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Abstract

The charge asymmetry in top quark pair production was investigated using 139 fb�1 of proton-

proton collision data at
p

s = 13 TeV with the ATLAS experiment. This was undertaken

in the dilepton channel, where two oppositely-charge leptons (electrons or muons), two

jets and missing transverse energy from two neutrinos were required. Asymmetries were

determined in the full truth-level phase space for the reconstructed tt̄ events and a reduced

phase space for the two leptons, both using the Fully Bayesian Unfolding method. The

asymmetries were calculated inclusively across all the data and differentially in bins of tt̄ (or

dilepton) transverse momentum, mass and longitudinal velocity. The inclusive tt̄ asymmetry

is 0.0081 ± 0.0041, which is 2.0s above zero and 1.1s above the Next-to-Leading Order

Standard Model expectation of 0.00351 ± 0.00006. The agreement improves to 0.4s with

a higher order prediction. The inclusive leptonic asymmetry is 0.0058 ± 0.0014, which

is 4.1s above zero, showing strong evidence for charge asymmetry, and 2.8s above the

Next-to-Leading Order expectation of 0.00192 ±0.00006. Again, the agreement improves

with a higher order prediction to 1.3s . The dilepton tt̄ results are being combined with those

in the lepton + jets channel and limits will be placed on an Effective Field Theory coupling

coefficient that characterises effects beyond the Standard Model.
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It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it

doesn’t agree with experiment, it’s wrong.

– Richard Feynman
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Chapter 1

The Standard Model

1.1 Historical Prelude

For centuries, we have attempted to understand the fundamental constituents of the universe.

From the basic elements of fire, earth, air and water postulated in Ancient Greece, our knowl-

edge has progressed rapidly. The idea of matter being composed of fundamental particles

called atoms was put forward by John Dalton [1] and developed by Dmitri Mendeleev [2] in

the construction of the periodic table. The structure of the atom itself has also been of great

debate. Joseph Thomson proposed the plum-pudding model in 1904 [3], whereby the atom is

a positive mass with smaller, negative corpuscles called electrons distributed within to cancel

out the charge. However, in 1911, Ernest Rutherford et al [4] composed an experiment to

scatter alpha and beta radiation from a thin gold foil. They noticed some of the radiation

scattered right back towards them, inconsistent with the plum-pudding model. It pointed to a

very small, positive nucleus concentrated at the centre of the atom, rather than spread out,

with electrons around the outside. With evidence that hydrogen nuclei are the building blocks

of all other nuclei, he coined the name "proton" to describe these elementary hydrogen nuclei.
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1 The Standard Model

The number of protons is key to determining the element in the periodic table.

The Bohr model of the atom was later proposed in 1913 [5], with clouds of electrons in dis-

crete, quantized orbitals around the nucleus of protons. In the 1920s, the theory of Quantum

Mechanics was developed by the likes of Werner Heisenberg, Erwin Schrödinger and many

others to improve the atomic model. The current consensus is that particles are also waves

(and vice-versa) described by wavefunctions. The square of such a wavefunction gives the

probability for finding a particle in a given state at a given time. Electrons in the orbitals

are distributed in probability clouds around the nucleus rather than having defined positions.

Moreover, the positions and momenta of the particles cannot be known at the same time

due to the two quantities not commuting when acting on the wavefunction (Heisenberg’s

Uncertainty Principle [6]).

In 1932, James Chadwick observed that neutral particles (called neutrons) are also found in

nuclei [7]. This accounted for why the masses of the atoms did not scale with their number

of protons. But a question did remain regarding why the atom did not fly apart due to the

electromagnetic repulsive force between the protons in such close proximity. Gravity is too

weak to hold them together and so a new force, the strong force, was proposed that is both

powerful (⇠100 times the strength of the electromagnetic force) and a has very short range

(of order the size of the nucleus).

The same year yielded the discovery of the first antiparticle, the positron, by Carl Anderson

[8]. This had identical properties to the electron but a positive rather than negative charge.

Paul Dirac had earlier tried to combine special relativity and quantum mechanics, which

predicted negative energy electron states, but physicists were unwilling to accept this. How-

ever, the Feynman-Stückelburg interpretation [9, 10] later showed that Dirac’s equations
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1 The Standard Model

were equivalent to the existence of positive energy antiparticle states, which could describe

the observed positron. At the time, nucleons (protons p, neutrons n and their antiparticle

equivalents) were considered elementary particles, but this was to change with the discovery

of mesons.

1.2 Onto the Quarks

The following two sections have been written with great assistance from the 2017 Lancaster

summer school in High Energy Physics [11], the 2018 Fermilab-CERN summer school in

Hadron Collider Physics [12], and the books of Modern Particle Physics by Thomson [13],

Quarks and Leptons by Halzen and Martin [14], and Introduction to Elementary Particles by

Griffiths [15].

The pion (p) was discovered in 1947 [16], setting the scene for a large number of new

particle discoveries including the kaon (K), delta (D) and sigma (S). These new particles

were unpredicted and were produced very quickly (⇠10�23 s) but decayed more slowly

(⇠10�10 s). For instance, the S� is produced by p�p ! K+S� but the decay via S� ! np�

is slower [17, 14]. However, a similar decay, D� ! np� occurs much faster. Jumping to the

present day, the S� equations are attributed to strong force production and weak force decay,

and the D� decay via the strong force (owing to their internal structures - see Section 1.3.1).

However, back in 1953, Murray Gell-Mann [18] along with Kazuhiko Nishijima and Tadao

Nakano [19] proposed the idea of a strangeness quantum number, S, for the particles. Those

decays that conserved strangeness could proceed faster than those that did not. With the S�

having S = �1, the K+ having S =+1, and the neutron, proton and pion with S = 0, the fast

S� production conserves strangeness but the decay does not. The D� has S = 0 so its fast

decay is strangeness-conserving.
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The plethora of new particles was split up into two families: the mesons and baryons, which

Murray Gell-Mann and Yuval Ne’eman attempted to classify. They established the Eightfold

Way [20] to group the mesons and baryons into geometrical patterns based on their charges,

Q, and strangeness. In doing so, they were able to predict a missing particle, the W�, in one

of these multiplets, which was later discovered in 1964 [22] (see Figure 1.1). An underlying

principle was proposed by Murray Gell-Mann and George Zweig in 1964 [23, 24] to explain

these mathematical structures. They suggested the existence of smaller particles called

quarks that make up the mesons and baryons. These come in three flavours: up (u), down

(d) and strange (s), with charges +2/3, +2/3 and �1/3, respectively, and their corresponding

antiquarks: anti-up (ū), anti-down (d̄) and anti-strange (s̄), with charges �2/3, �2/3 and +1/3,

respectively. Mesons are made up of a quark-antiquark pair (such as ss̄ in the f particle), and

baryons consist of three quarks or antiquarks (such as uud in the proton). Particles consisting

of quarks are called hadrons. Particles not made from quarks such as the electron, muon,

neutrinos and their antiparticles are called leptons. Quarks and leptons have spins of 1⁄2 and

are collectively referred to as fermions.

Fig. 1.1 Eightfold Way schematics arranged by charge and strangeness (with quark composi-
tions also shown) in a baryon decuplet (left) and octet (right) [21]. The decuplet shows the
predicted W� at the lower point of the triangle.
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1 The Standard Model

One hadron that was identified was the D++ of charge +2, consisting of three up quarks

(uuu) in a symmetric spin ground state. The Pauli Exclusion Principle [25] asserts that one

or more fermions cannot occupy the same quantum state in a given time, so the D++ should

be forbidden. However, quarks come with another property called colour charge. This comes

in three forms: red (R), blue (B) and green (G), and antiquarks have equivalent anti-red (R̄),

anti-blue (B̄) and anti-green (Ḡ) forms. Combinations of quarks have to be constructed so the

overall colour is white. To make white, we can combine one quark colour and its antiquark

colour (such as RR̄), as is the case for mesons, or a combination of three colours (such as

RGB in the D++ baryon, which now obeys the Pauli Exclusion Principle). This concept

explains why quarks had not been seen by themselves, referred to as "colour confinement".

