of the Λ0

b particle.

• γ CL: As defined in Section 4.2.2.

• ln(DTFχ2): The natural logarithm of the χ2 from the fit to the entire decay

chain with Decay Tree Fitter.

The presence of two photons in the η′→ π+π−η channel has been dealt with by

including the photon specific variables for both photons, but ordering the photons

by pT (gammaA refers to the photon with the higher pT). In order to keep the

selection as similar as possible between the rare and control channels, the BDTs

trained and applied to the control channel use the same variables as those used in

the rare channels (without the proton pT).

Checks have been carried out to ensure the variables used in the BDT are reasonably

well modelled in MC. Comparisons between 2012 control channel MC and back-

ground subtracted data for the variables entering the BDT are shown in Figure 4.5,

and those also used in the pre-selection are shown in Figure 4.2. The background

subtraction is performed using the mass fit described in Section 4.2.2.1. It is clear

that ln(DTFχ2) is not as well modelled as one would hope. However, removing

this variable significantly reduces the performance of the BDT. When this variable
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Figure 4.3: Comparisons between signal and background BDT training samples, in
the Λ0

b→ pKη′ (η′→ π+π−γ ) channel. From top left to bottom right: Λ0
b η; Λ0

b pT;
Λ0
b DIRA; Λ0

b τ χ
2; DTF χ2; Λ0

b χ
2
vtx; p pT; K− pT; γ CL; γ pT and “PointingAngle”.

Descriptions of these variables are given in the text.
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Figure 4.4: Comparisons between signal and background BDT training samples, in
the Λ0

b→ pKη′ (η′→ π+π−η ) channel. From top left to bottom right: Λ0
b η; Λ0

b pT;
Λ0
b DIRA; Λ0

b τ χ
2; DTF χ2; Λ0

b χ
2
vtx; p pT; K− pT; “Pointing Angle”; γ A CL; γ B

CL; γ A pT; γ B pT. Descriptions of these variables are given in the text.
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is removed and the optimisation procedure is repeated, the number of events in

the signal window for the η′→ π+π−γ channel approximately doubles whilst the

signal efficiency stays approximately the same. Therefore this variable is still used;

a systematic uncertainty on the BDT efficiency ratio will be assigned (as described

in Section 5.6.1.4) to account for any non-cancellation of this discrepancy with the

control channel.

Figure 4.6 shows the BDT classifier distributions for the Λ0
b→ pKη′ (η′→ π+π−γ ),

Λ0
b→ pKη′ (η′→ π+π−η ) and control channels respectively. These show no signs of

over training and a good level of separation between signal and background events.

4.2.3.1 Optimisation of BDT Cuts

In the rare channels the BDT cut is optimised for the so-called “Punzi” figure of

merit (FoM) [116], which is given by

FoM =
εBDT

a
2

+
√
B
, (4.11)

where εBDT is the signal efficiency of a given BDT cut, B is the estimated number of

background events within 3σ of the Λ0
b mass after applying a given BDT cut and a

is the desired signal significance in units of Gaussian standard deviations (σ). a = 5

is used for both rare channels, but the position of the optimal cuts was found to

have no dependence on a for reasonable values of a. As shown in Equation 4.11,

the Punzi FoM has no dependence on the number of signal events in the sample

which makes it ideal for the blind rare channels. The signal efficiency (εBDT ) is

determined by applying the BDT to signal MC samples that pass the pre-selection

and the number of background events is estimated by fitting the data sidebands and

interpolating into the signal region; a second order Chebychev polynomial is used

in the η′→ π+π−γ channel and an exponential is used in the η′→ π+π−η channel.

This is applied nominally in both the upper and lower mass sidebands but has
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the control channel for variables used in the BDT. The same comparisons for 2011
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Figure 4.6: BDT classifier distributions for the signal and background training and
test samples in the η′→ π+π−γ (top), η′→ π+π−η (middle) and control channels
(bottom) for 2012(left) and 2011(right) data.
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the positon of the chosen cut. The calculation of Punzi FoM is discussed in the text.
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Figure 4.8: Plots of Punzi FoM as a function of BDT cut in the Λ0
b→ pKη′ (η′→

π+π−η ) channel for 2012(left) and 2011(right) data. The red vertical line indicates
the position of the chosen cut. The calculation of Punzi FoM is discussed in the
text.

also been performed for each sideband individually and the results are consistent.

Figures 4.7 and 4.8 show plots of Punzi FoM against BDT cut for the rare channels

with the position of the chosen cut indicated.

The control channel BDT cut is optimised for signal significance because it is a

well studied channel and optimisation for signal significance retains a larger signal

yield than an optimisation for Punzi FoM; this is important to minimise systematic

uncertainties arising from a limited control channel yield. Signal significance is

estimated by

Σ =
S√
S +B

=
εBDTS0√
εBDTS0 +B

, (4.12)
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text.

Table 4.10: A Summary of BDT cuts chosen for each channel and year of data
taking.

Channel 2012 2011
Λ0
b→ pKη′ (η′→ π+π−γ ) 0.34 0.30

Λ0
b→ pKη′ (η′→ π+π−η ) 0.30 0.225

B+→ K+η′ (η′→ π+π−γ ) 0.17 0.16

where S(B) is the number of signal(background) events within 3σ of the B+ mass,

εBDT is the signal efficiency of the BDT and S0 is the number of signal events in

the sample with no BDT cut applied. εBDT is determined by applying the BDT

to signal MC, S0 is taken from the fits shown in Figure 4.1 and B is estimated

by fitting the sidebands with a first order Chebychev polynomial and interpolating

into the signal region. S is determined using εBDT × S0 rather than fitting the

signal peak at each BDT cut as this could introduce bias from forcing signal to

be in that region. As discussed in Section 4.2.2.1, the efficiencies determined from

MC are overestimated, therefore a Data/MC correction factor is applied to εBDT

for the significance optimisation procedure. The Data/MC correction factors are

taken as the ratio of Observed/Expected events in the B+→ K+η′ channel after

pre-selection; these values are shown in Table 4.5. Figure 4.9 shows plots of signal

significance as a function of BDT cut for each year of data taking with the position

of the chosen cut indicated. All of the chosen cuts are summarised in Table 4.10.
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4.2.4 PID Selection

Following the application of the BDT, the PID ability of the LHCb detector is

used to further reduce backgrounds and ensure backgrounds involving mis-identified

hadrons are suppressed. The ProbNN set of variables is used, specifically the variables

Kaon ProbNNk, Proton ProbNNp and Pion ProbNNpi. These are the probabilities

that each particle species has been correctly identified9.

Various sources of mis-ID backgrounds have been considered. In the η′→ π+π−γ

channel, backgrounds from decays such as B0/B0
s→ hK−π+π−, where h is a Kaon or

Pion mis-identified as a proton, are considered. This decay could then be combined

with a random photon to create a fake Λ0
b→ pKη′ candidate. The addition of the

random photon causes these decays to peak higher than the B0 mass, meaning they

could potentially be in the Λ0
b signal window. To investigate possible contamination

from these backgrounds the invariant mass of the four hadrons in the final state,

M(pK−π+π−), is reconstructed with the mass hypothesis of the p changed for a

K/π. No peaking structure is apparent, suggesting negligible contamination from

these backgrounds. Furthermore, the pre-selection and multivariate selections have

been applied to MC samples of B0→ K∗0ρ0 (K∗0→ K+π−, ρ0→ π+π−), B0→
K+π−π+π− and B0 → φK∗0 (φ→ K+K−, K∗0 → K−π+) events; fewer than 10

events remain in the MC samples in all cases, which leads to a predicted yield at this

stage of the selection (normalised to the control channel, see Equation (4.25)) of <0.1

events in all of the mentioned channels. In the η′→ π+π−η channel, backgrounds

from B0→ hK−π+π− combined with a random photon are significantly less likely

because there are two photons that are constrained to have an invariant mass within

±50 MeV of the η mass (548 MeV). As with the η′→ π+π−γ channel, the invariant

mass of the four hadrons in the final state is reconstructed with the mass hypothesis

of the p changed for that of a K/π. No peaking structure is observed which again

strongly suggests no background contamination from B0/B0
s→ hK−π+π− decays.

9See Section 2.2.4 for a description of how these variables are determined.
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The decay B0→ η′K∗0 is also considered, due to the fact a pion from the K∗0 could

be mis-indentified as a proton to create a fake Λ0
b candidate. Again the pre-selection

and multivariate selection have been applied to a sample of B0→ η′K∗0 MC events

in the η′→ π+π−γ channel. It is consequently predicted that there are <10 events

surviving the previous stages of the selection in the Λ0
b→ pKη′ (η′→ π+π−γ ) data

sample. As this is an almost negligible number of events and even a loose PID cut

on the proton of Proton ProbNNp>0.2 reduces this number to ≈ 1, a dedicated PID

optimisation is not pursued for this background.

The decay B0
s → (φ→ K+K−)(φ→ π+π−π0) could appear as both a mis-ID and

partially reconstructed background because missing a photon from the π0 causes

the φ, which decays to π+π−π0, to peak very close to the η′ mass. As with the

previously discussed decays, the pre-selection and multivariate selection are applied

to a sample of fully simulated MC and it is predicted that ≈ 12 events would remain

in the data samples. As with the B0→ η′K∗0 decay, even loose PID cuts remove

this background completely therefore a dedicated PID optimisation is not pursued

for this background.

In theory there could also be mis-ID background from Λ0
b → pπ−η′ decays, but

there are no theory predictions for the BF of this decay which makes estimating

its contribution difficult. However this decay is expected to be heavily suppressed

by the presence of a b→ u transition; approximately by a factor |Vtd|
2

|Vts|2 = 0.046 ±
0.004, with which the ratio B (B+→ π+η′)/B (B+→ K+η′)=0.038 ± 0.012 [1] is

consistent. Consequently, if a very high BF of 5×10−5 is assumed for the rare channel

Λ0
b→ pKη′ , and a suppression factor of 0.042 is assumed for the Λ0

b→ pπ−η′ channel,

it is predicted that approximately only 6 Λ0
b→ pπ−η′ events would be present in the

η′→ π+π−γ channel data sample after the BDT selection. Therefore, a dedicated

PID optimisation for this background is also not pursued. The efficiencies for this

decay mode are calculated by applying the pre-selection and BDT selection to a

sample of Λ0
b→ pπ−η′ (η′→ π+π−γ ) MC events.
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As no specific mis-ID backgrounds with an appreciable contribution peaking in or

near the signal window have been identified, the PID selection is optimised in the

same way as the BDT optimisation. The Punzi FoM is used for the PID optimisation

with a = 5 and the number of background events in the signal window is estimated by

fitting the data sidebands with a 2nd order Chebychev polynomial in the η′→ π+π−γ

channel and an exponential in the η′→ π+π−η channel.

Unlike the BDT optimisation, the efficiencies for a given set of cuts cannot be eval-

uated directly with signal MC as the PID variables are not correctly reproduced in

MC. Therefore, in a similar manner to that adopted to determine the pre-selection

efficiency in Section 4.2.2.1, the PID efficiencies are determined using data calibra-

tion samples. A full description of this procedure is given in Section 4.3.3. To ensure

that this calibration and efficiency calculation is accurate it is firstly required that all

hadrons have interacted with the RICH system. There is also a cut on K− momen-

tum applied, p < 450.0 GeV, because the calibration samples provide no coverage

at such high momentum. Furthermore, in the case of protons some kinematic cuts

also have to be applied before the optimisation to ensure the efficiency calibration

is accurate. As there is particularly low coverage in the low η, high p region, the

cut on momentum is separated into three regions of η. The cuts applied are:

• Proton η>1.8

• Proton 1.8<η<2.35 : Proton p <66.05 GeV

• Proton 2.35<η<2.8 : Proton p <87.95 GeV

• Proton η>2.8 : Proton p <150 GeV

The PID optimisation is performed using the combined 2011 and 2012 datasets,

simultaneously as a function of the ID variables of the proton, kaon and pions in the

rare channels. The PID selection chosen for the Λ0
b→ pKη′ (η′→ π+π−γ ) channel

is also applied to the control channel. All possible combinations of PID cuts10 are

10The MC12TuneV3 variables are used. This is the third tuning of the neural network based PID
variables.
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Figure 4.10: 2D Slices of the PID Optimisation in the Λ0
b→ pKη′ (η′→ π+π−γ )

channel where the PID variable not present in the plot is fixed to its optimum value.

considered in the set {0.1,0.15.....0.5}. In the η′→ π+π−η channel, not applying

any pion ID cut (in addition to the ProbNN>0.1 applied in the pre-selection) is also

considered. Figures 4.10 and 4.11 show 2D slices of the optimisation in each channel

at the optimum value of the third PID variable (the variable not present in the

plot). The values of the cuts chosen are shown in Table 4.11. These cuts reduce the

specific mis-ID backgrounds discussed previously in this section to negligible levels.

It is possible, even after these cuts are applied, that there are a small number of

events in the η′ → π+π−γ channel where one of the hadrons is a mis-identified

muon. This is dealt with by applying further PID requirements on the hadrons

which require them to be inconsistent with being a muon11.

11The explicit requirement is X isMuon==0, where X is ∈ (p,K−, π+, π−)
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Figure 4.11: 2D Slices of the PID Optimisation in the Λ0
b→ pKη′ (η′→ π+π−η )

channel where the PID variable not present in the plot is fixed to its optimum value.
In the case of the pion ID variables, the bin between 0.0 and 0.1 represents no cut
in addition to the ProbNNpi requirement applied in the stripping.

Table 4.11: A Summary of the PID cuts chosen.

Variable
Λ0
b→ pKη′ Λ0

b→ pKη′ B+→ K+η′

(η′→ π+π−γ ) (η′→ π+π−η ) (η′→ π+π−γ )
Proton ProbNNp 0.40 0.35
Kaon ProbNNk 0.40 0.35 0.40
Pion ProbNNpi 0.20 0.15 0.20
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Table 4.12: A summary of the mass vetoes applied in the Λ0
b→ pKη′ (η′→ π+π−γ )

channel. The phase space integrated efficiencies of these vetoes, relative to the
previous stages of the selection, are also shown for both years of data taking.