The quark model at the time did well at categorising the particles, but there was a particular

decay that did not seem to fit in. The K0 meson decays to two muons but the probability

of this occurring was greatly suppressed compared with the expectation. An answer to this

was put forward by Sheldon Glashow, John Iliopoulos and Luciano Maiani in 1970 [26], by

introducing a new, charm quark of charge +2/3. This enables an additional decay through

the charm quark, which interferes destructively with the known decay through an up quark,

and suppresses the overall decay. This process is known as the Glashow-Iliopoulos-Maiani

(GIM) mechanism. In 1974, the charm quark was discovered in the bound charm-anticharm

state of the J/y at both the Brookhaven National Laboratory (BNL) [27] and Stanford Linear

Accelerator Center (SLAC) [28].

With the two generations of quarks – (up, down) and (charm, strange) – a third generation

(top, bottom) was hypothesised by Makoto Kobayashi and Toshihide Maskawa [29] to explain

Charge-Parity (CP) violation. It was already known that in exchanging a particle with an

antiparticle or vice versa (C conjugation), the resulting physics could be different, as shown
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in the decay of muons to electrons and anti-muons to positrons [30]. In exchanging the

spatial coordinates of a system with their mirror image (P or parity), again the physics can

manifest differently, such as in the decay of cobalt-60, which liberates an electron, a neutrino

and two photons [31]. Furthermore, the combination of C and P conjugation was also found

to be violated, which is needed to explain why there is more matter than antimatter in the

universe. In 1964, it was observed that the K0
L particle (a combination of K0 and K̄0) was

found to decay to both two and three pions [32], where CP symmetry states it should just

decay to three pions in the two quark generation model. With three generations of quarks,

however, there are three rotation angles describing relative coupling strengths between quark

vertices, in addition to one complex phase parameter which can account for CP violation.

The bottom quark was subsequently discovered in 1977 at Fermilab in the USA through

the observation of the bottom-antibottom, °, meson [33]. Later, in 1995, the top quark was

discovered by the CDF (Collider Detector at Fermilab) [34, 35] and D0 [36, 37] experiments

with the Tevatron collider [38] at Fermilab. The top quark is the main focus of this thesis.

Alongside the quarks, we also have three generations of leptons: (electron e, electron neutrino

ne), (muon µ , muon neutrino nµ ) and (tau t , tau neutrino nt ). A formal theory was needed

to encompass the known quarks and leptons (and their respective antimatter equivalents) in

addition to how they interact with the fundamental forces in nature. This ultimately led to

the Standard Model.

1.3 Building the Standard Model

Within theoretical physics, great understanding of the universe has been made by considering

symmetries: that is, a feature of the system which remains unchanged under transformations.

Performing a translation of spatial coordinates of a moving system results in conservation

of momentum, or a translation of time coordinates leads to conservation of energy. These

can be formulated most effectively using Lagrangians, L. A Lagrangian is simply the kinetic
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energy minus the potential energy of the system (T �V ). Or alternatively, as in particle

physics, we use Lagrangian densities, L (where L =
R

L d3x), which are dependent on the

wavefunctions, y . Using the Principle of Least Action, we obtain the equations of motion

for a system in an analogous way to using Newton’s well-known F = ma relation. Quantum

Field Theories (QFTs) such as the Standard Model involve taking the Lagrangian density and

requiring it to be invariant under local gauge transformations: y(x) ! U(x)y(x), with U(x)

a phase transformation in arbitrary space and time. From this, we obtain new conservation

laws and associated fields.

1.3.1 Quantum Field Theories

Dirac’s description of electrodynamics can be expressed in Lagrangian form and subjected to

local gauge invariance, y(x) ! eia(x)y(x), with a(x) an arbitrary space-time function. This

is a U(1) symmetry, where U(1) is a unitary matrix (of determinant +1 or �1), and simply of

dimension 1⇥1. The invariance leads to a conserved quantity, the electric charge (Q = �e)

in addition to a vector field (A) with an associated particle: the massless, spin-1 photon (g , a

boson). It is the fundamental force carrier responsible for electromagnetic interactions such

as the attraction between oppositely-charged protons and electrons in the atom. This QFT for

electromagnetism is called Quantum Electrodynamics (QED).

An SU(2) symmetry can describe the weak interaction that acts on quarks and leptons. SU(2)

is a special unitary matrix (of determinant +1) and of dimension 2 ⇥ 2. The conserved

quantity is the weak isospin, T , and it generates three fields. As introduced in Section 1.2,

the S� (sdd quark content) decays to a neutron (udd) and p� (ūd), with a change in quark

flavour of s to u through the weak interaction.
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1 The Standard Model

The weak and electromagnetic forces unify at high energy (around 200 GeV) to give the

electroweak interaction (SU(2) ⇥ SU(1)) as described by Sheldon Glashow, Abdus Salam,

and Steven Weinberg [39–41]. A new conserved quantity is established known as the weak

hypercharge, Y :

Y = 2(Q�T 3), (1.1)

where T 3 is the third component of the weak isospin. The unified force has four massless

fields: W 1, W 2, W 3 (arising from SU(2)) and B (from U(1)). Linear combinations of these

fields then yield the W+, W� and Z fields (with three associated spin-1 bosons) attributed

to the weak force, as well as the A field of the electromagnetic force. Fermions can be

left-handed (momentum vector in the opposite direction to the spin vector) or right-handed

(momentum and spin vectors in the same direction). To conserve isospin, weak interactions

involving charged W+ or W� currents can only take place on left-handed particles or right-

handed antiparticles, explaining the C, P and CP violation experiments. The neutral current

can work with both left- and right-handed particles and antiparticles, although their relative

coupling strengths differ. The W bosons also enable quark flavour (but not lepton flavour) to

change in interactions and the relative coupling strengths between the different quarks are

described in the CKM (Cabibbo–Kobayashi–Maskawa) matrix [17]. In Equation 1.2, the

relative magnitudes of the CKM coupling strengths, |Vxy|, are shown, where x and y are the

interacting quarks:

0

BBBB@

|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|

|Vtd| |Vts| |Vtb|

1

CCCCA
=

0

BBBB@

0.97446±0.00010 0.22452±0.00044 0.00365±0.00012

0.22438±0.00044 0.97359+0.00010
�0.00011 0.04214±0.00076

0.00896+0.00024
�0.00023 0.04133±0.00074 0.999105±0.000032

1

CCCCA
.

(1.2)
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The W and Z bosons were discovered in 1983 at the Super Proton Synchrotron (SPS) at

CERN [42–45].

The strong nuclear force is characterised with an SU(3) symmetry: a special unitary matrix

of dimension 3⇥3. It leads to conservation of colour charge and the presence of eight new

fields, each giving a massless gluon. The quarks and gluons themselves carry colour; the

latter having linear combinations of R, R̄, B, B̄, G and Ḡ. The gluons are responsible for the

strong force that binds the nucleons together in the nucleus. This QFT is called Quantum

Chromodynamics (QCD). From Section 1.2, the D� (ddd quark content) decays to a neutron

(udd) and p� (ūd) through a gluon emission in the strong interaction.

1.3.2 The Higgs Boson and Electroweak Symmetry Breaking

The above formalisms assume massless fermions and bosons, and whilst the photon and

gluon are believed to be massless, experiments have shown the other particles are not. For in-

stance, the W and Z bosons have masses of 80.379 ± 0.012 GeV and 91.1876 ± 0.0021 GeV,

respectively [17].