Resonance Mass Window 2012 Efficiency 2011 Efficiency

D0→ K−K+
∣∣M(K−(p→ K+))−M(D0)

∣∣>30.0 MeV (98.1± 0.2)% (98.3± 0.2)%
D0→ K−π+

∣∣M(K−(p→ π+))−M(D0)
∣∣>30.0 MeV (98.2± 0.2)% (98.3± 0.2)%

D0→ K−π+
∣∣M(K−π+)−M(D0)

∣∣>30.0 MeV (97.0± 0.2)% (97.3± 0.2)%
D0→ π−K+

∣∣M(π−(p→ K+))−M(D0)
∣∣>30.0 MeV (97.2± 0.2)% (97.2± 0.3)%

Λ+
c → pπ+K− |M(pπ+K−)−M(Λ+

c )|>30.0 MeV (98.0± 0.2)% (98.0± 0.2)%
Λ+
c → pπ+π− |M(pπ+π−)−M(Λ+

c )|>30.0 MeV (99.8± 0.1)% (99.9± 0.1)%
Λ0
b→ pK−π+π−

∣∣M(pK−π+π−)−M(Λ0
b)
∣∣>60.0 MeV (99.98± 0.02)% (99.97± 0.03)%

Overall (88.7± 0.4)% (89.5± 0.5)%

4.2.5 Mass Vetoes

With the pre-selection, BDT selection and PID selection applied particularly large

levels of background still remain in the Λ0
b→ pKη′ (η′→ π+π−γ ) channel. Fur-

thermore, inspection of the M(Λ0
b) sidebands suggests it is not just combinatorial

background present; there are other sources of background present in the data sam-

ple. After further investigation it is found that there are several backgrounds present

that involve intermediate (largely charm) resonances; these are removed by applying

specific mass vetoes, which are summarised in Table 4.12.

In the Λ0
b→ pKη′ (η′→ π+π−η ) channel, the background levels are considerably

lower and there is only combinatorial background present. The first reason for this

is the presence of two photons in the final state which are constrained to have an

invariant mass within 50 MeV of the η mass. Secondly the η having a mass of

548 MeV [1], compared to the massless photon, means the two pions in the final

state have considerably softer kinematics compared to the two pions in the η′ →
π+π−γ channel. This means the pion kinematics are significantly less similar to the

daughters of other heavy hadron decays, which are the sources of non-combinatorial

background in the η′→ π+π−γ channel for which mass vetoes are applied.

Figure 4.12 shows intermediate resonant peaks from D0→ K−K+ decays where the
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K+ is mis-identified as a proton, D0→ K−π+ decays where the π+ is mis-identified

as a proton and D0→ π−K+ decays where the K+ is mis-identified as a proton. In

each case the invariant mass of the D0 is reconstructed with the mass hypothesis

of the proton swapped for that of the mis-identified particle. Figure 4.13 shows

resonant peaks from D0→ K−π+, Λ+
c → pπ+K− and Λ+

c → pπ+π− decays where

there is no mis-identification. These resonant backgrounds are vetoed by removing

events within ±30 MeV of the known D0/ Λ+
c mass [1].

As shown in Figure 4.14, there are also background events present involving Λ0
b→

pK−π+π− decays. These events can be associated with random photons to create

fake Λ0
b → pKη′ (η′ → π+π−γ ) candidates, which are present entirely in the

upper sideband of the M(pK η′) spectrum. These background events are vetoed by

removing events where M(pKπ+π−) falls within ±60 MeV of the known Λ0
b mass [1];

this width was chosen by studying large, fast, MC samples of Λ0
b→ pK−π+π− decays

(generated with the RapidSim package [94]) that have the kinematic stripping cuts

applied.

4.2.5.1 Effect of Mass Vetoes on the Dalitz Distribution

The application of these mass vetoes unavoidably causes events to be removed non-

uniformly from the phase space of the Λ0
b→ pKη′ decay; they introduce extra de-

pendence on phase space position to the signal efficiency. As discussed in section 4.1,

it is expected that the Λ0
b→ pKη′ decay will proceed through Λ∗ resonances which

are not a priori known. Therefore, the signal efficiency will be corrected for phase

space variations in the event of an observation. If the mass vetoes discussed in

this section remove a disproportionately large number of events from the area of

the phase space where Λ∗ resonances are present, the corrected efficiencies could be

significantly lower than the phase space integrated efficiencies shown in Table 4.12.

This would be detrimental to the sensitivity of this search. In order to check that
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Figure 4.12: Top Left: Invariant mass of the K− and proton system in the η′→
π+π−γ channel (with the proton reconstructed under the K+ mass hypothesis)
showing an excess of D0→ K+K− events. Top Right: Invariant mass of the K−

and proton in the η′→ π+π−γ channel (with the proton reconstructed under the π+

mass hypothesis) showing an excess of D0→ K−π+ events. Bottom: Invariant mass
of the π− and proton in the η′→ π+π−γ channel (with the proton reconstructed
under the K+ mass hypothesis) showing a slight excess of D0 → π−K+ events.
These plots are created with a looser BDT cut but nominal PID selection. The red
vertical lines indicate the vetoed mass ranges.
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Figure 4.13: Top Left: Invariant mass of the K− and π+ system in the η′→ π+π−γ
channel showing an excess of D0 → K−π+ events. Top Right: Invariant mass
of the p, K− and π+ system in the η′ → π+π−γ channel showing an excess of
Λ+
c → pK−π+ events. Bottom: Invariant mass of the p, π+ and π− system in the

η′→ π+π−γ channel showing an excess of Λ+
c → pπ−π+ events. These plots are

created with a looser BDT cut but nominal PID selection. The red vertical lines
indicate the vetoed mass ranges.
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Figure 4.14: The M(pK−π+π−) spectrum with the nominal selection applied. The
peak is from Λ0

b → pK−π+π− decays that have been associated with a random
photon to create a fake Λ0

b→ pKη′ (η′→ π+π−γ ) candidate. The red vertical lines
indicate the veto applied to remove these events.
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this is not the case, the Dalitz distribution of signal MC events removed by the mass

vetoes is shown in Figure 4.15.

The Dalitz plot shows that the region with 4 GeV2 < M2
pK < 6 GeV2 is most heavily

depleted by these vetoes. The majority of the predicted Λ∗ resonances have a mass

below 2 GeV [1], and will therefore populate the region with M2(pK) < 4 GeV.

Therefore, the area of the phase space expected to be most heavily populated by

signal decays is not significantly affected by these vetoes; they should not cause the

corrected signal efficiency to be significantly lower than the phase space integrated

efficiency. A systematic uncertainty will however be assigned to the efficiency ratios

to account for the effect of these vetoes, which is described in Section 5.6.
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Figure 4.15: Dalitz plot distribution of Λ0
b→ pKη′ (η′→ π+π−γ ) signal MC events

removed by the mass vetoes

4.2.6 Further Requirements

In the η′→ π+π−γ channel, it is possible for backgrounds involving η′→ π+π−η

decays or light mesons decaying to π+π− such as K0
S → π+π− to be present. In

the former case, the η is partially reconstructed from one of the several decay chan-

nels involving photons in the final state. These are removed by requiring that
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Figure 4.16: The M(π+π−) normalised mass spectra for Λ0
b sideband data and MC in

the η′→ π+π−γ channel. The position of the cut described in the text is indicated
by the magenta vertical line.

M(π+π−)>510 MeV; a comparison of the M(π+π−) distribution between MC and

sWeighted control channel data can be found in Figure 4.2. As shown in Figure 4.16,

this requirement has a high signal efficiency (≈ 98%) whilst removing a significant

amount of background. The same requirement is applied to the control channel for

consistency.

As Section 4.1.2 describes, DTF is used to refit the entire decay chain with the

η′ mass fixed but the η mass, MDTF (η), unconstrained in the η′→ π+π−η chan-

nel. The η′ mass constraint can result in a value of MDTF (η) a long way from

the known value for background events that do not involve a true η′ → π+π−η

decay; this is exploited to improve the selection by applying a mass window of

480.0 MeV<MDTF (η)<620.0 MeV12. As shown in Figure 4.17, this requirement is

chosen conservatively because it is known that mass resolutions are slightly nar-

rower in MC than data. This cut has a very high signal efficiency (> 99%) whilst

removing combinatorial background.

12It should be noted that there is already a ±50 MeV window around the kinematically recon-
structed η mass in the stripping, as described in Table 4.2
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Figure 4.17: Invariant mass of the η determined by DTF in the η′→ π+π−η channel.
The vertical lines indicate the position of the mass window applied, as described in
the text.

4.2.7 Multiple Candidates

With the full selection applied, there are some collision events in which more than

one reconstructed candidate satisfies all of the requirements. Figure 4.18 shows

the distribution of the number of candidates per event in each channel. Multiple

candidates most commonly occur when either the same tracks are associated with

different soft photons, or the same p, K− and γ candidates are associated with

different π+π− tracks. Table 4.13 shows the fraction of events that pass the full

selection and contain >1 candidate. Only one candidate per event is retained; to

avoid bias this candidate is chosen randomly.

It is also of interest to investigate the distribution of multiple candidates across

the phase space of the signal channel decays; Figure 4.19 shows the distributions

of multiple candidates across the Dalitz plot. In the η′→ π+π−γ channel there

is a clear concentration of multiple candidates at low m2
K−p, which is where a rich

spectrum of Λ∗ resonances is expected. Therefore, these multiple candidates could

be arising from the same Λ∗ resonance being associated with more than one η′
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Figure 4.18: Number of candidates per event, for events passing the full selection
in the Control channel (Top Left), Λ0

b→ pKη′ (η′→ π+π−γ ) channel (Top Right)
and Λ0

b→ pKη′ (η′→ π+π−η ) channel (Bottom).

candidate. In the η′ → π+π−η channel the low number of multiple candidates

makes it difficult to conclude whether any particular area of the phase space is

preferentially populated.

Table 4.13: The fraction of events that contain >1 candidate after all previous stages
of the selection in each channel.

Channel Data MC
B+→ K+η′ (η′→ π+π−γ ) (6.61± 0.18)% (5.33± 0.21)%
Λ0
b→ pKη′ (η′→ π+π−γ ) (2.02± 0.56)% (1.15± 0.12)%

Λ0
b→ pKη′ (η′→ π+π−η ) (4.31± 1.94)% (5.40± 0.22)%
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Figure 4.19: Top(Bottom): Distribution of multiple candidates across the phase
space of the η′→ π+π−γ (η′→ π+π−η ) signal channel in data sidebands.
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4.3 Efficiencies

As shown in Equation 4.1, the relative efficiency of each rare channel with respect to

the control channel is required to calculate the branching fraction of the Λ0
b→ pKη′

decay. In order to calculate these efficiencies they are factorised into four main

components, each calculated relative to the preceding one, as

εtot = εgeom × εsel|geom × εPID|sel&geom × εMultCands|sel&geom&PID, (4.13)

where:

• εgeom is the efficiency for having all of the decay products of the signal or

control channel within the geometrical acceptance of the LHCb detector13.

These efficiencies are discussed in Section 4.3.1.

• εsel|geom is the efficiency of the entire selection except PID requirements. This

includes the reconstruction, trigger, BDT, mass vetoes, and the requirements

described in section 4.2.6. These efficiencies are discussed in Section 4.3.2.

• εPID|sel&geom is the efficiency of the particle identification requirements. These

efficiencies are discussed in Section 4.3.3.

• εMultCands|sel&geom&PID is the efficiency of randomly keeping a single candidate

per event. These efficiencies are discussed in Section 4.3.4.

There are also photon reconstruction efficiency correction factors which are discussed

in Section 4.3.5.

It is possible for the Λ0
b → pKη′ decay to be the result of many intermediate

resonances, particularly in the M(pK−) system. However, as these resonances are

13Referred to within LHCb as DaughtersInLHCb
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not a priori known it is not possible to model these in the production of the MC

and therefore a phase space model is used. As the signal efficiency of the Λ0
b →

pKη′ decay is not expected to be independent of the phase space position, and

intermediate resonances would cause the phase space to be unequally populated, a

naive calculation of the Λ0
b → pKη′ channel efficiencies using phase space MC is

unlikely to be correct.

In order to correct for the variation of efficiencies over the phase space of the Λ0
b→

pKη′ decay, all efficiencies need to be calculated as a function of phase space

position. The presence of spin-1
2

particles in both the initial and final state means

the dynamics of this decay are described by a five-dimensional phase space which

can be described by the two Dalitz plot variables (m2
13 and m2

23) and three angular

variables [117]. However, as the polarisation of the Λ0
b particle is consistent with

0 the angular variables are spherically symmetric and consistent with phase space

MC [118]. This means that the three angular variables do not need to be considered

in the efficiency correction procedure, therefore 2D histograms are used to describe

the phase space dependence of the efficiency.

When the traditional Dalitz plot variables, m2
13 and m2

23, are used to describe effi-

ciencies there can be strong variations near the edges of the Dalitz plot. This occurs

because at least one of the final state particles will have low momentum in these re-

gions. It is undesirable to have strong variations over small areas of the Dalitz plot

because a binned approach to describing the efficiency assumes smooth variation

within each bin. Furthermore, the use of square bins and curved bin boundaries can

lead to additional complications. To avoid these issues the traditional Dalitz plot

variables are often transformed to the Square Dalitz Plot (SDP) variables, m′ and

θ′, which are given by:

m′ =
1

π
arccos

(
2
mη′p −mmin

η′p

mmax
η′p −mmin

η′p

− 1

)
(4.14)
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and

θ′ =
1

π
θη′p, (4.15)

where mη′p is the invariant mass of the η′ and proton system, mmax
η′p = mΛ0

b
−mK−

and mmin
η′p = mη′ + mp. θη′p is the angle between the η′ and the K− in the rest

frame of the η′p system. Explicitly, these variables can also be described in terms

of Lorentz invariant quantities as:

m′ =
1

π
arccos

(
2

mη′p − (mη′ +mp)

mΛ0
b
− (mη′ +mp +mK−)

− 1

)
(4.16)

and

θ′ =
1

π
arccos




m2
η′p(m

2
pK− −m2

η′K−)− (m2
p −m2

η′)(m
2
Λ0
b
−m2

K−)
√

(m2
η′p +m2

η′ −m2
p)

2 − 4m2
η′pm

2
η′

√
(m2

Λ0
b
−m2

K− −m2
η′p)

2 − 4m2
η′pm

2
K−


 .

(4.17)

The variables m′ and θ′ are distributed between 0 and 1, which makes the use of

square bins far more convenient. The transformation also draws events from the

edges of the traditional Dalitz plot towards the centre of the square Dalitz plot;

this avoids large variations in efficiency over small areas of the phase space. The

disadvantage of this is that when a SDP is filled with phase space MC, bins near the

edges of the SDP can have low bin content. Consequently, in order to bin in these

variables larger bins have to be used near the edges of the SDP. The rare channel

efficiencies as a function of the SDP variables can be found in Appendix B.

However, the use of larger and non-uniform bins is undesirable, because the efficiency

variation is less likely to be smooth across each bin and it will lead to increased sys-

tematic uncertainties due to the use of a binned approach. Therefore, the variables

m′′ and cos(θη′p) are instead used to parameterise the efficiency variation; these are

defined as:

m′′ =
mη′p −mmin

η′p

mmax
η′p −mmin

η′p

=
1

2
(cos(πm′) + 1) (4.18)
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and

cos(θη′p) = cos(πθ′). (4.19)

These variables remove the non-linearity from the SDP variables, which leads to a

more uniform spread of phase space MC. Consequently, there is sufficient coverage

near the edges of the efficiency map to use a uniform binning scheme. This also

means that the efficiency maps can be smoothed with the use of 2D cubic splines,

which are given by

p(x, y) =
3∑

i=0

3∑

j=0

aijx
iyj, (4.20)

where aij are coefficients to be determined and (x, y) are the coordinates of the

midpoints of four adjacent bins. The coefficients aij are determined in unit cells of

four bins by requiring that the function value, first derivative and the mixed second

derivative agree with that of the histogram content at the four bin midpoints. A

linear approximation is used for the derivatives. The use of cubic splines should

further reduce systematic uncertainties because the efficiencies will be more stable

against variations in the binning scheme.