Simply adding in mass terms for the fields of the Lagrangians violates local gauge invariance,

so a more subtle method has to be employed. The concept of electroweak symmetry breaking

was developed in the Brout-Englert-Higgs mechanism [46–48]. This introduces the Higgs

field, f , to describe the quantum vacuum:

f =

0

B@
f+

f 0

1

CA=
1p
2

0

B@
f1 + if2

f3 + if4

1

CA , (1.3)
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where the vacuum potential is:

V (f) = µ2(f †f)+l (f †f)2, (1.4)

with µ2 (< 0) a mass parameter and l (> 0) the Higgs field self-coupling. The potential of

the field is shaped like a Mexican hat (see Figure 1.2), such that the minimum is a circle of

radius
p

�µ2/2l . Any value on the circle could be chosen, which breaks the vacuum gauge

invariance (since the minimum is not at the origin) but does not break the SU(2) ⇥ SU(1)

Lagrangian gauge invariance. However, in order for the photon to remain massless after this

symmetry breaking, the minimum must be chosen to yield a non-zero vacuum expectation for

just the neutral scalar field, f 0. The W+, W� and Z bosons do gain mass through this choice

by coupling to the Higgs, where the Higgs coupling strength to the bosons is proportional to

the square of their masses.

Fig. 1.2 The Higgs potential for µ2 < 0 and l > 0. The minima do not fall at the origin,
leading to a non-zero vacuum expectation value [49].

The Higgs also gives masses to the fermions through Yukawa couplings, where the Higgs

coupling strength is proportional to the fermion mass. The Higgs field itself has an associated

scalar particle, the Higgs boson, which was discovered at CERN in 2012 [50, 51], and has a

mass of 125.10 ± 0.14 GeV [17].
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1.3.3 The Standard Model

Our best interpretation of the fundamental forces and particles is encapsulated in the Standard

Model of Particle Physics (SM). This is a combination of the aforementioned gauge groups,

SU(3) ⇥ SU(2) ⇥ SU(1), and encompasses all the known fermions (see Table 1.1) and forces

(see Table 1.2) except for gravity. Interactions between bosons and fermions are shown in

Feynman diagrams, with Table 1.2 showing some examples.

The strengths of the forces (running couplings) are a function of the energy scale, Q, which

encodes the momentum transfer in the interaction taking place. For the electromagnetic and

weak forces, the couplings increase with energy. For the strong force (under study through top

quark pair production in this thesis), the coupling, as, decreases with energy. Gluons emitted

from a given quark split into gluon pairs and act to spread out the effective colour charge

of the quark as Q increases. This behaviour is useful for making precise perturbative QCD

calculations, since Feynman diagrams of increasing orders in a given process (increasing

powers of as) yield smaller and smaller corrections to the overall calculation when as < 1.

Indeed, as Q ! •, as ! 0, which is known as asymptotic freedom, since the quarks behave

as free particles when probed in experiments. Conversely, as Q ! 0, as ! •, and quarks

are confined inside hadrons. QCD corrections at higher orders become non-perturbative

in this energy regime (increasing powers of as now give larger and larger corrections to

the calculation), making processes difficult to calculate. The value of as is around unity at

Q = 1 GeV.

11



1 The Standard Model

Generation Particle Charge Mass (GeV)

1st

Electron (e) �1 5.11 ⇥ 10�4

Electron neutrino (ne) 0 < 2.25 ⇥ 10�7

Up quark (u) +2/3 2.2 ⇥ 10�3

Down quark (d) �1/3 4.7 ⇥ 10�3

2nd

Muon (µ) �1 0.106

Muon neutrino (nµ ) 0 < 1.9 ⇥ 10�4

Charm quark (c) +2/3 1.28

Strange quark (s) �1/3 0.095

3rd

Tau lepton (t) �1 1.78

Tau neutrino (nt ) 0 < 0.0182

Top quark (t) +2/3 173

Bottom quark (b) �1/3 4.18

Table 1.1 The three generations of spin-1/2 quarks and leptons with their charges and masses
taken from Reference [17]. Anti-particle equivalents (of opposite charge) are not shown. In
the Standard Model, neutrinos are massless, but in order to account for observed neutrino
oscillations (see Section 1.4), they must have mass. Hence upper limits are placed on them.
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Force Strength Boson
Mass

(GeV)
Vertex

Strong ⇠1 Gluon (g) 0

Electro-

magnetic
⇠10�3 Photon (g) 0

Weak ⇠10�6
W±/Z

boson
80.4/91.2

Table 1.2 The fundamental forces along with their strengths, associated bosons and masses,
and example Feynman vertices. Adapted from Table 1.3 of Reference [13]. The strong force
only couples to quarks, whereas the electromagnetic and weak forces couple to both quarks
and leptons. Diagrams created using the package in Reference [52].
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1.4 Beyond the Standard Model

The Standard Model’s predictions have been robustly tested and verified in particle physics

experiments. However, it is not a complete theory. It does not account for gravity, and

attempts to reconcile the Standard Model with Einstein’s theory of gravity, General Relativity,

have not been successful. The model also does not explain why the universe’s expansion

is accelerating (dark energy being the current theory), and also why galaxies are much

more massive than can be described by visible matter (dark matter being a leading candi-

date). Figure 1.3 shows the relative proportions of mass-energy composition in the universe.

Normal matter, which makes up the known particles that create our planets, stars, gas and

radiation, account for only 5% [53]. Moreover, the Standard Model cannot explain fully

why the universe is made up of matter rather than antimatter, and the small amounts of CP

violation seen in weak interactions cannot explain the discrepancy. Neutrinos are also known

to oscillate in flavour, which is only possible if they have mass, for which the theory does not

allow. The weak force allows flavour changing in quarks (but not in leptons) and no other

forces allow flavour change.

The Standard Model itself has 19 free parameters including the fermion masses (or fundamen-

tal force coupling strengths) and CKM matrix quantities. It is unknown why the top quark is

so heavy with a mass of 172.9 ± 0.4 GeV [17]. This is 40 times greater than the mass of

the bottom quark and 185 times greater than the mass of the proton. In conjunction with the

Higgs mass and assuming the Standard Model, it would mean the quantum vacuum we are in

now (introduced in Section 1.3.2) could be at a local rather than a global minimum of the

Higgs potential [55]. In extrapolating the SM up to the Planck energy scale, Mpl ⇠ 1019 GeV,

the Higgs self-coupling, l , decreases - the rate of which depends on the top mass. Should l

turn negative, the Higgs potential becomes deeper than the current electroweak vacuum, and
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Fig. 1.3 The relative proportions of dark matter, dark energy and mass in the universe [54].

there is the possibility of quantum tunnelling to this global minimum in the future. Given the

experimental measurements of the top mass, a deeper minimum should exist but the expected

time for the tunnelling to occur is much greater than the age of the known universe. The

universe is therefore described as being in a metastable state. However, this scenario may

not occur given the SM is incomplete. Indeed, the top mass is similar to the energy of the

electroweak scale, which could be a hint of new physics. An ultimate theory of the universe

should be self-consistent with no free parameters.

In addition, the strong and electroweak forces do not unify into a single force within

SU(3) ⇥ SU(2) ⇥ SU(1), so grand unified theories are built in Beyond the Standard Model

(BSM) interpretations. Supersymmetry (SUSY) [56] is one such example but it predicts each

Standard Model fermion and boson to have a supersymmetric partner. These have not been
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detected so far and SUSY introduces even more free parameters.

Particle physics experiments are designed to test our models of the universe. They can

confirm predictions of the Standard Model, search for new physics processes predicted by

BSM theories, or even hunt for new physics that has no theoretical description yet. The

following section describes a particle accelerator known as the Large Hadron Collider.
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Chapter 2

The LHC and its Detectors

2.1 Introduction to the LHC

The Large Hadron Collider (LHC) [57] is the world’s largest and most powerful particle

accelerator based at CERN (Organisation - formerly Conseil - Européenne pour la Recherche

Nucléaire) in Geneva, Switzerland. It is housed in a 26.7 km circumference circular tunnel

between 45 m and 170 m underground, crossing the Franco-Swiss border. The tunnel

originally contained the LEP (Large Electron-Positron) collider that took measurements

between 1989 and 2000 [58]. This gave way to the LHC, which began data-taking in 2009

and still operates to this day. Rather than accelerating leptons, the LHC predominantly

collides protons with protons: so-called pp collisions (the focus of this thesis), but also

collides heavy ions. The LHC has the possibility to reach centre-of-mass energies,
p

s, of

14 TeV. The LHC has so far undergone two operational periods: Run 1 from 2009-2012,

which had collisions at
p

s = 7 and 8 TeV, and then Run 2 from 2015-2018 at
p

s = 13 TeV.