The necessity to correct for the variation of the efficiency over the phase space of the

Λ0
b→ pKη′ decay leads to a two-step unblinding procedure. Firstly, the nominal

mass fit will be performed to extract raw signal yields and the significance of any

signal in each rare channel will be calculated using Wilks’ theorem. In any rare

channel where >3σ signal significance is observed, sWeights will be extracted from

the nominal mass fit [111]. The corrected efficiency will then be calculated as

ε̄ =

∑
iwi∑
i
wi
εi

, (4.21)

where wi is the sWeight of event i and εi is the per event efficiency obtained for

event i. To evaluate the per event efficiencies, m′′i and cos(θi) will be calculated for

each event in data and εi(m
′′
i , cos(θi)) will be obtained by evaluating the 2D cubic

spline efficiencies at m′′i and cos(θi).
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In any rare channel where the signal significance is <3σ there will not be sufficient

knowledge of the signal distribution to perform a phase space correction. Therefore,

the phase space integrated efficiency will be used. The bin by bin standard deviation

will then be assigned as a systematic uncertainty on the efficiency due to phase space

variations.

The following sections detail the efficiencies for all channels; both phase space in-

tegrated and as a function of m′′ and cos(θη′p) for the rare channels. The uncer-

tainties presented are purely statistical; systematic uncertainties are discussed in

Section 5.6.1. The statistical uncertainties on the phase space integrated efficiencies

are calculated as the standard deviation of the binomial distribution. Explicitly,

σ(ε) =

√
ε(1− ε)
N

=

√
m(1−m/N)

N
, (4.22)

where m is the number of candidates passing a cut and N is the total number of

candidates in the sample. However, for the case of the (phase space dependent) mul-

tiple candidate efficiencies there are bins where 100% of the candidates are retained.

In this scenario the standard deviation is not a reliable estimator of the uncertainty

on the efficiency. Therefore, for the phase space dependent efficiencies the Clopper

Pearson method is used to calculate 68% confidence limits on the efficiency in each

bin [119]. This method provides an exact confidence interval, rather than an ap-

proximation of the binomial distribution, and is the method recommended by the

PDG [1].

4.3.1 Geometric Efficiencies

All of the MC samples used in this analysis are produced with the daughters re-

quired to be in the LHCb acceptance, this section assesses the efficiency of this re-

quirement. More specifically, it is required that all charged stable daughters satisfy
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Channel 2012 2011 Combined
B+→ K+η′ (η′→ π+π−γ ) (17.89± 0.026)% (17.58± 0.031)% (17.79± 0.020)%
Λ0
b→ pKη′ (η′→ π+π−γ ) (17.21± 0.024)% (16.90± 0.024)% (17.11± 0.018)%

Λ0
b→ pKη′ (η′→ π+π−η ) (15.93± 0.047)% (15.73± 0.039)% (15.86± 0.034)%

Table 4.14: Phase space integrated geometric efficiencies

10 mrad<θ<400 mrad and the neutral stable daughters satisfy 5 mrad<θ<400 mrad,

where θ is the angle between the particle trajectory and beam pipe at generation.

In the case of photons, these cuts are only applied if they are the daughter of a π0

or η.

The phase space integrated geometric efficiencies are shown in Table 4.14. The

efficiency maps14 for each rare channel and the corresponding uncertainties are shown

in Figure 4.20 for 2012 data and the corresponding plots for 2011 data can be found

in Appendix C.

4.3.2 Selection Efficiencies

The selection efficiency includes reconstruction, trigger, pre-selection and every as-

pect of the offline selection efficiency except PID cuts. It can be factorised as

εSelection = εoffline × εL0Trigger × εHLT1 × εHLT2 × εBDT × εCalibCuts × εX , (4.23)

where:

• εoffline is the efficiency of the reconstruction and all the cuts shown in Ta-

bles 4.2 and 4.3 except the PID cuts.

• εL0Trigger, εHLT1 and εHLT2 are the efficiencies of the trigger requirements dis-

cussed in Section 4.2.1.

14The phase space dependent efficiencies are assessed using privately generated samples, where
Gauss is only run up to the EvtGen stage.
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Figure 4.20: Left(Right): Geometric efficiencies (top), with the results of the
cubic spline interpolation(middle) and statistical uncertainties(bottom) for the
DaughtersInLHCb cut as a function of m′′ and cos(θη′p) for the η′ → π+π−γ
(η′ → π+π−η ) channel in 2012 data. The uncertainties are calculated using the
Clopper-Pearson method [119].
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Table 4.15: Phase space integrated selection efficiencies for the B+→ K+η′ channel.
See text for description of each efficiency.

Requirement 2012 2011 Combined
εoffline (3.452± 0.017)% (3.726± 0.026)% (3.541± 0.017)%
εL0Trigger (55.99± 0.26)% (58.66± 0.35)% (56.85± 0.21)%
εHLT1 (83.72± 0.25)% (84.69± 0.34)% (84.03± 0.20)%
εHLT2 (92.68± 0.20)% (86.28± 0.35)% (90.63± 0.17)%
εBDT (55.79± 0.39)% (57.31± 0.54)% (56.28± 0.32)%

εCalibCuts (99.71± 0.06)% (99.83± 0.06)% (99.75± 0.04)%
εM(π+π−) (98.26± 0.14)% (97.94± 0.21)% (98.16± 0.11)%
εSelection (0.8198± 0.0086)% (0.8951± 0.013)% (0.8439± 0.0072)%

• εBDT is the efficiency of the requirement on the output of the BDT classifier.

• εCalibCuts is the efficiency of the cuts applied to ensure the accuracy of the

PID efficiency calibration. This includes: the requirement that all hadrons in

all channels contain information from the RICH15; the requirement that K−

momentum <450.0 GeV in the control channel and the kinematic cuts on the

proton described in Section 4.2.4 for the rare channels.

• εX is the efficiency of any further selection cuts applied after the BDT.

– In the control channel this includes the cut M(π+π−)>510.0 MeV.

– In the Λ0
b→ pKη′ (η′→ π+π−γ ) channel this includes the efficiency of

the vetoes discussed in Section 4.2.5 and the M(π+π−)>510.0 MeV cut

discussed in Section 4.2.6.

– In the Λ0
b → pKη′ (η′→ π+π−η ) channel it is the efficiency of the η

mass window described in Section 4.2.6.

Detailed breakdowns of the phase space integrated efficiencies for each channel are

shown in Tables 4.15, 4.16 and 4.17. The 2D selection efficiency maps for the rare

channels in 2012 data are shown in Figure 4.21 and the same maps for 2011 data

are shown in Appendix C.

15The so called HasRich requirement
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Table 4.16: Phase space integrated selection efficiencies for the Λ0
b→ pKη′ (η′→

π+π−γ ) channel. See text for a description of each efficiency.

Requirement 2012 2011 Combined
εoffline (2.044± 0.007)% (2.230± 0.011)% (2.13± 0.06)%
εL0Trigger (52.14± 0.20)% (55.35± 0.23)% (53.17± 0.13)%
εHLT1 (82.69± 0.18)% (82.09± 0.24)% (82.50± 0.14)%
εHLT2 (89.40± 0.16)% (85.35± 0.24)% (88.10± 0.13)%
εBDT (23.40± 0.23)% (27.64± 0.33)% (24.76± 0.19)%

εCalibCuts (94.74± 0.25)% (96.20± 0.27)% (95.21± 0.19)%
εV etos (88.81± 0.37)% (89.58± 0.43)% (89.06± 0.29)%

εM(π+π−) (95.58± 0.26)% (96.04± 0.29)% (95.73± 0.20)%
εSelection (0.1483± 0.0019)% (0.2039± 0.0031)% (0.1661± 0.0016)%

Table 4.17: Phase space integrated selection efficiencies for the Λ0
b→ pKη′ (η′→

π+π−η ) channel. See text for a description of each efficiency.

Requirement 2012 2011 Combined
εoffline (0.929± 0.004)% (1.029± 0.006)% (0.961± 0.003)%
εL0Trigger (47.94± 0.21)% (50.82± 0.28)% (48.86± 0.17)%
εHLT1 (76.43± 0.26)% (74.61± 0.34)% (75.84± 0.21)%
εHLT2 (79.34± 0.28)% (73.98± 0.40)% (77.62± 0.23)%
εBDT (38.13± 0.38)% (56.41± 0.53)% (43.98± 0.31)%

εCalibCuts (94.65± 0.29)% (96.33± 0.27)% (95.19± 0.21)%
εEtaWindow (100.0± 0.0)% (99.89± 0.05)% (99.97± 0.01)%
εSelection (0.0975± 0.0013)% (0.1568± 0.0023)% (0.1164± 0.0013)%
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Figure 4.21: Left(Right): Selection Efficiencies (Top) along with the results of the
cubic spline interpolation (middle) and uncertainties(bottom) as a function of m′′

and cos(θη′p) for the η′→ π+π−γ (η′→ π+π−η ) channel in 2012.
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4.3.3 PID Efficiencies

The PID efficiencies include all of the PID requirements placed on charged parti-

cles. Specifically, these are the loose PID requirements applied in stripping (see

Table 4.2 and Table 4.3) and the requirements optimised in section 4.2.4. It is well

established that the PID variables are not well modelled in MC, therefore MC can-

not be used to calculate efficiencies accurately; a data driven approach is needed.

The PIDCalib package is used to calculate all PID efficiencies, which makes use of

background-subtracted data calibration samples [120]. In this analysis, samples of

D∗→ D0(K−π+)π+ decays are used to determine the PID efficiency of kaons and

pions. For protons, prompt Λ+
c → pK−π+ and Λ0

b → (Λ+
c → pK−π+)µν decays

are used. The PID of the daughter tracks in these decays can be determined from

kinematics alone. In the D∗→ D0(K−π+)π+ decay for example, the bachelor π+

has significantly less momentum than the daughters of the D0. Therefore, once this

track is identified the track with the same sign must be the π+, and the opposite

sign track must be the K− (the decay D0→ K+π− is suppressed by two orders of

magnitude [1]).

The PID efficiencies cannot be taken straight from these calibration samples because

the kinematics are very different to those of the decays studied in this analysis. It has

been shown that the performance of the PID system is a function of track momentum

p, pseudorapidity η and the total number of tracks in an event (nTracks). Therefore,

the data calibration samples are used to determine the efficiencies of the PID cuts

applied as a function of these variables, ε(p, η, nTracks). As there is particularly

low statistics in the proton calibration samples, the samples are merged for both

year and magnet polarity to make best use of the statistics available. Therefore, a

single performance histogram is created for each particle species. The performance

histograms created from the calibration samples16, for the cuts applied in the Λ0
b→

16The 3D histograms used in the PID calibration are sliced into 2D histograms for visualisation
purposes



125 Chapter 4. Analysis Strategy in the Search for Λ0
b→ pKη′

Table 4.18: Phase space integrated PID efficiencies and uncertainties due to cali-
bration sample size δCalibStat., reference sample size δRef.Stat. and total uncertainty
σ(εPID).

Channel εPID δCalibStat. δref.stat. σ(εPID)
B+→ K+η′ (η′→ π+π−γ ) 73.49% 0.01% 0.21% 0.21%
Λ0
b→ pKη′ (η′→ π+π−γ ) 59.66% 0.03% 0.21% 0.21%

Λ0
b→ pKη′ (η′→ π+π−η ) 66.03% 0.04% 0.23% 0.23%

pKη′ (η′→ π+π−γ ) channel, are shown in Figures 4.22, 4.23 and 4.24. The binning

schemes have been chosen to ensure smooth variation of efficiencies within each bin

whilst keeping statistical uncertainties to a minimum.

The performance histograms are then used to assign efficiencies to each track in

signal MC (also refered to as the reference sample) and the efficiency for an event

is the product of the per track efficiencies,
∏Ntrk

t εt (pt, ηt, nTracks). The overall

efficiency, εPID, is then calculated as the mean of all per event efficiencies. Explicitly,

the PID efficiency is given by

εPID =
1

Nevt

Nevt∑

i

Ntrk,i∏

t

εt (pt, ηt, nTracksi) , (4.24)

where Nevt is the number of events in MC and the product is over all tracks, Ntrk,i,

in the event i. To determine the PID efficiency as a function of m′′ and cos(θη′p), the

averaging is performed in each bin. The PID efficiency distributions, as a function of

m′′ and cos(θη′p), are shown in Figure 4.25 and the phase space integrated efficiencies

are shown in Table 4.18.

4.3.3.1 Resampling of nTracks

It is known that MC does not reproduce the nTracks distribution correctly. Fig-

ure 4.26 shows a comparison of the nTracks distribution between MC for all three

channels and the background subtracted distribution observed in the control chan-

nel. As these distributions are all very similar in MC (especially when it is considered



126 Chapter 4. Analysis Strategy in the Search for Λ0
b→ pKη′

Ef
fic
ie
nc
y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

TrackMomentum/MeV
100 200

310×

η

2

2.5

3

3.5

4

4.5

5
0<nTracks<120

E
ff

ic
ie

nc
y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

TrackMomentum/MeV
100 200

310×

η

2

2.5

3

3.5

4

4.5

5
120<nTracks<250

E
ff

ic
ie

nc
y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

TrackMomentum/MeV
100 200

310×

η

2

2.5

3

3.5

4

4.5

5
250<nTracks<700

Figure 4.22: Pion PID cut efficiency (for the Λ0
b→ pKη′ (η′→ π+π−γ ) channel)

as a function of p and η in each bin of nTracks.
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Figure 4.23: Kaon PID cut efficiency (for the Λ0
b→ pKη′ (η′→ π+π−γ ) channel)

as a function of p and η in each bin of nTracks.
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Figure 4.24: Proton PID cut efficiency (for the Λ0
b→ pKη′ (η′→ π+π−γ ) channel)

as a function of p and η in each bin of nTracks. It should be noted that the bottom
right corner of this plot is not used; see Section 4.2.4 for a description of the kinematic
cuts applied
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Figure 4.25: Left(Right): PID Efficiencies (Top) along with the results of the cubic
spline interpolation (middle) and total uncertainties(bottom) as a function of m′′

and cos(θη′p) for the η′→ π+π−γ (η′→ π+π−η ) channel.
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Figure 4.26: A comparison of the nTracks distributions between MC for all channels
and background subtracted data in the control channel

only three bins of nTracks are used) the nTracks distributions used in the calibration,

for all channels, are taken from control channel data. Per event values of nTracks

are assigned to MC events by randomly sampling from the background subtracted

distribution observed in the control channel.

4.3.3.2 Statistical Uncertainties

Two sources of statistical uncertainty are considered on these PID efficiencies: from

the limited size of the calibration sample and from the limited size of the refer-

ence sample. The reference sample is the sample from which signal kinematics are

taken, which in this case is signal MC. The uncertainty due to the limited size of the

calibration sample, δCalib.Stat., is assessed by creating 1000 calibration histograms of

ε(p, η, nTracks) where the bin content is sampled from a Gaussian distribution with

a mean equal to the efficiency in the corresponding bin of the nominal performance

histogram and a width equal to the statistical uncertainty on the efficiency in the

corresponding bin of the nominal performance histogram. The PID efficiency is then

recalculated using each of the 1000 sampled histograms and the phase space inte-
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Table 4.19: Phase space integrated Multiple Candidate efficiencies

Channel 2012 2011 Combined
B+→ K+η′ (η′→ π+π−γ ) (96.98± 0.20)%) (97.46± 0.25)% (97.14± 0.16)%
Λ0
b→ pKη′ (η′→ π+π−γ ) (99.40± 0.12)% (99.21± 0.16)% (99.34± 0.09)%

Λ0
b→ pKη′ (η′→ π+π−η ) (97.80± 0.22)% (95.79± 0.33)% (97.16± 0.18)%

grated uncertainties are extracted by fitting the resulting PID efficiency distribution

with a Gaussian and the width, σ, is taken as the uncertainty. The same procedure

is used to extract δCalib.Stat. as a function of the phase space variables by performing

the Gaussian fit in each bin of the efficiency map.

The uncertainty due to the reference sample size, δref.stat., is assessed by creating

1000 bootstrap samples from the signal MC samples and recalculating the PID

efficiency using each bootstrap sample17. The uncertainties on both the phase space

integrated and phase space dependent PID efficiencies are again extracted from the

resulting distribution using Gaussian fits. Table 4.18 shows these uncertainties along

with the combined total uncertainty (added in quadrature) and the total uncertainty

as a function of m′′ and cos(θη′p) is shown in Figure 4.25.

4.3.4 Removal of Multiple Candidates Efficiency

After the full selection has been applied there are a small number of candidates that

come from the same event as one or more other candidate(s) passing the selection.

To avoid bias, one candidate per event is chosen randomly. The efficiency of this

procedure is assessed by applying the same procedure to MC which contains the full

underlying event; the truth matching is done after a single candidate per event has

been randomly flagged as the candidate to keep. The phase space integrated effi-

ciencies for this procedure are shown in Table 4.19 and the efficiencies as a function

of m′′ and cos(θη′p) are shown in Figure 4.27 for 2012 data and Appendix C for 2011

data.

17The bootstrap samples are created by sampling from the signal MC samples with replacement.
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Figure 4.27: Left(Right): Multiple candidate efficiencies (Top) along with the re-
sults of the cubic spline interpolation (middle) and total uncertainties(bottom) as
a function of m′′ and cos(θη′p) for the η′→ π+π−γ (η′→ π+π−η ) channel in 2012
data.
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4.3.5 Photon Efficiency Corrections

The photon reconstruction efficiencies are not perfectly modelled in MC, there-

fore reconstruction efficiency corrections have been determined as a function of

photon ET. These have been calculated by comparing the observed number of

B+→ J/ψ (K∗+→ K+π0) and B+→ J/ψK+ events [121].

The correction factor as a function of m′′ and cos(θη′p) for both rare channels can be

seen in Figure 4.28 for 2012 data and in Appendix C for 2011 data. This is calculated

by assessing a weighted average correction factor, based on signal MC photon ET

distributions, in each bin. A separate correction factor is calculated for the control

channel total efficiency, again using a weighted average based on the photon ET

distributions seen in MC. The value of this correction factor is 1.007 and it will

be applied to the control channel efficiency when the branching fraction result is

evaluated. A statistical uncertainty is not quoted here because the uncertainty due

to the limited size of the signal MC sample has already been assigned to the selection

efficiency. The assessment of a systematic uncertainty on the overall efficiency ratio

due to the uncertainty on these correction factors is described in Section 5.6.1.6.

4.3.6 Total Efficiencies

As the analysis strategy is to fit 2012 and 2011 data together, total efficiencies are

required for both years combined in each channel. The total efficiencies are obtained

by first taking the product of the geometric efficiencies, selection efficiencies, multiple

candidate efficiencies and photon reconstruction correction factors for each year.

A weighted average of the two resulting efficiencies is then calculated, where the

weights are the product of bb cross section and luminosity for each year of data

taking. This weighted average efficiency is then multiplied by the PID efficiency,

which is calculated for both years combined, to give a combined total efficiency for
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Figure 4.28: Left(Right): Photon reconstruction efficiency correction (Top) along
with the results of the cubic spline interpolation (bottom) as a function of m′′ and
cos(θη′p) for the η′→ π+π−γ (η′→ π+π−η ) channel in 2012.
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Channel Total Efficiency
B+→ K+η′ (η′→ π+π−γ ) (0.10715± 0.00098)%
Λ0
b→ pKη′ (η′→ π+π−γ ) (0.01682± 0.00018)%

Λ0
b→ pKη′ (η′→ π+π−η ) (0.01184± 0.00013)%

Table 4.20: Total phase space integrated efficiencies

Channel Efficiency Standard Deviation Relative Uncertainty
Λ0
b→ pKη′ (η′→ π+π−γ ) 0.0170% 0.0052% 31%

Λ0
b→ pKη′ (η′→ π+π−η ) 0.0122% 0.0040% 33%

Table 4.21: Phase space averaged overall efficiencies and standard deviations. These
are calculated by taking the mean over all efficiency map bins.

each channel.

The total efficiencies as a function of m′′ and cos(θη′p) are shown in Figure 4.29.

In the event of a significant signal yield being observed in either channel, per-event

efficiencies will be obtained for each event in data by evaluating the cubic spline

functions at the value of m′′ and cos(θη′p) observed in data. These per-event effi-

ciencies will be used in Equation.(4.21) to obtain an efficiency that is corrected for

phase space variations.

The total phase space integrated efficiencies, which will be used in the event of

no significant signal yield (and always used in the control channel), are shown in

Table 4.20. Histograms are filled for each bin of the total efficiency maps, as shown

in Figure 4.30. The standard deviation taken from these histograms will be assigned

as a systematic uncertainty in the event of no significant signal yield; these values

are shown in Table 4.21.
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Figure 4.29: Left(Right): Total Efficiencies (Top) along with the results of the cubic
spline interpolation (middle) and total uncertainties(bottom) as a function of m′′

and cos(θη′p) for the η′→ π+π−γ (η′→ π+π−η ) channel.
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Background
Predicted Yield in

Fit Region (Signal window)
Conclusion

η′→ π+π−γ Channel:

B0→ K∗0η′ 0.28± 0.04 (0.10± 0.02) Negligible
B0
s→ φφ 1.7± 0.3 (0.4± 0.1) Negligible

Λ0
b→ pK−φ 19 (5) Considered in systematics

Λ0
b→ pD0π− 7.2± 1.8 (0.8± 0.6) Negligible

Λ0
b→ 4h+ π0 133± 50 Included in fit

Combinatorial Modelled with falling exponential

η′→ π+π−η Channel:

Combinatorial Modelled with falling exponential

Table 4.22: A summary of all the potential sources of background discussed in this
section. No uncertainty is assigned for the decay Λ0

b→ pK−φ because the prediction
is based on an assumed branching fraction, therefore the knowledge of the branching
fraction will dominate over the statistical uncertainty.

4.4 Background Investigations

This section describes the investigations that have been performed for the various

backgrounds that could potentially be present in the rare channel fit regions after

the full selection has been applied. Section 4.4.1 describes possible backgrounds

that involve the mis-identification of a particle and Section 4.4.2 describes back-

grounds where one particle in a decay chain is not reconstructed. A summary of all

backgrounds is shown in Table 4.22.

Throughout this section predicted yields of potential backgrounds are calculated,

by normalising to the control channel, as

NBackground = NC ×
BBackground
BC

× εBackground
εC

× fBackground
fu

, (4.25)

where NBackground(NC) is the predicted(measured) yield of the background(control)

channel, BBackground(BC) is the branching fraction of the background(control) chan-

nel, εBackground(εC) is the overall selection efficiency for the background(control)

channel and
fBackground

fu
is the ratio of background to B+ fragmentation fractions.
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4.4.1 Mis-ID Backgrounds

One possible source of mis-ID background in the rare channels is B0 → (K∗0 →
K−π+)η′ decays where the π+ from the K∗0 is mis-identified as a proton. To in-

vestigate this decay the full selection has been applied to a sample of fully sim-

ulated B0→ K∗0η′ events in order to obtain selection efficiencies and calculate a

predicted yield. For the decay Λ0
b → pKη′ (η′ → π+π−γ ), Equation 4.22 pre-

dicts a yield of 0.10 ± 0.02 B0 → K∗0η′ events will be found in the signal mass

window, and 0.28 ± 0.04 in the full fit region. The full fit region is defined as

5200 MeV < M(pKη′) < 5950 MeV and, for this purpose, the signal window is

defined as |M(pKη′) −M(Λ0
b)| < 60.0 MeV. This is a negligible number of events

compared to the≈ 430 combinatorial background events present in the full fit region.

A similarly negligible number of events is assumed in the Λ0
b→ pKη′ (η′→ π+π−η )

channel because it would require the same mis-identification to take place and the

particle ID cuts are similar between channels.

Another possible background in the η′→ π+π−γ channel involving mis-identified

particles is the decay B0
s→ (φ→ K+K−)(φ→ π+π−π0), where one of the photons

from the π0 is not reconstructed and the K+ is mis-identified as a proton; missing

a photon from the π0 causes the reconstructed φ mass to peak very close to the η′

mass. Again, fully simulated MC samples are used to calculate the predicted number

of these events surviving the full selection; only 1.70± 0.25 events are predicted to

be present in the mass fit region and 0.4 ± 0.1 in the signal region. This level of

background is also negligible compared to the level of combinatorial background

present.
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4.4.2 Partially Reconstructed Backgrounds

Partially reconstructed backgrounds (PRB) occur when one or more particles in a

decay chain are not reconstructed. This most commonly causes a broad and shifted

peak in the spectrum of signal candidates. It is most common for neutral particles

to be missed as their reconstruction relies on the association of a calorimeter cluster

with a track vertex. In the η′→ π+π−γ rare channel the level of background is

significantly higher in the Lower Sideband (LSB) compared to the Upper Sideband

(USB)18. This suggests the presence of PRB.

Many sources of PRB have been considered. The most likely candidates are five

body Λ0
b decays involving a π0, such as Λ0

b→ pK−π+π−π0, where only one of the

photons from the π0 is reconstructed. Decays of this type can proceed through

various two body intermediate resonances such as Λ0
b→ pK−π+(ρ−→ π−π0), Λ0

b→
pπ−π+(K∗−→ K−π0) and Λ0

b→ (∆→ pπ0)π+π−K−. In other analyses using the

similar channel Λ0
b→ pπ−π+π− (see Ref. [67]) a significant number of these decays

have been seen as partially reconstructed background where a π0 is missed after the

full selection.

To investigate the plausibility of these backgrounds further, the RapidSim package

is used to generate large smeared samples of these decays (see section 3.1 for further

description of RapidSim) [94]. All of the kinematic cuts from stripping, the η′

mass window, M(π+π−) > 510 MeV cut and the specific vetoes are applied to these

samples. The efficiencies of these cuts are shown in Table 4.23. It can be seen

that the efficiency of the decay Λ0
b → pK−π+(ρ− → π−π0) is twice that of the

other decays. This makes sense as the signal η′→ π+π−γ decay usually proceeds

through a ρ0 resonance so this background will be kinematically similar. Given the

18The sidebands are the regions of the mass distribution inside the full fit window which are not
blind. Explicitly, in the η′→ π+π−γ (η′→ π+π−η ) channel the LSB is defined as 5200 MeV <
M(pKη′) < 5494(5444) MeV. The USB is defined as 5744(5794) MeV < M(pKη′) < 5950 in the
η′→ π+π−γ (η′→ π+π−η ) channel.
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Decay Efficiency
Λ0
b→ pK−π+(ρ−→ π−π0) (0.3979± 0.0039)%

Λ0
b→ pπ−π+(K∗−→ K−π0) (0.2117± 0.0028)%
Λ0
b→ (∆→ pπ0)π+π−K− (0.2385± 0.0030)%

Table 4.23: Efficiencies of all kinematic cuts, η′ mass window, M(π+π−) > 510 MeV
requirement and specific vetoes on RapidSim samples of the stated decays. In each
case the η′ candidate is constructed from the π+, π− and one of the photons from
the π0.

abundance of these decays seen in other analyses and the efficiencies presented in

Table 4.23, it is believed that the η′ window and kinematic cuts will not completely

remove these backgrounds.

In order to try to compare the shape of these decays to what is seen in data the

reconstructed Λ0
b mass is plotted for events passing the full selection and falling in

the η′ sidebands (858 MeV < M(π+π−γ) < 880 MeV or 1020 MeV < M(π+π−γ) <

1058 MeV). A fit to these data is then performed using a model comprising an

exponential for combinatorial background and a bifurcated Gaussian for PRB. A

bifurcated Gaussian is a standard Gaussian function with different widths, σR and

σL, on either side of the mean. Explicitly, it is given by

Gb (x;µ, σ) =
1

N
exp

(
− (x− µ)2

2σ2

)
, (4.26)

where N is the normalisation factor, x is the parameter to which the fit is being

performed (in this case Λ0
b mass), µ is the mean of the Gaussian and σ = σL for

x < µ and σ = σR for x > µ. The parameters of the PRB shape are fixed from a fit

to simulated Λ0
b→ pK−π+π−π0 decays; this can be seen in Figure 4.31. The results

of this fit to data can be seen in Figure 4.32.

Firstly, looking at the data points alone, it is clear there is significantly more back-

ground at M(pK− η′) <Λ0
b mass (5619.51 MeV) than M(pK− η′) >M(Λ0

b), which is

consistent with a PRB where a photon is missed. Secondly, this model provides a

good quality fit to the sideband data with a PRB yield of 40± 15 events. For these
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b→ pK−π+π−π0 MC that passes the full selection.
The fit function is a bifurcated Gaussian.

reasons it is concluded that there is PRB from five body Λ0
b decays present after the

full selection. A PDF will be included to account for these decays in the final mass

fit.

To try and estimate how many five body Λ0
b background events we can expect in

the final fit, the PRB yield from the fit in Figure 4.31 is scaled by the estimated

fraction of five body events selected by requiring events to fall in the η′ sidebands.

In the simulated Λ0
b→ pK−π+π−π0 decays 30% of events fall in the η′ sidebands,

therefore the estimated yield of Λ0
b to five body background in the full data samples

is 133±50 events. Although this is a very rough estimate, it shows that this is likely

to be the dominant source of non-combinatorial background.