At 13 TeV, each proton (of 0.938 GeV mass) carries 6.5 TeV of energy corresponding to a

speed of 0.9999999896 c, such that relativistic effects cannot be ignored.
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2.2 Acceleration Stages

Before particles are introduced into the LHC, they undergo several stages of acceleration,

as described in Reference [59]. A simple bottle of hydrogen gas acts as the source and an

electric field strips off the electrons to give positively charged protons. A linear accelerator

called Linac 2 then accelerates the protons up to 50 MeV. The particles then progress through

three accelerating rings: the Proton Synchrotron Booster (PSB) to 1.4 GeV, the Proton

Synchrotron (PS) to 25 GeV, and then the Super Proton Synchrotron (SPS) to 450 GeV.

Finally, they are injected into the LHC ring. The system of acceleration stages and CERN

experiments is shown in Figure 2.1.

Fig. 2.1 A schematic showing the accelerator complex at CERN [60].

In order to accelerate the protons, Radio Frequency (RF) cavities are used. These are metallic

chambers where oscillating electromagnetic fields are generated. In the LHC, there are 16

RF cavities for each proton beam, housed in a dedicated section of the ring. Each time the
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protons circle the ring, they pass through the cavities. In order for a particle to be accelerated,

it must be in the cavity when the electric field is pointing in the direction of travel. Thus,

timing of the protons in the cavities is essential, with the radio frequency required to be an

integer multiple of the proton revolution frequency around the ring. The RF oscillations of

each cavity occur in the LHC at a rate of 400.8 MHz, or one oscillation per 2.495 ns. In

theory, the protons could be spaced 2.495 ns apart, but 24.95 ns (commonly referred to as

25 ns) corresponding to 40.08 MHz is chosen due to the capabilities of the LHC detectors. At

the desired energy, an ideal proton called a synchronous proton will arrive at the RF cavities

when the electric field is zero and experience no acceleration or deceleration. However, there

are a range of proton energies around this central value. If a proton is too energetic, it travels

a shorter path around the detector and will arrive at the cavity too soon, when the electric

field is in the opposite direction, and hence it is decelerated. Next time, it arrives at the cavity

too late and will be accelerated again, hence always oscillating longitudinally around the

synchronous particle. This leads to clumps of particles being spread around the synchronous

one, where each clump is known as a bunch. Each bunch contains up to 1.15⇥1011 protons.

Fig. 2.2 An example bunch fill scheme across the 27 km length of the LHC. The blue
rectangles show filled bunches and white gaps where there is no filling.

With a proton revolution frequency of 11.245 kHz and bunch crossings rates of 40.08 MHz,

it is possible for there to be 3564 bunches in the ring. However, not all the bunches are filled,

with gaps between some of the bunches (see Figure 2.2) to mitigate beam structure instability
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and space for the beam dump kicker to use. A maximum of 2556 bunches are filled in the

LHC. This means the average bunch crossing rate is 28.74 MHz.

2.3 Magnets

The bunches are subjected to two forms of magnet: lattice magnets distributed around the

LHC and insertion magnets as they enter the detectors. The lattice magnets consist of 1232

powerful 8 T dipole magnets that are supercooled with liquid helium to 2 K to bend the

protons around the accelerator. Since the colliding particles are the same charge and travel in

opposite directions in adjacent pipes, it is necessary for the direction of the magnetic fields to

be opposite in the two pipes. Figure 2.3 shows the magnetic field distributions in the pipes.

Fig. 2.3 A cross-section of the dipole magnetic field distribution for the two proton beampipes
(left and right white central circles) [61]. The arrows show the strength and direction of the
field, whereas the colours show the magnetic flux outside the beampipes.

Other lattice magnets include quadrupole, sextupole, octupole and decapole magnets that

focus the bunches, counteracting forces such as gravity and the repulsive forces between the
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protons. The principal lattice magnets are shown in Figure 2.4.

Fig. 2.4 The arrangement of lattice magnets along the LHC, which is repeated along the 27
km ring [62].

The insertion magnets consist of quadrupole magnets placed just before the detectors where

the protons collide. These squeeze the protons into tightly-focussed beams to maximise the

probability of particle collisions, although it does increase pile-up (see Section 3.3). There

are four main detectors as shown in Figure 2.5.

Fig. 2.5 The bunches of protons are made to collide at four points along the LHC: Point 1
(ATLAS), Point 2 (ALICE), Point 5 (CMS) and Point 8 (LHCb) [57].
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2.4 The Detectors

The four main detectors in the LHC are described below. Three smaller detectors also

exist that focus on forward physics (when protons or ions deflect off each other rather than

directly collide) or in the hunt for theoretical particles called magnetic monopoles, but are

not described here.

2.4.1 ALICE

The detector called A Large Ion Collider Experiment (ALICE) [63] concentrates on heavy

ion collisions such as lead-lead and xenon-xenon, as well as proton-proton. Its main aim

is to understand strong interactions encoded in QCD. Quarks bind together through gluon

interactions to form hadrons in the process of colour confinement. However, with the high

effective temperatures at the LHC, the quarks can overcome the force, existing as free

particles in a quark-gluon plasma. The properties of the quark-gluon plasma are observed in

ALICE, such as how it cools and expands to produce bound particle states.

2.4.2 LHCb

LHC beauty (LHCb) [64] is a combination of subdetectors optimised for highly boosted

particles along the beamline. As the name suggests, its main focus is on beauty (or bottom)

quarks. It measures rare decays of B hadrons to look for BSM enhancements in their

production, as well as CP violation in particle decays. The detector has excellent vertex

(collision or decay position) detection and mass measurements, being able to differentiate

between similarly massive pions and kaons from B decays. It is also asymmetrical: the

subdetectors range from the collision point centre to 20 m beyond in only one direction

(due to construction costs). This is not a problem for symmetric pp collisions, since the
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emitted particles have an equal probability of travelling in either direction and so can still be

measured half of the time.

2.4.3 CMS and ATLAS

The Compact Muon Solenoid (CMS) [65] and A Toroidal LHC ApparatuS (ATLAS) [66]

experiments are general-purpose detectors that perform precise measurements of Standard

Model predictions and hunt for new particles and BSM phenomena such as dark matter

and SUSY. They jointly discovered the Higgs boson in 2012 [50, 51]. Despite having the

same goals, the two detectors have different structures. CMS is characterised by a huge

4 T solenoid magnet, whereas ATLAS has a 2 T central solenoid and a series of 1 T outer

toroid magnets, all of which bend charged particles so their momenta can be determined.

The ATLAS solenoid wraps around the inner detector while the CMS solenoid envelops

the inner detector, electromagnetic and hadronic calorimeters, causing additional bending

in the calorimeters. For the electromagnetic calorimeter, ATLAS uses liquid argon as the

scintillating material, whereas CMS uses a lead tungstate crystal. In the inner detector,

ATLAS uses silicon pixel and strip sensors in the central section and transition radiation

trackers in the outer section, whereas CMS uses silicon pixel and strip sensors throughout.

The ATLAS experiment, described in more detail in the following chapter, is used for the

charge asymmetry measurement in this thesis.
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Chapter 3

The ATLAS Detector

3.1 Introduction to ATLAS

Fig. 3.1 The ATLAS detector with its major components labelled [66].
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Despite measuring the properties of such small particles (< 10�15 m), ATLAS is a huge

detector: 7,000 tonnes in weight, 44 m in length and 25 m in width and height. A schematic

is shown in Figure 3.1.

3.2 ATLAS Geometry

Fig. 3.2 The geometry at ATLAS with the origins defined by the collision interaction points.
Left: end-on view of the beampipe with the Z direction out of the plane of the paper. Right:
side view, with X into the plane of the paper.

To describe the positions of particles in the detector, a co-ordinate system complementing

the detector geometry and the LHC beampipe is used. The origin is defined as the interaction

point, with the Z-axis along the beam direction (left to right in the side view of Figure 3.2),

the X-axis pointing from the interaction point to the LHC ring centre and the Y -axis pointing

upwards. Furthermore, r is the radial distance from the beam axis, q is the angle from the

beam axis and f the azimuthal angle around the beam axis. Momentum is often put into its

transverse X- and Y -components, where the quadrature sum is the transverse momentum,

pT =
q

p2
X + p2

Y . The longitudinal component, pZ , is less important because, although the

colliding protons have well-defined longitudinal momenta, the individual quarks and gluons

(partons) within them do not. They rather follow probability distributions called Parton

Distribution Functions (PDFs) and so it is not possible to know the exact parton longitudinal
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parameters and infer much information from the pZ of the collision products. However, since

the pp collisions are head-on, the total sum of the transverse momenta components of the

partons is approximately zero before the collision and therefore the sum should be zero after

the collision. If it is not measured to be zero after the collision, it tells us that undetectable

particles such as neutrinos or possibly BSM particles were produced. This missing transverse

momentum (often called missing transverse energy, MET or Emiss
T ) is given by:

pmiss
X = �Â pX

pmiss
Y = �Â pY

Emiss
T =

q
pmiss

X
2
+ pmiss

Y
2
.

(3.1)

Another parameter used in ATLAS is the rapidity, y. The parameter is useful as rapidity

differences are Lorentz invariant, meaning they will be the same regardless of the longitudinal

boost of the system with respect to the lab frame. The rapidity is given by:

y =
1
2

ln
✓

E + pZ

E � pZ

◆
, (3.2)

where E is the total energy of the particle.

This equation tends to the pseudorapidity, h , in the high-energy or massless limit:

h = � ln tan
✓

q
2

◆
. (3.3)

The pseudorapidity ranges from h = 0 (particles travelling perpendicular to the beampipe at

q = 90°) to h = • (parallel to the beampipe at q = 0°).

Distances between objects or spatial points in the detector are regularly described with the

DR variable:

DR =
q
(Dh)2 +(Df)2, (3.4)
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where Dh and Df are the differences in pseudorapidity and azimuthal angle between the

objects, respectively.

3.3 Luminosity and Pile-Up

Proton interactions are focussed in the very centre of the detector: in some cases passing by

one another with or without being deflected and other times one or both protons being broken

apart, with the energy released converted into mass and kinetic energy of new particles. There

are of order 1 billion collisions per second in ATLAS [67]. An important measure of the

number of interactions is the instantaneous luminosity, L. This gives the number of collisions

occurring per second over an area of 1 cm2. Assuming head-on collisions of two identical

beams with Gaussian density profiles, and each having cross-sectional area, A = 4psX sY ,

where sX and sY are the transverse widths of the beams in the X and Y directions, the

luminosity is given by:

L =
N2 f nb

4psxsy
F, (3.5)

where N is the number of protons per bunch (1.15⇥1011), f is the revolution frequency of

protons around the LHC (11.245 kHz), nb the number of bunches in the LHC (up to 2556)

and F the geometric factor that encompasses additional information about the colliding

beams. Example contributions to F are the relative offset of the two beams, their crossing

angle and non-Gaussian features in their transverse profiles. These mean that not all particles

in a beam will have the opportunity to overlap with the colliding beam, decreasing L. The

instantaneous luminosity also decreases exponentially with time as the number of protons

available to interact decreases. In Run 2, the maximum recorded luminosity at ATLAS was

2.1⇥1034 cm�2 s�1 [68].
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A related quantity is the integrated luminosity, L, which describes the the total amount of

data collected per unit area in time t2 � t1:

L =
Z t2

t1
Ldt. (3.6)

The total integrated luminosity for Run 2 was around 1.39⇥1041 cm�2. Units of barns (1 barn

= 10�24 cm2) or rather femtobarns (1 fb = 10�39 cm2) are often used in particle collisions,

such that the quoted number is 139 fb�1. The integrated luminosity throughout Run 2 is

shown in Figure 3.3.

Fig. 3.3 The integrated luminosity for the full Run 2 period of 2015-2018 [68]. The ATLAS
recorded luminosity (yellow) is always below the LHC luminosity (green) due to detector
adjustments being made when stable beams are declared, and since the detector is not 100%
efficient at saving particle collisions. Poor quality data due to abnormalities in the detector
components are also discarded leading to the final (blue) histogram of 139 fb�1.

Given the integrated luminosity, it is possible to determine the expected number of events,

Nprocess, from various processes:

Nprocess = Lsprocess, (3.7)
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where sprocess is the cross-section for the process that can be calculated from the Standard

Model. The incoming, outgoing and exchange particles of Feynman diagrams are combined

into mathematical constructs using Quantum Field Theory, and the diagrams of a particular

final state are summed together to form a matrix element. The square of the matrix element

is integrated over all available phase space, taking into account conservation of momentum

and energy and divided by the flux of incoming particles to give a cross-section. The rarer

the process, the smaller its cross-section.

During data-taking, it is possible for multiple proton-proton interactions to occur in the time

it takes for the detector to record an interaction. This is known as pile-up, and has two main

forms: in-time and out-of-time pile-up [69]:

• In-time pile-up involves additional interactions within the same bunch crossing as the

collision of interest. This became as high as 37.8 per crossing for 2017 data-taking

[68].

• Out-of-time pile-up involves interactions occurring in neighbouring bunch crossings to

the collision of interest. Since the electronics can take more than 25 ns to record an

event, it is possible for particle tracks in this form of pile-up to be saved in the main

event.

Figure 3.4 shows an example recorded event at ATLAS with multiple pile-up interactions as

well as the distribution of pile-up throughout the years of Run 2.
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Fig. 3.4 Upper figure: an example event with in-time pile-up at ATLAS [70]. A candidate Z
boson decays to two muons (yellow lines) but 25 reconstructed vertices are present in total.
Lower figure: the pile-up distributions for Run 2 in ATLAS, showing individual annual and
combined plots [68]. The average number of pile-up interactions per bunch crossing per year,
hµi, are shown in the legend.

3.4 The Subdetectors

The particles produced in collisions first pass through the inner detector, then through to the

two calorimeters (the electromagnetic and hadronic calorimeters), before reaching the muon

system on the outside of the detector. These components are described in more detail below,

summarised from Reference [66] and other sources where stated.
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3.4.1 The Inner Detector and Solenoid Magnet

The inner detector (ID) is the section of the detector closest to the interaction point. It

is composed of three trackers: the pixel detector, which includes the new Insertable B-

Layer (IBL) introduced in Run 2 [71], the Semiconductor Tracker (SCT) and the Transition

Radiation Tracker (TRT). The ID records the paths of charged particles (above a pT threshold

of typically 0.5 GeV) within |h | < 2.5, by using a large 2 T solenoid magnet surrounding

the subdetector. The magnetic field points along the Z direction of the detector and bends

the charged particles; the direction of which identifies the particle charge, and the degree of

curvature the particle momentum, since the smaller the curvature the greater the momentum.

The ID also reconstructs primary vertices (the proton-proton collision points) and secondary

vertices (the position at which a produced particle decays). The distances between the

primary and secondary vertices can give us information about the intermediate particle, such

as whether it is a B hadron, which has a long enough lifetime (⇠ 10�12s [17]) for its distance

travelled to be measurable.