A subset of these five body Λ0
b decays could proceed through three body resonances.

One specific decay is Λ0
b→ pK−φ where φ→ π+π−π0 and a photon from the π0 is

not reconstructed. Figure 4.33 shows a comparison of the reconstructed M(π+π−γ)

for simulated Λ0
b→ pKη′ (η′→ π+π−γ ) signal MC and Λ0

b→ pK−φ background

with the full selection applied; this shows the η′ mass window would not remove

very much of this background. This decay is an “unobserved” decay so there is

no branching fraction measurement but it has been seen as mis-ID background
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in measurements of CP violation in B0
s → φφ decays, where both φ particles are

reconstructed through the decay φ→ K+K− but one K+ is a mis-ID proton [122].

Despite the use of particle ID cuts in both the stripping and MVA selection there

are 103 Λ0
b→ pK−φ events observed by this analysis; this suggests a high branching

fraction for a charmless B decay. Therefore, for the purposes of a predicted yield

calculation the branching fraction is assumed to be 1 × 10−5; this will obviously

not give an accurate predicted yield but the only purpose of the calculation is to

determine whether there will be a significant number of events passing the selection.

The selection efficiency is calculated by applying the selection to a sample of fully

simulated Λ0
b → pK−φ (φ→ π+π−π0) events, but it should be noted that phase

space Monte Carlo is used and this decay could proceed through a variety of Λ

resonances. Using Equation (4.25), and taking into account B (φ→ π+π−π0) =

(15.32± 0.32)% [1], the predicted yield based on this B assumption is 19 events in

the mass fit region and 5 events in the signal region; background from this decay

will need to be considered as a source of systematic uncertainty.

Another PR five body Λ0
b decay that could be present in the η′ → π+π−γ rare
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Figure 4.33: A comparison of the reconstructed M(π+π−γ) mass for Λ0
b → pKη′

(η′→ π+π−γ ) MC and Λ0
b→ pK−φ (φ→ π+π−π0) MC

channel is from the decay Λ0
b→ pD0π− (D0→ K−π+π0) where one of the daughter

photons from the π0 is not reconstructed. Using a sample of fully simulated Λ0
b→

pD0π− (D0→ K−π+π0) events and the combined branching fraction for this decay

(8.96 × 10−5) it is predicted that 7.2 ± 1.8 events are present in the full fit region

but only 0.87 ± 0.62 in the signal region. Therefore, this background is considered

to be negligible.

In the η′→ π+π−η channel PRBs are considered to be less of an issue because two

photons are required to have an invariant mass within 50 MeV of the η mass, which

is a long way from the π0 mass. No evidence for PRBs has been seen in this channel

after the full selection.



CHAPTER 5

Results of the Search for Λ0
b→ pKη′

This chapter describes the results of the search for the decay Λ0
b→ pKη′ . Firstly an

overview of the fit strategy used to extract all signal yields and the branching fraction

of Λ0
b→ pKη′ is described in Section 5.1. The signal yield results are then described

in Section 5.2, along with the associated systematic uncertainties and the statistical

significance of the results in Sections 5.3 and 5.4. This is followed by the results

of the efficiency corrections in Section 5.5, and the systematic uncertainties on the

branching fraction in Section 5.6. The results of the measurement of B (Λ0
b→ pKη′)

are presented Section 5.7. Finally, in Section 5.8 the two body invariant mass

distributions and Dalitz plots are investigated in order to understand any resonant

structure.
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5.1 Fit Strategy

The general fit strategy is to perform an extended unbinned maximum likelihood

fit to the reconstructed invariant masses of the Λ0
b/B

+ candidates in both rare

channels and the control channel simultaneously. Both years of data will be merged

because MC shows consistent signal shapes between years of data taking. In the

control channel a 2D fit will be performed to the M(K+ η′) and M(π+π−γ) variables,

whereas in the rare channels the fit will only be performed to M(pK− η′). In all

cases the Λ0
b/B

+ invariant mass is calculated using DTF with the η′ mass fixed to

the known value [1]. The η′ mass is not subject to a fit in the rare channels because,

as shown in Figure 5.1, the majority of the background involves a real η′. Therefore,

fitting to the η′ mass spectra as well would add extra complication for little gain in

discrimination power.

In general for each channel the PDF used is given by

P =
ns

ns + nb
Fs(x; ~θ) +

nb
ns + nb

Fb(x; ~θ), (5.1)

where ns and nb are the expected numbers of signal and background events respec-

tively; x is the variable to which the fit is performed; F(x; ~θ) is the fit function

used to describe the distribution of either signal or background events and ~θ are

the parameters of the fit model. In the case of the control channel, where the fit is

performed to both the M(K+η′) and M(π+π−γ) variables, the overall PDF is sim-

ply the product of the individual PDFs for each invariant mass distribution. The

product of PDFs is used because calculating M(K+η′) using DTF, means there is

negligible correlation between the M(K+η′) variable and the M(π+π−γ) variable

which is not calculated using DTF.
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The extended likelihood function for each channel is then given by

L = e−(ns+nb)
(ns + nb)

N

N !

N∏

i

P(xi; ~θ), (5.2)

whereN is the total observed number of candidates. The term in front of the product

accounts for the Poisson fluctuations on the observed number of events N . In the

absence of constant terms, the Negative Log Likelihood (NLL) for each channel is

then given by,

− lnL = ns + nb −N ln (ns + nb)−
N∑

i

ln
(
P(xi; ~θ)

)
. (5.3)

The overall simultaneous likelihood is then the product of the likelihood functions

for each channel (sum of log likelihoods). The advantage of using a simultaneous fit

is two fold. Firstly, it allows the use of the control channel to constrain parameters

in the rare channel. Secondly, it allows the ratio of branching fractions, B(Λ0
b →

pKη′)/B(B+→ K+η′), to be extracted directly from the fit.

The full fitting procedure used to extract the signal yields, perform the efficiency

corrections and measure the ratio of branching fractions is as follows:

• A first fit is performed to extract the rare channel signal yields. This will be

refered to as the “Yield Fit”.

• All sources of systematic uncertainty on the signal yields are considered and

the statistical significance of the observed signal yields is calculated, along

with the combined significance.

• In the event that the statistical significance of the signal in either rare channel

is > 3.0σ, sWeights will be calculated using the “Yield Fit” in order to perform

corrections for the efficiency variation across the phase space of the decay (see

Section 4.3). A consequence of the necessity to extract sWeights is that all
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Figure 5.1: Left (Right): The η′ mass spectra in the Λ0
b sidebands for the

η′→ π+π−γ (η′→ π+π−η ) channel.

yields in the fit need to be free and unconstrained [111]. This places limitations

on the complexity of fit possible whilst still obtaining a stable fit. In any

channel where the observed signal yield has a statistical significance < 3.0σ

the phase space integrated efficiency will be used and a systematic uncertainty

will be assigned for the phase space variation.

• The calculated efficiencies will then be used to modify the “Yield Fit” such

that the ratio of branching fractions is a floating parameter in the fit instead

of the control channel yield; the three yield parameters Nγ, Nη and NC which

were present in the “Yield Fit” are replaced with Nγ, Nη and R, where R is the

ratio of branching fractions given in Equation (4.1). This second fit is known

as the “Ratio Fit”. The modification is performed by parameterising NC as a

function of R, as shown in Equation (5.4),

Nc =
1

R


Nγεc

εγ

(
fu
fΛ0

b

)

γ

+
Nηεc
εη

(
fu
fΛ0

b

)

η


× Bγ

Bγ + Bη
. (5.4)

• In the event that the combined signal significance of both channels is < 3σ, the

profile likelihood ratio for the ratio of branching fractions will be integrated

in the physical region to place an upper limit on B (Λ0
b→ pKη′ ) at the 90%

confidence level.
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Figure 5.2: Left (Right): Fit to the B+ mass spectrum for control channel MC using
a DCB function plotted with a linear (log) scale. The green and magenta dashed
lines show the individual CB functions. The lower panel is the pull distribution
Data−Fit
σdata

.

5.1.1 Signal Parameterisation

The Λ0
b , B

+ and η′ signal shapes are parameterised as the sum of two CB functions

(Double Crystal Ball (DCB) function); the definition of a CB function is given in

Equation (4.6). All of the shape parameters of the DCB functions are determined

by performing fits to MC. In the control channel the fit to MC, which is shown in

Figures 5.2 and Figures 5.3, is performed in 2D for the M(π+π−γ) and M(K+ η′) vari-

ables. This is done to match the fit to data. The fits to Λ0
b→ pKη′ (η′→ π+π−γ )

and Λ0
b→ pKη′ (η′→ π+π−η ) MC are shown in Figures 5.4 and 5.5. The numerical

results of these fits are shown in Table 5.1.

When the fit is performed to data the tail parameters (nR, nL, αR, αL) and the fit

fractions f , are all fixed to the values shown in Table 5.1. In the control channel

the width, σ, of the B+ mass distribution is wider in data than MC. There are

enough events in the control channel to leave σ as a free parameter but in the rare

channels, where the same discrepancy is likely to be present, it is unlikely (even in the

most optimistic scenario) that there will be enough signal events to float this width.
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Figure 5.3: Left (Right): Fit to the η′ mass spectrum for control channel MC using a
DCB function plotted with a linear (log) scale. The green and magenta dashed lines
show the individual CB functions. The lower panel is the pull distribution Data−Fit

σdata
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Figure 5.4: Left (Right): Fit to the Λ0
b mass spectrum for Λ0

b → pKη′ (η′ →
π+π−γ ) MC using a DCB function plotted with a linear (log) scale. The green and
magenta dashed lines show the individual CB functions. The lower panel is the pull
distribution Data−Fit

σdata
.
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Table 5.1: Results of fits to MC. η′→ π+π−γ and η′→ π+π−η refer to the two rare
channels whereas “Control B+” and “Control η′” refer to the B+ and η′ signal shapes
for the control channel. (nR, nL, αR, αL) are the tail parameters of the CB function
defined in Equation (4.6), where the subscript L(R) refers to the CB function with
the lower(upper) side tail. The fit fraction f defines the relative contribution of each
CB function to the DCB function. The uncertainties are statistical uncertainties
obtained from the likelihood fit.

Parameter Value

µ(η′→ π+π−η ) 5618.12± 0.45 MeV
µ(η′→ π+π−γ ) 5620.58± 0.26 MeV
µ(Control B+) 5279.72± 0.28 MeV
µ(Control η′) 956.99± 0.26 MeV
σ(η′→ π+π−η ) 26.19± 0.60 MeV
σ(η′→ π+π−γ ) 16.49± 0.27 MeV
σ(Control B+) 19.17± 0.32 MeV
σ(Control η′) 12.15± 0.30 MeV

αL(η′→ π+π−η ) −1.08± 0.14
αL(η′→ π+π−γ ) −1.58± 0.14
αL(Control B+) −1.05± 0.11
αL(Control η′) −0.68± 0.12
αR(η′→ π+π−η ) 0.99± 0.16
αR(η′→ π+π−γ ) 1.05± 0.26
αR(Control B+) 1.23± 0.16
αR(Control η′) 0.97± 0.19
nL(η′→ π+π−η ) 10.78± 5.34
nL(η′→ π+π−γ ) 3.09± 0.50
nL(Control B+) 5.16± 0.75
nL(Control η′) 10.08± 6.83
nR(η′→ π+π−η ) 6.54± 2.85
nR(η′→ π+π−γ ) 4.01± 1.18
nR(Control B+) 3.14± 0.45
nR(Control η′) 5.82± 2.31
f(η′→ π+π−η ) 0.37± 0.10
f(η′→ π+π−γ ) 0.31± 0.12
f(Control B+) 0.44± 0.09
f(Control η′) 0.36± 0.09
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Figure 5.5: Left (Right): Fit to the Λ0
b mass spectrum for Λ0

b → pKη′ (η′ →
π+π−η ) MC using a DCB function plotted with a linear (log) scale. The green and
magenta dashed lines show the individual CB functions. The lower panel is the pull
distribution Data−Fit

σdata

Therefore, a data/MC correction factor σscale is introduced such that the fitted width

in data is the product σ = σMC×σscale where σMC is the value obtained in the fit to

MC. σscale is then left free to vary but shared between all channels; the high statistics

in the control channel is used to constrain the rare channels. To further improve the

stability of the fit, the mass difference between the B+ and Λ0
b is also fixed to the

latest LHCb measurement such that δm = µ(Λ0
b)−µ(B+) = 339.81±0.72 MeV [123].

5.1.2 Background Modelling

In the control channel only combinatorial background is present, which is modelled

with a second order Chebychev polynomial in both M(π+π−γ) and M(K+ η′) vari-

ables. The definition of a Chebychev polynomial is given in Equations. (4.7) and

(4.8). The two shape parameters are free to vary.

In the Λ0
b→ pKη′ (η′→ π+π−γ ) channel, as indicated in Table 4.22, there are two

background components to be considered in the nominal fit model: combinatorial

and partially reconstructed background from Λ0
b→ pK−π+π−π0 decays. The shape
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Parameter Value

µ 5452± 24 MeV
σL 128.5± 21.1 MeV
σR 152.2± 15.3 MeV

Table 5.2: The parameters of the bifurcated Gaussian used to model the Λ0
b →

pK−π+π−π0 background shape.

used for Λ0
b → pK−π+π−π0 decays is a bifurcated Gaussian with the parameters

fixed to the results of the fit to MC shown in Figure 4.31 and Table 5.2. Combina-

torial background is modelled with a falling exponential function where the shape

parameter is free to vary.

In the Λ0
b → pKη′ (η′ → π+π−η ) rare channel there are only O(100) events

passing the full selection. As mentioned in Section 4.4 there is no evidence for any

background other than combinatorial background, which is modelled with a falling

exponential function.

5.1.3 Fit Model Summary

Overall the fit has 45 parameters, of which 27 are fixed to MC and the mean of the

two Λ0
b signal functions are constrained by the control channel. Therefore, the fit

has 17 free parameters. A summary of the models used and the free parameters is

given in Table 5.3.