Fig. 3.5 Left: the ATLAS inner detector, showing the pixel, semiconductor and transition
trackers [72]. Right: the cross-section through the centre of the ID [73].
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The pixel detector consists of four barrel layers of pixels (centred around the beam axis)

at r = 33.25 mm (the IBL), 50.5 mm, 88.5 mm and 122.5 mm, as well as two end-caps,

each with three disc layers [73]. There are a total of 92 million pixels, each of typical

size 50 µm ⇥ 400 µm (in rf ⇥ Z) and the positions of the particles can be recorded to a

resolution of 10 µm ⇥ 115 µm, giving accurate two-dimensional information. This high

granularity is needed to be able to distinguish between the huge number of tracks. The

pixels are made from silicon, a semiconductor material. When the charged particles pass

through the silicon, electron-hole pairs are produced with minimal reduction of the particle

energy (given the low thickness of the material). These are then separated due to an electric

field and the charges build up on electrodes, producing a measurable current. This enables

single points in space to be identified. With many pixel hits, multiple points are constructed,

enabling the trajectories of the particles to be determined.

Further out from the beam is the SCT, with four concentric barrel layers at r = 299 mm,

371 mm, 443 mm and 514 mm, as well as two end-caps that each comprise nine discs [74].

At these distances, very fine granularity is not required as the track density is lower, but more

area needs to be covered. As such, the tracker consists of 6.3 million semiconductor strips of

dimension 80 µm ⇥ 12 cm (in rf ⇥ Z) giving a spatial resolution of 17 µm ⇥ 580 µm.

The outer section of the ID is the TRT, which covers the range 554 mm to 1082 mm in r for

the barrel region, and also has two end-caps [75]. It consists of around 300,000 tubes called

straws, which are 4 mm in width and up to 144 cm in length in the barrel. The straws are

filled predominantly with xenon gas. In between the straws is a radiator material of multiple

fibres, whereby charged particles crossing the material boundaries emit X-ray photons known

as transition radiation. The probability of radiation is related to the relativistic g factor, which

can be expressed as g = E/m. For a given energy, lower mass particles have a higher g and
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emit more X-rays, which enables pions and electrons to be distinguished. The X-rays travel

into the straws and ionise the xenon gas. A potential difference applied across the straws

leads to ions drifting towards the straw walls and electrons towards anodes placed at the

straw centres. The current is measured (the magnitude related to the particle mass) and since

each track can have up to 30 hits in the TRT, the particle trajectories can be recorded to a

precision of 0.17 mm.

A Run 2 event showing the combination of pixel, SCT and TRT hits is shown in Figure 3.6.

Fig. 3.6 Tracks of charged particles through the ID for a Run 2 event [76]. There are up to
four hits in both the pixel and SCT, and multiple hits in the TRT.

3.4.2 The Electromagnetic and Hadronic Calorimeters

Wrapping around the ID are the electromagnetic and hadronic calorimeters. These subdetec-

tors are used to determine the energies of charged and neutral particles. The electromagnetic

calorimeter makes use of the electromagnetic interaction to measure electrons and photons,

and the hadronic calorimeter uses both the strong and electromagnetic interaction to mea-
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sure particles such as pions, protons and neutrons. The calorimeters are constructed from

high-density absorber materials to cause the particles to emit radiation in a runaway manner

(showering), as well as active materials that convert the showers into electrical signals, which

are translated into particle energy. They also indirectly measure the missing transverse energy

by summing the transverse momentum components of the known particles (see Equation

3.1).

Fig. 3.7 The ATLAS calorimeter system [66]. The major components of the electromagnetic
calorimeter and hadronic calorimeter are labelled.

The electromagnetic calorimeter comprises the barrel region (|h | < 1.475) and end-cap

discs (1.375 < |h | < 2.5). It contains alternating layers of the absorber material, lead

(Pb), and the active scintillating material, liquid argon (LAr). As a high-energy (> 1 GeV)

electron passes through the calorimeter, it will undergo two main showering processes in the

electromagnetic interaction: bremsstrahlung and pair production. Bremsstrahlung involves

a change in speed or direction of the electron as it passes through the Pb (and LAr to an

extent) due to the positive nuclei in the materials. This acceleration then causes photon

emission. The emitted photons undergo pair production, spontaneously decaying into an
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electron and positron, which then ionise the LAr and Pb. The LAr ionisation is converted

into an electrical signal for the energy measurement. The electrons and positrons continue

to shower by bremsstrahlung and pair production, leading to a runaway chain reaction as

shown in Figure 3.8. The measure of distance used is the radiation length, X0, where one

radiation length corresponds to both the mean distance over which an electron loses all but

1/e of its energy by bremsstrahlung, and 7/9 of the mean free path for a photon undergoing

pair production [17]. The total thickness of the EM calorimeter is greater than 22 X0 in the

barrel and greater than 24 X0 in the end-caps. While all particles except neutrinos and neutral

hadrons will interact with the electromagnetic calorimeter, electrons and photons will be

completely absorbed and so their total energies can be determined from the sum of their

electrical signals. Hadrons, muons, neutrinos and possibly BSM particles will escape further

into the hadronic calorimeter.

Fig. 3.8 A simplified schematic of the showering of an electron in a calorimeter [77]. The k
value refers to the mean distance at which a doubling of the number of particles occurs and
subsequently a halving of each particle’s energy, E0, the total energy of the electron. After a
certain number of splits, the energies of the particles fall below a certain critical energy at
which bremsstrahlung and pair production can no longer occur. The energy is then dissipated
by ionisation and excitation.
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The hadronic calorimeter surrounds the electromagnetic calorimeter and consists of three

parts: the tile calorimeter, the LAr hadronic end-caps and the LAr forward calorimeters. The

tile calorimeter has a central barrel (|h | < 1.0) and two extended barrels (0.8 < |h | < 1.7)

that use steel as the absorber and plastic scintillator as the active material. The end-caps

(1.5 < |h | < 3.2) each consist of two wheels of copper absorber and are located directly be-

hind the electromagnetic calorimeter end-caps with which they share the same LAr cryostats.

The forward calorimeters (3.1 < |h | < 4.9) are made from copper and tungsten absorbers,

also sharing the same LAr system. The process of hadronic showering is more complicated

than electromagnetic showering. An incoming hadron will hit a target nucleus in an inelastic

collision through the strong interaction, generating a shower of secondary hadrons such as

pions and kaons. p0 hadrons that are generated decay to two photons, which themselves

produce electromagnetic showers in the electromagnetic interaction. The other secondary

hadrons cause further inelastic collisions and the chain reaction continues. Hadronic showers

will tend to be much wider than electromagnetic showers owing to the large transverse

momentum transfers in the nuclear interactions, whereas the electromagnetic shower width

comes mainly from multiple scattering. Figure 3.9 shows an example of a hadronic shower.

As opposed to radiation lengths for electromagnetic showers, nuclear interaction lengths, lI ,

are used to describe hadronic showers, which show the mean distance travelled by a hadron

before undergoing an inelastic nuclear interaction. These are much longer than radiation

lengths. For example, in lead an electron has a radiation length of 0.6 cm but a hadron has a

typical interaction length of 17.6 cm [17]. The hadronic calorimeter stretches to lengths of

greater than 11 lI at h = 0 to ensure almost all hadrons are absorbed in the material. In the

LHC experiments, hadrons are identified through topological clustering of electromagnetic

and hadronic calorimeter shower deposits (see Section 6.3.3), and are referred to as jets.
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Fig. 3.9 The showering of a hadron in a calorimeter [78]. Secondary pions and kaons are
produced in inelastic scattering, and neutral pions (such as towards the bottom of the image)
initiate electromagnetic showers.

3.4.3 The Muon System and Toroid Magnets

The outer section of the ATLAS detector is composed of the muon system (MS) and toroid

magnets (of strength around 1 T), both shown in Figure 3.10. In the barrel region (|h | < 1.4),

muons are deflected by a large eight-coil central toroid surrounding the hadronic calorimeter,

whereas in the end-cap regions (1.6 < |h | < 2.7) two smaller toroid magnets inserted into

each end of the barrel toroid are used. For the intermediate region (1.4 < |h | < 1.6), a

combination of the barrel and end-cap magnets provide the magnetic field. The toroid

magnetic field lines wrap around the f direction, unlike the Z direction of the solenoid

magnet. This causes bending perpendicular to that from the solenoid. The amount of bending

is used to determine the muon momentum. Tracks in the MS are matched with those in the

ID to assist the identification.
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Fig. 3.10 Left: the ATLAS muon system showing its four component parts [79]. Right: the
toroid magnets that bend the muons are shown in blue (barrel region) and red (end-caps) [67].
For comparison, the green magnet shows the central solenoid used by the inner detector.

The MS itself consists of four components: Monitored Drift Tubes (MDTs), Cathode Strip

Chambers (CSCs), Resistive Plate Chambers (RPCs) and Thin Gap Chambers (TGCs).

The MDTs are arranged in three layers concentrically around the barrel (r = 5 m, 7.5 m

and 10 m) and four layers vertically in the end-cap regions (|Z| ' 7.4 m, 10.8 m, 14 m and

21.5 m from the interaction point). They cover the majority of the |h | < 2.7 range, except for

the innermost layer, where the coverage is |h | < 2.0. Each layer contains two pairs of three

tubes mounted on each side of a support structure. There are a total of 354,000 tubes, each

3 cm in diameter and 0.85-6.5 m in length. The layout enables high-precision determinations

of the Z and r coordinates in the barrel and end-caps, respectively, to resolutions of 80 µm

averaged across the tubes. The tubes contain predominantly argon gas, which is ionised as

the muons pass through it. The electrons drift to positive anode wires in the centres of the

tubes, and the time taken for the drift in each tube is used to determine the position of the

muon in the tube as it passed through, demonstrated in Figure 3.11.
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Fig. 3.11 A muon passing through the six tubes of an MDT layer [80]. The green circles show
the points of ionisation in the tubes (gathered from the timing information), that together are
used to build the muon track.

At 2.0 < |h | < 2.7 in the innermost layer, the CSCs make up the second MS component.

They again measure Z and r, whereby the cathode strips gather avalanche charges from the

anode wires. There are 70,000 of these channels, each giving a resolution of 60 µm. These

have greater granularity than the MDTs and are needed due to a higher rate of events close to

the beam and to achieve good time resolution.

The other two components make up a dedicated triggering system for the MS: the RPCs in

the |h | < 1.05 region making up 380,000 channels and the TGCs in the 1.05 < |h | < 2.7

region comprising 440,000 channels. These ensure muons only above given pT thresholds

are selected. They also identify the bunch crossing from which a muon originated, and

the coordinate orthogonal to that from the MDTs and CSCs (the f direction, which is

approximately parallel to the magnetic field lines). The two systems work with the same

concept of gas ionisation and charge collection to find signals.
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3.5 Particles Trajectories in the Detector

The ATLAS detector is designed to measure directly or indirectly particles above given

thresholds. Figure 3.12 shows examples of particle paths through a cross-section segment of

the detector, travelling radially outward from the centre, which are described below.

Fig. 3.12 A cross-section of the ATLAS detector, showing typical paths of particles produced
in the collisions [81].

• Electrons and positrons travel through the ID with multiple hits, being bent by the

solenoid magnet. They pass into the electromagnetic calorimeter, where all their energy

is deposited.

• Photons do not leave any trace in the ID (unless they pair produce) and are not bent by

the solenoid. However, they deposit all their energy in the electromagnetic calorimeter.

• Protons and other charged hadrons give hits in the ID (being bent by the solenoid as

they do so), pass through into the electromagnetic calorimeter (with some showering)
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and go on into the hadronic calorimeter, where the remaining and majority of the

energy is deposited.

• Neutrons and other neutral hadrons pass straight through the ID without hits and

without being bent by the solenoid. They also will not shower in the electromagnetic

calorimeter since the positive nuclei in the detector will not accelerate the neutral

hadrons and cause bremsstrahlung emission. However, they will cause showering in

the hadronic calorimeter, depositing all of their energy.

• Muons and antimuons give hits in the ID (being bent by the solenoid), pass through

the electromagnetic and hadronic calorimeters with little interaction (since they are

minimally ionising) and on into the muon system, where they give hits and are bent by

the toroid magnets.

• Tau and antitau leptons decay in the beampipe (35% of the time to leptons, 65% of the

time to hadrons, of which most are pions [17]). The decay products then pass through

the subdetectors. Leptonic tau decay products cannot be distinguished from leptons

produced directly in collisions, but hadronic tau decays can be distinguished from

directly produced hadrons, allowing tau reconstruction.

• Neutrinos and some BSM particles will not interact with the subdetectors, passing

straight through the experiment. However, the Emiss
T measured from other decay

products as in Equation 3.1 can be used to identify their presence.
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Chapter 4

Triggering and Optimisation of the Level-1

Calorimeter Trigger

4.1 Motivation for Triggering

During Run 2, the LHC instantaneous luminosity, L, was expected to increase beyond

2⇥1034 cm�2 s�1. As described in Section 2.2, the average bunch crossing rate was nearly

30 MHz, and the average pile-up of Run 2 was 33.7 interactions per crossing (see Figure 3.4).

This means there were around 1 billion collisions per second (1 GHz) leading to roughly 1

petabyte of data flow per second [82]. It is not possible to store such vast quantities of data

to disk, and so a trigger system is used in ATLAS that brings the average recording rate to

1 kHz whilst keeping the most important events. It is made up of the Level-1 Trigger (L1

Trigger) and High-Level Trigger (HLT). Figure 4.1 shows the data flow from the detector,

through the individual parts of the triggering systems and onto Tier 0, the CERN data centre,

where it is distributed to computers for storage around the globe.
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Fig. 4.1 The Run 2 triggering system at ATLAS [83]. The top left section encompasses
the L1 trigger, which is made up of L1Calo, L1Muon, L1Topo and the CTP, which takes
information from the other systems to make decisions on whether to keep the event. These
are then passed onto the HLT.

4.2 The Level-1 and High-Level Triggers

The L1 Trigger consists of custom-made electronics and gathers reduced-granularity data

from both the electromagnetic and hadronic calorimeters, as well as the muon system. It takes

the 30 MHz bunch crossing rate down to an equivalent of around 100 kHz, making decisions

in less than 2.5 µs. The following description summarises the information in References

[66, 83, 84].

One section of the trigger is the Level-1 Calorimeter Trigger (L1Calo) [85], which aims to

select out high transverse energy (ET ) electrons, photons, tau leptons decaying to hadrons,
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jets, and events with large total ET or Emiss
T . L1Calo is described in more detail in Section 4.3.

Another section is the Level-1 Muon Trigger (L1Muon) [86], which searches for high pT

muons from the RPCs and TGCs of the muon system. The data from the two trigger subcom-

ponents is then passed on to the Central Trigger Processor (CTP). The CTP is programmed

with a series of selection requirements (known as the trigger menu [87]), where if the data

pass the menu thresholds, the Level-1 accept criteria is met, and the event is passed on to the

HLT. A fourth component in the system is the Level-1 Topological Trigger (L1Topo) [88],

which performs selections based on the associations of kinematic and geometric variables

of trigger objects received from L1Calo and L1Muon. However, this was used minimally

during Run 2, and served mostly for testing.

The HLT is a software-based system, made up of a large farm of 40,000 processing cores,

taking the L1 Trigger rate of 100 kHz down to around 1 kHz, with decisions taken in 300 ms.

It uses the full granularity and precision of the calorimeter and muon system measurements,

as well as data from the inner detector. Therefore, particle identification can be achieved

(such as distinguishing electrons from photons), event building is initiated, and more stringent

threshold requirements can be set. The thresholds are augmented into selection algorithms

called chains. There are around 2,500 separate chains in the HLT, some of which have

very specific requirements on the events and others have more general conditions that can

be used in numerous analyses. The desired chains are specified in the trigger menu in

combination with the Level-1 requirements. The events that pass any of the chains are saved

and distributed to Tier 0.

4.3 The Level-1 Calorimeter Trigger

As described in Reference [85], L1Calo combines calorimeter cells into approximately 7,200

coarse granularity structures called trigger towers. There are separate sets of towers for the
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electromagnetic and hadronic calorimeters. These cover typically 0.1⇥0.1 in Dh ⇥Df (the

spatial area in the pseudorapidity and azimuthal angle coordinates). However, at larger |h |

such as the end-caps and forward calorimeters, the towers become even more coarse, as

shown in Figure 4.2.