5.1.4 Fit Validation

Pseudoexperiments are used to test the stability of the simultaneous fit over a range

of different B (Λ0
b→ pKη′ ) assumptions between 1× 10−7 and 1× 10−5. This large

range of assumptions is tested because there is no prediction for B (Λ0
b→ pKη′ ),

therefore the stability of the fit needs to be tested for all plausible scenarios. For
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Component Model Free parameters

B+→ K+η′ Channel:
Signal Sum of two CBs µ(B+), µ(η′)

σ(η′)
NSignal(Control)

Combinatorial Background Chebychev polynomials P1(B+), P1(η′)
P2(B+), P2(η′)

Ncomb.back(Control)
η′→ π+π−γ Rare Channel:

Signal Sum of two CBs NSignal(η
′→ π+π−γ)

PR Background Λ0
b→ 4h+ π0 Bifurcated Gaussian NPRback(η

′→ π+π−γ)
Combinatorial Background Exponential K(η′→ π+π−γ)

Ncomb.back(η
′→ π+π−γ)

η′→ π+π−η Rare Channel:
Signal Sum of two CBs NSignal(η

′→ π+π−η)
Combinatorial Background Exponential K(η′→ π+π−η)

Ncomb.back(η
′→ π+π−η)

Shared Parameters Data/MC width correction σscale

Table 5.3: A summary of the simultaneous maximum likelihood fit used to extract
signal yields. The N parameters are event yields; Signal is the B+/Λ0

b signal yield,
PRback is the PRB yield and comb.back is the combinatorial background yield. µ
is the mean of the CB functions, σ is the width of the CB functions, P1 and P2 are
the two parameters describing the shape of the second order Chebychev polynomials
and K is the constant of the falling exponential functions.
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Λ0
b→ pKη′ B Assumption η′→ π+π−γ Generated Yield η′→ π+π−η Generated Yield

1× 10−7 1 0
2× 10−7 2 0
3× 10−7 3 1
4× 10−7 4 1
5× 10−7 5 2
6× 10−7 6 2
7× 10−7 7 2
8× 10−7 8 3
9× 10−7 9 3
1× 10−6 10 4
2× 10−6 20 8
3× 10−6 30 12
4× 10−6 40 16
5× 10−6 50 20
6× 10−6 61 24
7× 10−6 71 29
8× 10−6 81 33
9× 10−6 91 37
1× 10−5 101 41

Table 5.4: Generated yield in each of the rare channels for the B assumptions tested
with pseduoexperiments. These are predicted yields based on phase space integrated
efficiencies.

each of the BF assumptions tested the phase space integrated efficiencies detailed

in Section 4.3.6 are used to calculate a predicted yield in each of the rare channels.

These predicted yields can be found in Table 5.4. For each B assumption 1000

pseudoexperiments are generated from the nominal fit model with these rare channel

yields. For the generation of the pseudoexperiments all other free parameters of the

fit model are fixed to the fit results from data (see Table 5.6)1. Each of the generated

pseudoexperiments is then subject to the nominal mass fit with all 17 free parameters

unconstrained. It is found that 100% of the fits converge and have fully accurate

error matrices.

The linearity of the fit is tested by plotting the mean fit result for each of the rare

channel yields against the generated yield (see Figure 5.6) and a linear minimum χ2

fit is applied, the results of which are shown in Table 5.5. These plots and results

1The signal yields were still blind when the pseudoexperiments were performed
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Figure 5.6: Left(Right): Fit linearity for each of the η′→ π+π−γ (η′→ π+π−η )
yields.

Parameter η′→ π+π−γ Result η′→ π+π−η Result

χ2/ndf 1.42 1.35
Gradient 1.001± 0.003 1.008± 0.003
Intercept 0.006± 0.086 0.02± 0.04

Table 5.5: Results of the linear minimum χ2 fit applied to the linearity plots shown
in Figure 5.6

show excellent linearity for a wide range of possible signal yields.

The pulls of the fit are also studied for each of the rare channel yields; Figure 5.7

shows the mean and RMS of the pull distribution for each BF assumption. There is

clearly some bias at very low signal yields (<4 events) in the η′→ π+π−η channel;

this is because there are also very few background events in this channel. With low

statistics a maximum likelihood fit is intrinsically biased; in the event of a signal

yield < 4 events any bias will be corrected for.

5.2 Signal Yield Results

The projection of the simultaneous fit in the control channel, which has always been

unblind, is shown in Figure 5.8. The signal yield in the control channel is 11848±131

events. To further investigate the quality of this fit, projections in the B+ and η′

signal windows are shown in Figure 5.9; both the signal window projections and the
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Figure 5.7: Left(Right): Representation of the pull distributions at each B assump-
tion for the η′→ π+π−γ (η′→ π+π−η ) channel. The marker is the mean of the
pull distribution and the error bars represent the RMS of the pull distribution.

full fit projections show a high quality of fit. The signal windows are defined as

within ±3σ of the B+/η′ mean µ. In the case of the η′ mass distribution σ is a free

parameter of the fit; the value of which is given in Table 5.6. In the case of the B+

mass distribution σ is the product σscale×σMC , where σscale is also given in Table 5.6

and σMC is the result from the fit to MC which is given in Table 5.1. The projection

of the B+ (η′) mass distribution and fit in the η′ (B+) signal window involves plotting

only data which falls in the corresponding mass window and projecting the fit result

in the same window. Within the signal window, the signal to background ratio is

higher than the full fit region; this is a further test of the fit quality.

After the selection was frozen, the efficiency maps had been created and the fit was

validated, the rare channel mass fits were unblinded. The rare channel projections

of the simultaneous mass fit are shown in Figures 5.10 and 5.11. These projections

show clear and abundant signal for the decay Λ0
b→ pKη′ in both η′ decay channels;

the signal yield in the η′→ π+π−γ channel is 117± 15 events and the signal yield

in the η′→ π+π−η channel is 45 ± 8 events. The results for all free parameters of

the simultaneous fit are shown in Table 5.6.



157 Chapter 5. Results of the Search for Λ0
b→ pKη′

')/MeVη+M(K
5000 5100 5200 5300 5400 5500

E
ve

nt
s 

/ (
 1

0 
M

eV
 )

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

LHCb

da
ta

σ
D

at
a-

Fi
t

4−
2−
0
2
4

)/MeVγππM(
900 950 1000 1050

E
ve

nt
s 

/ (
 3

 M
eV

 )

0

200

400

600

800

1000
LHCb

da
ta

σ
D

at
a-

Fi
t

4−
2−
0
2
4

Figure 5.8: Left(Right): Results of the simultaneous fit to data in the control channel
for the M(K+ η′) (M(π+π−γ)) observable. The red dashed line represents the signal
PDF and the green dashed line is combinatorial background. The lower panel is the
pull distribution Data−Fit

σdata
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Figure 5.9: Left(Right): Projections of the control channel PDF in the η′ (B+)
signal window. The red dashed line represents the signal PDF and the green dashed
line is combinatorial background. The lower panel is the pull distribution Data−Fit

σdata
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Figure 5.10: The fit performed to the Λ0
b → pKη′ (η′ → π+π−γ ) channel data.

The green line is combinatorial background, the cyan line is partially reconstructed
background from Λ0

b→ pK−π+π−π0 decays and the red line is signal. The overall
fit function is shown by the solid blue line. The lower panel is the pull distribution
Data−Fit
σdata
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Figure 5.11: The fit performed to the Λ0
b → pKη′ (η′ → π+π−η ) channel data.

The green line is combinatorial background and the red line is signal. The overall
fit function is shown by the solid blue line. The lower panel is the pull distribution
Data−Fit
σdata
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Parameter Value

Nsignal(B
+→ K+η′ ) 11848± 131

Nsignal(η
′→ π+π−γ ) 117± 15

Nsignal(η
′→ π+π−η ) 45± 8

NPRBack.(η
′→ π+π−γ ) 186± 40

NComb.Back.(η
′→ π+π−γ ) 432± 41

NComb.Back.(η
′→ π+π−η ) 70± 10

NComb.Back.(Control) 9605± 123
K(η′→ π+π−η) −0.00294± 0.00070
K(η′→ π+π−γ) −0.00363± 0.00032
P1(Control B+) −0.645± 0.016
P2(Control B+) −0.121± 0.019
P1(Control η′) 0.06± 0.02
P2(Control η′) −0.271± 0.021
µ(Control η′) 959.06± 0.18
µ(Control B+) 5282.73± 0.27
σ(Control η′) 13.44± 0.17

σscale 1.152± 0.013

Table 5.6: The final results of the simultaneous fit to data. η′ → π+π−γ and
η′→ π+π−η refer to the two rare channels whereas Control B+ and Control η′

refer to the B+ and η′ mass distributions for the control channel. K is the constant
of the exponential used to model combinatorial background and P1/P2 are the
coefficients of the Chebychev polynomials used to model combinatorial background
in the control channel.
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Figure 5.12: The distribution of minimum NLL values obtained when the pseudoex-
periments described in Section 5.1.4 are run with the yields observed in data. The
vertical red line shows the minimum NLL value obtained from the fit to data.

5.2.1 Goodness Of Fit

In order to assess the quality of the fit, the pseudoexperiments described in Sec-

tion 5.1.4 are performed with the signal yields observed in data. The value of the

NLL observed from the fit to data is then compared to the distribution of the NLL

values obtained from the pseudoexperiments; this comparison can be seen in Fig-

ure 5.12. The value obtained from data is comfortably within the distribution of

expected values obtained from pseudoexperiments, which confirms a good quality

of fit.

5.2.2 Checks for Non-Resonant Background

Further checks are performed to ensure that the observed signals proceed through

an η′ resonance as expected; the non-resonant decays Λ0
b→ pK−π+π−γ and Λ0

b→
pK−π+π−η are allowed but expected to be suppressed by both the physics and selec-

tion. Nevertheless a fit is performed to the background-subtracted2 M(π+π−γ) and

2The sPlot method is used to perform the background subtraction
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Figure 5.13: Left (Right): Background subtracted η′ mass distributions in the η′→
π+π−γ (η′→ π+π−η ) decay channel. The solid blue line is the total fit function.

M(π+π−η) distributions, which includes a signal component taken from MC and a

linear background shape to account for the possibility of non-resonant background

from the aforementioned decays. In both channels a first order Chebychev polyno-

mial is used to model the non-resonant component, in which the gradient is free to

vary. In the η′→ π+π−γ channel a DCB function is used for the signal component,

with all parameters except the signal yield and mean fixed to the values obtained in

a fit to MC. In the η′→ π+π−η channel, the signal shape is affected by the ±50 MeV

cut on the η mass used in stripping. Therefore, the M(π+π−η) shape is modelled

with a bifurcated Gaussian function, where the yield and mean are free to vary but

all other parameters are fixed to values obtained from a fit to MC. The results of

these fits are shown in Figure 5.13. In both channels the yield of the non-resonant

background component is consistent with zero and the yield of the signal component

is consistent with that extracted from the nominal mass fit. This confirms that there

is no contamination from non-resonant background. Furthermore, the fit result for

the mean of the DCB in the η′→ π+π−γ channel is 956±3 MeV which is consistent

with the world average η′ mass (957.78± 0.06 MeV) [1]. In the η′→ π+π−η channel

the mean of the bifurcated Gaussian is consistent with the expectation from MC.

As a further check in the η′→ π+π−γ channel, the ρ0 polarisation angle is studied.

It has been seen that the decay η′ → π+π−γ proceeds through a ρ0 → π+π−

resonance nearly 100% of the time [124]. Consequently, the decay topology of this
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Figure 5.14: A comparison of the ρ0 polarisation angle, in the η′→ π+π−γ decay
channel, between MC and data.

pseudoscalar→ vector + photon decay is quite unique. The ρ0 polarisation angle

is defined as the angle between the π+ meson in the ρ0 rest frame and the Lorentz

boost from the η′ rest frame to the ρ0 rest frame; a comparison of the ρ0 polarisation

angle between MC and background subtracted data can be seen in Figure 5.14. This

shows good agreement between data and MC, with the simulation providing a good

description of the overall shape of data. In non-resonant decays to π+π−γ, the

yield would be independent of the ρ0 polarisation angle which would lead to a flat

distribution; this is not seen in background subtracted data. This check gives further

confidence that there is no appreciable contamination from non-resonant background

in the η′→ π+π−γ decay channel.

5.2.3 Control Channel Expected Yield Comparison

In a similar manner to the comparisons performed in Section 4.2.2.1, a comparison

of the expected control channel yield and observed yield after the full selection is

made. The expected number of events in the control channel, for both years of data
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combined, is given by

N exp
fullsel = 2×fu×B(B+→ K+η′)×B(η′→ π+π−γ)×

(
L12σ12(bb)ε12 + L11σ11(bb)ε11

)
,

(5.5)

where fu is the probability of a b-quark hadronising with a u-quark to form a B+

meson; Ly,σ(bb)y and εy are the luminosity, bb cross section and efficiency for a

given year y of data taking respectively. As the combined efficiencies described in

Section 4.3 are the weighted average of 2012 and 2011 efficiencies, where the weights

are the product of luminosity and bb cross section for a given year of data taking,

the expected number of events in the control channel can also be expressed as

N exp
fullsel = 2×fu×B(B+→ K+η′)×B(η′→ π+π−γ)×εcomb×

(
L12σ12(bb) + L11σ11(bb)

)
,

(5.6)

where εcomb is the combined 2012 and 2011 efficiency. Taking the value of εcomb given

in Table 4.20 and using the same values as the pre-selection comparison for all other

parameters (see Table 4.5) the expected number of B+→ K+η′ events after the full

selection is N exp
fullsel = 16079± 1774. This is consistent with the number of observed

events, Nobs = 11848 ± 131, at the level of 2.5σ. However, the ratio of expected to

observed events is consistent with the ratio seen in the pre-selection comparison; in

the pre-selection comparison the ratio is 1.37±0.15 and in this comparison the ratio

is also 1.38 ± 0.15. This provides confidence that the efficiencies of the BDT, PID

and M(π+π−) cuts are accurate.

5.3 Systematic Uncertainties on Signal Yield

This section describes the sources of systematic uncertainty on the rare channel sig-

nal yields reported in Section 5.2 and their determination. The sources of systematic

uncertainty are described in Sections 5.3.1- 5.3.4 and a summary of all systematic



165 Chapter 5. Results of the Search for Λ0
b→ pKη′

Channel: η′→ π+π−γ η′→ π+π−η Control
Fixed Fit Parameters 7.7 1.3 102

Fit Model Choice 6.1 1.2 283
Λ0
b→ pK−φ Background 0.5 0.04 0.5

σscale 2.4 1.1 15
Total 10.2 2.0 301

Table 5.7: A summary of all the systematic uncertainties on the measured signal
yields. All uncertainties are given as an absolute number of events.

uncertainties is given in Table 5.7. The total systematic uncertainty for each chan-

nel is all the individual systematics components summed in quadrature. The final

result for the signal yields of the decay Λ0
b→ pKη′ are:

N(η′→ π+π−γ) = 117± 15(stat.)± 10(sys.), (5.7)

N(η′→ π+π−η) = 45± 8(stat.)± 2(sys.). (5.8)

5.3.1 Fixed Fit Model Parameters

Many parameters of the signal shapes are fixed to values determined with fits to MC.

Therefore the uncertainties on these parameters from the fits to MC, the results of

which can be found in Table 5.1, need to be propagated to a systematic uncertainty

on the signal yield. This is done by repeating the “Yield Fit” 1000 times, each time

sampling the fixed parameters from a Gaussian with a mean equal to the nominal

value and width equal to the uncertainty from the fit to MC. The RMS of the

distributions of rare channel signal yields will be taken as the systematic uncertainty.

The correlations between the fixed parameters need to be preserved in the sampling

process, otherwise the systematic uncertainty could be overestimated. This is done

with the use of the covariance matrices, Ω, from the fits to MC. Any symmetric

positive definite matrix can be written as the product of a lower triangular matrix,
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L, and its conjugate transpose,

Ω = LL>. (5.9)

The lower diagonal matrix L is determined with the use of a Cholesky decomposition.

A set of correlated random variables, ~C, with variances equal to those entering the

covariance matrix, can then be produced by taking the product,

~C = L ~X, (5.10)

where ~X is a vector of uncorrelated unit normal random variables (sampled from a

Gaussian with a mean of 0 and width of 1). Sets of correlated fixed fit parameters,

~F , are therefore sampled by calculating

~F = L ~X + ~µ, (5.11)

where ~µ are the nominal values of the fixed fit parameters.

5.3.2 Λ0
b→ pK−φ Background

There is potential for background from the decay Λ0
b → pK−φ (φ→ π+π−π0) in

the η′→ π+π−γ rare channel. However, as the shape of this background is very

similar to the shape of the Λ0
b → pK−π+π−π0 background it is not possible to

achieve a stable and unbiased fit with both components included. Therefore, as this

background is in fact a subset of the Λ0
b → pK−π+π−π0 background, it was not

included in the nominal fit as a distinct component and a systematic uncertainty

is assigned for its non-inclusion. The contribution associated with this source of

systematic uncertainty is estimated by reperforming the fit with a component for

Λ0
b → pK−φ included and the change in signal yield is assigned as a systematic

uncertainty.
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Channel: η′→ π+π−γ η′→ π+π−η Control
Model I: 0.8 1.2 0.8
Model II: 6.1 0.2 283
Model III: 1.1 0.01 0.5

Table 5.8: A summary of the changes in signal yields for each of the alternative fit
models considered. All values are given in units of Events.

5.3.3 Choice of Fit Model

A systematic uncertainty can occur due to the choice of fit model used; the true

shape of a distribution may not exactly match the distribution with which it has

been modelled. To assess the size of this systematic uncertainty the fit is repeated

with alternative models:

• Model I: The exponential combinatorial background component in the rare

channels is replaced with a second order Chebychev polynomial.

• Model II: The DCB signal parameterisations in all channels are replaced by

Hypatia functions [125].

• Model III: The bifurcated Gaussian partially reconstructed background shape

in the η′→ π+π−γ rare channel is replaced with a RooKeysPDF kernel density

estimation [126].

The difference in signal yield with respect to the nominal fit model has been de-

termined for each model change; these differences are shown in Table 5.8. The

systematic uncertainty is assigned as the largest change in the signal yield.

5.3.4 σscale

Another systematic uncertainty can arise from the assumption that the σscale Data/MC

width correction factor is the same in the control channel and both rare channels.
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It is possible due to the presence of an extra track in both rare channels and an

extra photon in the η′ → π+π−η rare channel that this assumption is not com-

pletely correct. To assess an uncertainty due to this assumption not holding, the fit

is reperformed with σscale fixed to ση
σc
×σnominalscale where σc,η is the width of signal PDF

in the B+→ K+η′ (η′→ π+π−γ ) and Λ0
b→ pKη′ (η′→ π+π−η ) channels respec-

tively. The change in the signal yields with respect to the nominal fit is assigned as

a systematic uncertainty.

5.4 Signal Significance

The statistical significance of the signal yields observed is assessed using the profile

likelihood ratio, which is given by

λ(µ) =
L(µ, ˆ̂ν)

L(µ̂, ν̂)
, (5.12)

where L(µ̂, ν̂) is the value of the likelihood function at its minimum with respect to

all parameters; the parameter of interest µ and the nuisance parameters ν are free

to vary and take the values (µ̂, ν̂) which minimise the likelihood function. L(µ, ˆ̂ν)

is the value of the likelihood function with µ fixed and the nuisance parameters

ν allowed to float, this means the nuisance parameters take new values (ˆ̂ν) which

minimise the likelihood function for a given value of µ.

Wilks’ theorem states that −2 ln(λ(µ)) will follow a χ2 distribution where the num-

ber of degrees of freedom is equal to the difference in dimensionality between L(µ, ˆ̂ν)

and L(µ̂, ν̂) [110]. In this case the difference in dimensionality is one, because only

one signal yield is fixed at a time. A consequence of this is that the signal significance

of each yield, in units of Gaussian standard deviations σ, is given by

σ =
√
−2 lnλ(0). (5.13)
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Channel Without Systematics With Systematics
η′→ π+π−γ 10.4σ 9.7σ
η′→ π+π−η 7.3σ 7.1σ
Combined 12.7σ 12.0σ

Table 5.9: A summary of signal significances, both with and without systematic
uncertainties, for each rare channel and both combined.

However, the systematic uncertainties on the signal yields need to be accounted for.

This is done by convolving the profile likelihood ratio with a Gaussian with a mean

of zero and width equal to the systematic uncertainty on the signal yield.

For the purposes of assessing a combined signal significance of both decay channels

the null hypothesis is a total Λ0
b → pKη′ signal yield of 0 events. Therefore, in

order to assess the combined signal significance the fit is parameterised such that

the total signal yield (the sum of the two rare channel yields) is a free parameter.

This allows the profile likelihood ratio to be determined as a function of the total

signal yield. The systematic uncertainty on the total yield is calculated as the

systematic uncertainties on the individual yields summed in quadrature.

The profile likelihood ratios as a function of the individual rare channel yields and

the total yield are shown in Figure 5.15. The resulting signal significances are given

in Table 5.9. The combined significance after accounting for systematic uncertainties

is 12.0σ, which is equivalent to a p-value of 1.78 × 10−33. This is undoubtedly the

first observation of Λ0
b→ pKη′ .

5.5 Efficiency Corrections

As the signal significance is greater than 3σ in both rare decay channels the efficien-

cies are corrected for the variation over the phase space of the decay. This is done
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Figure 5.15: Scans of − lnλ for the two rare channel yields and the total signal yield
both with and without systematic uncertainties included. The point at which the
likelihood function crosses the yield=0 axis is equal to σ2/2
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Channel Corrected Efficiency
η′→ π+π−γ 0.0200%
η′→ π+π−η 0.0157%

Table 5.10: The values of the phase space corrected rare channel efficiencies. The
uncertainties on these values are discussed in section 5.6.1.
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Figure 5.16: Left(Right):The distribution of background subtracted Λ0
b → pKη′

events as a function of cos(θη′p) and m′′ in the η′→ π+π−γ (η′→ π+π−η ) channel.

by calculating the corrected efficiency as

ε̄ =

∑N
i wi∑N
i

wi
εi

, (5.14)

where wi is the sWeight of event i and εi is the efficiency of event i taken from the

total efficiency maps shown in Figure 4.29. The values of the corrected rare channel

efficiencies are given in Table 5.10.

The phase space corrected efficiencies are 19% and 33% higher than the phase space

integrated efficiencies in the η′→ π+π−γ and η′→ π+π−η channels respectively.

The background-subtracted distributions of Λ0
b→ pKη′ signal events are shown in

Figure 5.16, which show a concentration of signal events at low values of cos(θη′p).

Signal events are expected to occupy this area of the phase space when they proceed

through a Λ∗→ pK− resonance (this is discussed further in section 5.8). This region

of the phase space also has the highest signal efficiency (see Figure 4.29), which

explains why the corrected efficiencies are considerably larger than the phase space

integrated efficiencies.
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5.6 Systematic Uncertainties on Branching Fraction

When the branching fraction is determined using the “Ratio Fit” there are several

parameters, both in the fit model and Equation (4.1), which are fixed to their cen-

tral values. The systematic uncertainties on these parameters need to be taken into

account. Following the procedure used to evaluate the systematic uncertainty on the

signal yields due to the fixed fit model parameters in Section 5.3, the “Ratio Fit” is

repeated 1000 times whilst sampling the fixed parameters from Gaussian distribu-

tions with width equal to their systematic uncertainty. The RMS of the resulting

branching fraction ratio distribution is then taken as the systematic uncertainty.

The fixed parameters which are varied are as follows:

• All of the fit model shape parameters that are fixed to MC: the uncertainties

on these parameters are shown in Table 5.1 and a description of how they are

varied whilst preserving correlations is given in Section 5.3.

• The M(Λ0
b)-M(B+) value, used to constrain the means of the signal shapes.

• The individual branching fractions B (η′→ π+π−γ ) and B (η′→ π+π−η ); the

uncertainties on these values are taken from their PDG averages [1].

• The ratios of fragmentation fractions,

(
fu
f
Λ0
b

)

γ,η

, the uncertainties on which

are given in Section 4.1.1. As the uncertainties on the fragmentation fractions

are 100% correlated, the same change in the fragmentation fraction will be

used for both

(
fu
f
Λ0
b

)

γ

and

(
fu
f
Λ0
b

)

η

in order to preserve the correlation.

• The ratios of efficiencies; these are subject to several sources of systematic

uncertainties which are discussed in Section 5.6.1.

The systematic uncertainties on the branching fraction ratio due to the possible

Λ0
b→ pK−φ background, choice of fit model and the σscale parameter are assessed

in the same manner as for the signal yield (see Section 5.3.2 – 5.3.4). However, the
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∆ R
Model I: 0.0012
Model II: 0.0015
Model III: 0.0006

Table 5.11: A summary of the changes in branching fraction ratio for each of the
alternative fit models considered.

Systematic Absolute Value Relative Uncertainty
Fixed Parameters (incl. Efficiency Ratios) 0.0130 10.8%

Λ0
b→ pK−φ background 0.0004 0.3%

σscale 0.0014 1.2%
Choice of Fit Model 0.0015 1.3%

Vetoes 0.0010 0.8%
Total 0.0131 10.9%

Table 5.12: A summary of all systematic uncertainties on the branching fraction
ratio. Both the absolute values and the percentage uncertainties are shown.

“Ratio Fit” is instead used and the change in branching fraction ratio is considered in

each case. A summary of the changes in branching fraction ratio for each alternative

fit model considered is given in Table 5.11.

An additional source of systematic uncertainty on the ratio of branching fractions

arises from the mass vetoes used in the η′→ π+π−γ rare channel, which are de-

scribed in Section 4.2.5. As certain regions of the phase space may be completely

depleted by these vetoes, there may be no knowledge of the signal efficiency in these

regions of the phase space. Therefore, the width of each of the mass vetoes is in-

creased by 50% and the corrected value of εγ is recalculated. Any change in the

ratio of branching fractions when the fit is reperformed with the increased veto size

and the recalculated εγ value is assigned as a systematic uncertainty.

A summary of all systematic uncertainties on the branching fraction ratio is given

in Table 5.12. The systematic uncertainties on the efficiency ratios are discussed in

detail in section 5.6.1.
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Systematic η′→ π+π−γ η′→ π+π−η
L0 Trigger 1.6% 3.1%

Finite MC statistics 3.2% 5.8%
Phase Space Binning 0.4% 2.2%

BDT Selection 3.5% 2.7%
PID Efficiency 2.5% 2.5%

Photon Efficiency Correction 0.1% 4.0%
Total 5.6% 8.9%

Table 5.13: A summary of all the systematics on the efficiency ratios

5.6.1 Efficiency Ratio Systematics

It is possible for systematic uncertainties on the efficiency ratio to occur due to the

mis-modelling in MC of quantities used by the selection. The majority of these

uncertainties will cancel because the equivalent mis-modelling will also be present

in the control channel. The following sections describe the systematics assigned to

account for any uncertainties that do not fully cancel. A summary of all systematic

uncertainties on the efficiency ratios is presented in Table 5.13.

5.6.1.1 L0 Trigger

It is known that there is a mis-calibration of transverse energy measurements made

by the hadronic calorimeter in MC. As the L0Hadron trigger requirements rely heav-

ily on ET thresholds, the L0 trigger efficiencies determined from MC may not be

accurate. Data calibration samples are available which, in theory, facilitate the de-

termination of the L0Hadron trigger efficiency without using the mis-calibrated MC.

However, studies of these calibration samples have shown that the overlap between

different tracks is not fully accounted for; it is possible for more than one track to hit

the same cell of the hadronic calorimeter which affects the probability of the trigger

being fired. Consequently, these calibration samples are used to assess a systematic

uncertainty rather than correct the L0Hadron trigger efficiency. The efficiencies are

recalculated using the data calibration samples and the differences relative to the
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nominal efficiency ratios are taken as systematic uncertainties, the values of which

are shown in Table 5.13.

5.6.1.2 Finite MC statistics

The statistical uncertainties on the average efficiency in the control channel and the

uncertainties as a function of the phase space variables are presented in Section 4.3.

In order to propagate these uncertainties to the ratio of branching fractions, 1000

new efficiency maps are generated by sampling each bin from a Gaussian with mean

equal to the values in the nominal efficiency map and width equal to the uncertainty

due to finite MC stats. The corrected efficiency is then recalculated for each sampled

efficiency map. The value of the control channel efficiency is also sampled from a

Gaussian in the same manner. The standard deviation of the distributions of the

resulting efficiency ratios are taken as the systematic uncertainties due to finite MC

statistics, the values of which are shown in Table 5.13.

5.6.1.3 Phase Space Binning

The use of a binned approach when the efficiency maps are created introduces un-

certainty from the assumption that the efficiency is smoothly varying across each

bin. The size of this uncertainty is reduced with the use of cubic spline interpolation

between bins but a systematic uncertainty still needs to be evaluated. This is done

by reducing the number of bins used along each axis of the efficiency maps from 10

to 7 and recalculating the efficiency ratios. The relative difference to the nominal

efficiency ratio is taken as the systematic uncertainty; the values of this for each

channel are shown in Table 5.13.
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5.6.1.4 BDT Selection

Systematic uncertainty can be introduced on the efficiency of the BDT selection if

variables entering the BDT are not correctly modelled. Although the control channel

was used to check the modelling of all variables entering the BDT to try to eliminate

this (see Figure 4.2), comparisons of the BDT distribution in control channel MC

and sWeighted data show small residual discrepancies. To evaluate this uncertainty

the nominal BDT cuts are applied to both B+→ K+η′ MC and sWeighted data

and the difference in efficiency is taken as the uncertainty on the BDT efficiency.

The same method is used for the rare channel BDT efficiencies, but using the rare

channel BDT cuts. To estimate the correlation between the control and rare channel

BDT output, the control channel BDT is applied to rare channel MC and the output

of the control channel and rare channel BDT is plotted event-by-event, from which

the correlation coefficient can be calculated. Using this correlation, the efficiency

uncertainties are propagated to uncertainties on the efficiency ratios. The correlation

coefficients are 0.86 and 0.74 for the η′→ π+π−γ and η′→ π+π−η rare channels

respectively, and the systematic uncertainties assigned are shown in Table 5.13.

5.6.1.5 PID Efficiency

The uncertainty on the PID efficiency due to the limited size of both the calibration

and reference samples is already accounted for in the statistical uncertainties quoted

in Section 4.3.3 and these are propagated to a systematic uncertainty on the effi-

ciency ratios as described in Section 5.6.1.2. However, another source of uncertainty

arises from the fact a binned approach is used. It is assumed that the efficiency

within in each bin of the calibration sample is smoothly varying, but this may not

be the case, particularly for protons where large bins have to be used due to the

low statistics of the calibration samples (see Figure 4.24). To evaluate a systematic

uncertainty due to this assumption, every bin boundary is shifted in the direction
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of both increasing and decreasing p/ η/nTracks by half the width of the average

bin. The efficiency ratios are recalculated and the larger of the two changes in

the efficiency ratios, with respect to the nominal binning schemes, is assigned as a

systematic uncertainty.

5.6.1.6 Photon Efficiency Correction

The photon reconstruction efficiency correction factors used, as described in Sec-

tion 4.3.5, have both statistical and systematic uncertainties. These are propagated

to the efficiency ratios by varying the correction factors to εcor + 1σ and εcor − 1σ,

where σ is the sum of statistical and systematic uncertainites in quadrature, before

recalculating the efficiency ratios. The average difference relative to the nominal

efficiency ratios is taken as a systematic uncertainty.

5.7 Branching Fraction Results

The ratio of branching fractions B(Λ0
b→ pKη′)/B(B+→ K+η′) is given by Equa-

tion (4.1). The phase space corrected efficiencies for the rare decay channels are

shown in Table 5.10; the control channel efficiency is shown in Table 4.20; the frag-

mentation fractions are given in Table 4.1 and the values of the η′ branching fractions

are taken from the PDG [1]. These are all used in the “Ratio Fit” to extract the

ratio of branching fractions and the statistical uncertainty. The total systematic un-

certainty is given in Table 5.12. The final value for the ratio of branching fractions

is

B(Λ0
b→ pKη′)

B(B+→ K+η′)
= 0.120± 0.013(stat.)± 0.013(sys.). (5.15)

Using the PDG value for the control channel branching fraction, B(B+→ K+η′) =

(7.06 ± 0.25) × 10−5, the final value for the branching fraction of the decay Λ0
b →



178 Chapter 5. Results of the Search for Λ0
b→ pKη′

pK−η′ is

B(Λ0
b→ pKη′) = (8.48± 0.88(stat.)± 0.97(sys.))× 10−6. (5.16)

As a cross check, the branching fraction has been calculated individually for each

η′ decay channel; the results are consistent between decay channels. The details of

this calculation can be found in Appendix D.

5.8 Resonant Structure

It is of interest to understand which resonances the decay Λ0
b → pKη′ proceeds

through. There is a plethora of Λ∗ resonances which could contribute, such that the

decay proceeds Λ0
b→ (Λ∗→ pK−)η′. A recent amplitude analysis of Λ0

b→ pK−J/ψ

revealed contributions from 13 Λ∗ resonances, with the strongest contribution be-

ing from Λ∗(1520) [16]. However, this fermion → fermion + pseudoscalar +

vector decay is quite different to Λ0
b → pKη′ which is fermion → fermion +

pseudoscalar + pseudoscalar. To investigate whether any resonant structure is

present, the background-subtracted Dalitz plots of Λ0
b → pKη′ signal events are

studied; these are shown in Figure 5.17. These Dalitz plots show a concentration of

signal events in the region 2 GeV2 < M(pK−)2 < 4 GeV2, which is where an excess

of events would be expected if the decay was proceeding through Λ∗ resonances.

To investigate this resonant structure further, the background subtracted M(pK−)

invariant mass distributions are shown in Figure 5.18. These show possible evidence

for contributions from resonances between 1800 MeV and 1900 MeV. There is exper-

imental evidence for five Λ∗ resonances in this region (Λ∗(1800), Λ∗(1810), Λ∗(1820),

Λ∗(1830), Λ∗(1890)) so their presence is not surprising [1]. However, the strength

of these resonances relative to the Λ∗(1520) is greater than seen in other baryonic

decay channels [16,127]. In other baryonic decay channels the Λ∗(1520) is the dom-
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Figure 5.17: Top(Bottom): Dalitz plot distributions of background subtracted Λ0
b→

pKη′ events in the η′→ π+π−γ (η′→ π+π−η ) decay channel.
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Figure 5.18: Top(Bottom): Background subtracted M(pK−) distribution in the
region where Λ∗ resonances are expected for the η′ → π+π−γ (η′ → π+π−η )
channel.
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Figure 5.19: Left (Right): M(pη′) distribution for the η′→ π+π−γ (η′→ π+π−η )
decay channel.
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Figure 5.20: Left (Right): M(η′K−) distribution for the η′→ π+π−γ (η′→ π+π−η )
decay channel.

inant resonance. An amplitude analysis would be required to fully understand and

disentangle these resonances, but unfortunately much larger samples of signal events

would be required for this.

The M(pη′) and M(K−η′) invariant mass distributions are also studied and are

shown in Figures 5.19 and 5.20. These show no particular resonant structure; the

accumulation of candidates at high mass in the M(η′K−) distribution is expected

when Λ∗ resonances are present in the M(pK−) spectrum.
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Conclusions

A search has been performed for the decay Λ0
b → pKη′ using the LHCb Run I

dataset, which consists of 2 fb−1 of data collected at
√
s = 8 TeV in 2012 and 1 fb−1

of data collected at
√
s = 7 TeV in 2011. The search is performed in two decay

channels to maximise sensitivity; the η′ is reconstructed through both the channel

η′ → π+π−γ and η′ → π+π−η . An event selection, which mainly makes use of

multivariate algorithms and the LHCb PID system, has been optimised to maximise

sensitivity to this decay. In the η′→ π+π−γ decay channel 117±15(stat.)±10(sys.)

signal events are observed, and 45 ± 8(stat.) ± 2(sys.) events are observed in the

η′→ π+π−η decay channel. The combined statistical significance of these yields is

12.0σ. This is therefore the first observation of a beauty baryon decaying to a final

state involving an η′ particle. The branching fraction of the decay Λ0
b→ pKη′ is

182
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measured relative to the decay B+→ K+η′ to be

B(Λ0
b→ pKη′)

B(B+→ K+η′)
= 0.120± 0.013(stat.)± 0.013(sys.). (6.1)

Using the world average value for the branching fraction of the decay B+→ K+η′

[1], the branching fraction of Λ0
b→ pKη′ is measured to be

B(Λ0
b→ pKη′) = 8.48± 0.88(stat.)± 0.97(sys.)× 10−6. (6.2)

This is the first measurement at the LHC of the branching fraction of a charmless

three body b-hadron decay, which has been reconstructed using neutral particles.

Unfortunately, however, with no theoretical predictions for this branching fraction

currently available it is not possible to make direct comparisons to the SM.

The resonant m(pK−) structure has been inspected and these distributions suggest

there could be excited Λ∗ resonances present in the region 1800 − 1900 MeV. The

presence of these resonances is not surprising but the relative strength of these

resonances in the 1800−1900 MeV region compared to the Λ∗(1520) resonance differs

from what has been seen in other decay channels [16, 127]. In other decay channels

the Λ∗(1520) is the dominant resonance, but that does not appear to be the case

here.

In order to understand fully the resonant structure of this decay an amplitude anal-

ysis would be required, but this would only be possible with significantly more than

the 162 signal events observed in this analysis. With the future inclusion of the

LHCb Run II dataset this may become possible, as 3.8 fb−1 of
√
s = 13 TeV data

has already been collected and up to another 2 fb−1 could be added during 2018

data taking. An amplitude analysis could also be used to search for CPV in this

decay channel, which would be of interest given that the first evidence for CPV in

the baryonic sector was found in the charmless decay Λ0
b→ pπ−π+π− [67] and large
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CP asymmetries have been observed in charmless B meson decays to an η(′) final

state [128,129].

The inclusion of the Run II dataset would also reduce the statistical uncertainty on

the branching fraction measurement. In order to reduce the systematic uncertain-

ties a more precise measurement of the Λ0
b fragmentation fraction would be highly

desirable, as the ≈ 8% uncertainty on this quantity is one of the dominant sources

of systematic uncertainty. Further improvements could also be made by using the

channel B+→ K+η′ (η′→ π+π−η ) as a normalisation channel for the correspond-

ing Λ0
b→ pKη′ decay channel1. This would reduce the systematic uncertainty on

the photon reconstruction efficiency corrections, in this channel, from 4.04% to the

sub 1% level seen in the Λ0
b→ pKη′ (η′→ π+π−γ ) decay channel. More efficient

generation of simulated samples would also be advantageous, as this would reduce

the systematic uncertainties on the efficiency ratios due to the finite size of the

simulated samples.

It would also be of interest to determine the branching fraction of the decay Λ0
b→

pKη . As discussed in Section 1.4, the branching fraction of B meson decays to an

η′ meson have been found to be significantly different to the same decay involving

an η meson. It would therefore be of interest to understand whether this pattern

continues in beauty baryon decays. Moreover, a measurement with similar precision

to that presented here could be used in combination with the branching fraction of

Λ0
b → pKη′ to add valuable information on η′– η mixing. This could potentially

lead to the first determination of the η′– η mixing angle, φp, using a baryonic decay

and add constraints on the size of the gluon component in the η′ wavefunction.

1It is not currently possible to reconstruct this channel in Run I data due to selection require-
ments which were applied during the centralised data processing campaign, but this is not the case
for Run II data
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APPENDIX A

Comparisons of 2011 MC and Background Subtracted Control

Channel Data

This appendix compares variables, used in both the pre-selection and BDT, between
MC and control channel background subtracted data. The background subtraction
is performed using the sPlot technique [111]; the mass fit used is shown in Figure 4.1.
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Figure A.1: Comparison between 2011 background subtracted control channel data
and MC for variables used in the pre-selection.
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Figure A.2: Comparison between 2011 background subtracted control channel data
and MC for variables used in the BDT.



APPENDIX B

Square Dalitz Plot Efficiencies

As mentioned in Section 4.3, the phase space of a three body decay can be binned
in the Square Dalitz Plot (SDP) variables m′ and θ′. However, these variables are
not used in this analysis because they lead to low bin occupancies near the edges
of the SDP. This appendix shows the rare channel efficiencies as a function of the
SDP variables, which offers an alternative parameterisation of the phase space of
the Λ0

b→ pKη′ decay. All of the efficiency maps shown are for 2011 and 2012 data
combined.
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Figure B.1: Top(Bottom): Geometrical efficiencies and corresponding uncertainties
of DaughtersInLHCb cut as a function of SDP position for the η′→ π+π−γ (η′→
π+π−η ) channel.
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Figure B.2: Top(Bottom): Selection efficiencies and corresponding uncertainties as
a function of SDP position for the η′→ π+π−γ (η′→ π+π−η ) channel.
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Figure B.3: Top (Bottom): PID Efficiencies and their uncertainties as a function of
SDP position for the η′→ π+π−γ (η′→ π+π−η ) channel.
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Figure B.4: Top (Bottom): Efficiency of retaining one candidate per event at random
as a function of SDP position for the η′ → π+π−γ (η′ → π+π−η ) channel and
uncertainties.
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Figure B.5: Left (Right): The photon efficiency correction factors for the
η′→ π+π−η (η′→ π+π−γ ) rare channel. The calculation of these correction factors
is discussed in Section 4.3.5.
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Figure B.6: Top (Bottom): Total efficiency for all stages of the selection combined
for the η′→ π+π−γ (η′→ π+π−η ) channel along with the total uncertainties.



APPENDIX C

Efficiency maps for 2011 data

This appendix shows the rare channel efficiencies as a function of m′′ and cos(θη′p) for
2011 data. These are used in the branching fraction measurement. The equivalent
plots for 2012 data can be found in Section 4.3.
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Figure C.1: Left(Right): Geometric efficiencies (top), with the results of the
cubic spline interpolation(middle) and statistical uncertainties(bottom) for the
DaughtersInLHCb cut as a function of m′′ and cos(θη′p) for the η′ → π+π−γ
(η′ → π+π−η ) channel in 2011 data. The uncertainties are calculated using the
Clopper-Pearson method [119].
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Figure C.2: Left(Right): Selection Efficiencies (Top) along with the results of the
cubic spline interpolation (middle) and uncertainties(bottom) as a function of m′′

and cos(θη′p) for the η′→ π+π−γ (η′→ π+π−η ) channel in 2011.
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Figure C.3: Left(Right): Multiple candidate efficiencies (Top) along with the re-
sults of the cubic spline interpolation (middle) and total uncertainties(bottom) as
a function of m′′ and cos(θη′p) for the η′→ π+π−γ (η′→ π+π−η ) channel in 2011
data.
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Figure C.4: Left(Right): Photon reconstruction efficiency correction (Top) along
with the results of the cubic spline interpolation (bottom) as a function of m′′ and
cos(θη′p) for the η′→ π+π−γ (η′→ π+π−η ) channel in 2011.



APPENDIX D

Branching Fraction Results By Decay Channel

As a cross check of the final branching fraction result, the branching fraction of Λ0
b→

pKη′ is calculated separately for each decay channel. The individual branching
fractions are given by:

B(Λ0
b→ pKη′(η′→ π+π−γ)) =

Nγ

Nc

εc
εγ

(
fu
fΛ0

b

)

γ

× B(B+→ K+η′), (D.1)

B(Λ0
b→ pKη′(η′→ π+π−η)) =

Nη

Nc

εc
εη

(
fu
fΛ0

b

)

η

Bγ
Bη
× B(B+→ K+η′), (D.2)

where N is the signal yield, ε is the efficiency for a given channel and the subscripts
c,γ and η refer to the control, η′→ π+π−γ and η′→ π+π−η channels respectively.(

fu
f
Λ0
b

)
are the fragmentation fractions and Bγ(Bη) is the branching fraction of η′→

π+π−γ (η′→ π+π−η ) taken from the PDG.

By using the values of signal yields given in Table 5.6, efficiencies given in Table 5.10,
and fragmentation fractions given in Table 4.1 the measurements of the branching
fraction separated by channel are:

B(Λ0
b→ pKη′(η′→ π+π−γ)) = (9.0± 1.1(stat.)± 1.2(sys.))× 10−6, (D.3)

B(Λ0
b→ pKη′(η′→ π+π−η)) = (7.5± 1.4(stat.)± 1.0(sys.))× 10−6. (D.4)

These two measurements are consistent, which gives confidence in the final results.
The systematic uncertainties are calculated by propagating the uncertainties on the

206



207 Appendix D. Branching Fraction Results By Decay Channel

yields given in Table 5.7, on the efficiency ratios given in Table 5.13 and on the
fragmentation fractions given in Table 3.1.

It is also possible to calculate the ratio of Λ0
b→ pKη′ BF results directly as

B(Λ0
b→ pKη′(η′→ π+π−γ))

B(Λ0
b→ pKη′(η′→ π+π−η))

=
Nγ

Nη

εη
εγ

Bη
Bγ

= 1.19± 0.26(stat.), (D.5)

which gives further confidence that the results from the separate decay channels are
consistent.
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