Fig. 4.2 Trigger tower granularity across h (x-axis) and f (y-axis) for h > 0 in one f quadrant
[85]. At extreme h , each tower covers a much larger area. The setup is identical for the
electromagnetic and hadronic calorimeters.

Figure 4.3 shows a zoomed in schematic of the data flow through L1Calo. Analogue

information from the trigger towers is passed on to the L1Calo pre-processor, which digitises

it and determines the bunch crossing from which any high ET deposits came. A look-up

table is also used for tasks such as ET calibration and noise suppression. The signals are then

sent in parallel to the Cluster Processor (CP) and Jet Energy Processor (JEP), which contain

algorithms to determine whether the event is of interest. The CP searches for electron/photon

candidates and tau leptons decaying to hadrons, while the JEP identifies jets and sums of total

and missing ET . Both processors use a sliding-window method to search for the objects. For

the CP, the method generates a 4⇥4 window of trigger towers in each calorimeter, covering

the same Dh ⇥Df area in both. The window is moved in steps of one trigger tower in both

h and f and searches for objects. An explanation of how the CP searches for regions of

interest in the windows is described in the following sections together with optimisation of

the selection thresholds.
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Fig. 4.3 A schematic of L1Calo showing data transfer between the pre-processor, the CP and
JEP algorithmic processors, before being sent to the decision-making CTP [89].

4.4 The Cluster Processor Algorithms

Figure 4.4 shows a 4⇥4 window of trigger towers in the two calorimeters used by the CP,

where two algorithms determine whether threshold criteria are met. The electron/photon

(e/g) and tau (t) algorithm components are described in detail below, summarised from

Reference [90].

• The four central towers in the electromagnetic calorimeter window (green squares in

Figure 4.4) make up the electromagnetic (EM) inner core. There are four possible 1⇥2

or 2⇥1 configurations in the core called EM clusters. The ET values of the two towers

making up each cluster are summed. The largest sum is defined as the EM cluster

energy.

• The twelve towers (yellow squares) around the EM core make up the EM isolation ring.

The total ET in these is summed to give the EM isolation energy. Since electromagnetic

showers are narrower than hadron showers (see Section 3.4), most of their energy will

be deposited in the central EM cluster, with little isolation energy. This allows good
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Fig. 4.4 A single 4⇥4 window of electromagnetic (front) and hadronic (back) trigger towers
from the sliding-window method in the CP, where energies are compared with threshold
criteria for event selection [90].

discrimination from tau leptons and jets, which have more energy deposited in the

isolation zone.

• The four central towers of the hadronic calorimeter window (red squares) are the

hadronic inner core. The 2⇥2 trigger tower sum of ET is summed up to give the

hadronic core energy (used in the e/g algorithm). Electron/photon candidates will not

pass into the hadronic calorimeter, so the core energy deposition should be zero apart

from a small degree of irreducible noise, whereas jet/tau candidates will deposit energy.

This allows further discrimination between the two types of candidates. The hadronic

inner core ET is added to the ET of each of the four EM clusters to give four hadronic

clusters. The largest of the four is referred to as the hadronic cluster energy (used in

the t algorithm).
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• The twelve towers (pink squares) around the hadronic core make up the hadronic

isolation ring, where again the ET in these is summed to give the hadronic isolation

energy. However, this is not used for trigger decisions as it has little discriminating

power.

• The largest EM cluster and hadronic inner core ET are summed together to make a

cluster Region of Interest (RoI). As the window slides across h and f , only the cluster

RoI with the largest local maximum in ET is considered. This avoids multiple counting

of the same object that would satisfy threshold requirements in one or more adjacent

windows.

For the e/g algorithm (studied in this thesis), thresholds in the EM isolation energy against

EM cluster energy space and the hadronic core energy against EM cluster energy space must

be satisfied. The hadronic thresholds are tight to minimise tau and jet selection. There are

two preset isolation criteria used in triggering: 22VHI and 24VHI. The number refers to the

nominal cluster energy cut-off in GeV (24VHI being a tighter cut for higher luminosity), the

"V" the fact that the cut-off has a pseudorapidity dependence (between 19.0 and 24.0 GeV

for 22VHI, and 21.0 and 26.0 GeV for 24VHI), the "H" meaning that the hadronic core

energy is required to be less than or equal to a variable threshold (around 1 GeV), and the "I"

that isolation cuts have been applied. The 22VHI and 24VHI thresholds used in 2016 Run 2

data-taking (henceforth labelled "original cuts") are shown in Figure 4.5.

The flat lines (EMCutMin and HadCutMin) can be modified in the y direction, and the

vertical line, CutMax (common to both isolation criteria) in the x direction. The sloped lines

have the form:

y = EMCutSlope⇥ x+EMCutOff (electromagnetic isolation)

y = HadCutSlope⇥ x+HadCutOff (hadronic isolation)
(4.1)
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Fig. 4.5 The parameters of the e/g algorithm (labelled), corresponding to the original cuts.
Left: EM isolation energy against EM cluster energy. Right: hadronic core energy against
EM cluster energy. The two blue vertical lines on the bottom left of each plot refer to the
22VHI and 24VHI cluster energy thresholds.

with the gradients and y-intercepts free parameters. The values of the original cut parameters

are shown in Table 4.1. The algorithm works by selecting RoIs falling below and to the

right of the lines in Figure 4.5, where the acceptance is proportional to the L1Calo rate.

The CutMax parameter is present since any high-energy RoI is of interest regardless of the

isolation energy.

EMCutMin (GeV) EMCutSlope EMCutOff (GeV) CutMax (GeV)

2.0 1.0/8.0 -1.8 50.0

HadCutMin (GeV) HadCutSlope HadCutOff (GeV) CutMax (GeV)

1.0 1.0/23.0 -0.2 50.0

Table 4.1 Summary of the original cuts for the electromagnetic (top) and hadronic (bottom)
isolation criteria. These are common to both 22VHI and 24VHI.

The setup is similar for the t algorithm (not studied here) but the hadronic cluster energy is

used instead of the hadronic core energy for the hadronic calorimeter thresholds.
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4.5 Optimising the e/g Thresholds for Higher Luminosity

For 2017-2018 data-taking in Run 2, new e/g algorithm backup thresholds were determined

to replace the original 22VHI and 24VHI configurations, should L increase much beyond

2 ⇥ 1034 cm�2 s�1 and give a L1 acceptance rate greater than 100 kHz. The aim was to

reduce the rate whilst maintaining similar efficiency. The values of the four parameters in

the electromagnetic calorimeter were investigated, leaving the parameters in the hadronic

calorimeter constant as in Table 4.1. Three sets of new parameters (working points) for both

22VHI and 24VHI were established of varying stringency: loose, medium and tight cuts.

These correspond to increasing background rejection and hence decreasing recording rates of

the trigger compared with the original cuts. Efficiency tests were undertaken on the working

points to determine their effect on signal events. The working point with the best balance

between background rejection and signal extraction was kept. The ROOT [91] framework

was used to perform the analysis.

4.5.1 Rate Reduction from Background Events

Background events to the e/g algorithm are predominantly jets that are reconstructed as

electron/photon objects. To see the effect of thresholds on background rejection, an enhanced

bias (EB) dataset was used. EB data are taken in LHC runs where events passing loose L1

thresholds are written out without requiring the HLT to accept them, which would otherwise

bias the study. They act as a good background set since most of the saved events are jets. The

EB data used for the study are shown as a function of EM isolation against EM cluster energy

in Figure 4.6. The original 2016 cuts are overlaid on the figure as black lines. The data show

all RoIs in the events, where one event can have more than one RoI. RoI energies come in

discrete digital values to a precision of 0.5 GeV. Zero RoIs are seen in the 0.5-1.0 GeV bins
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of the x- and y-axes due to noise cuts. Any trigger tower with an ET less than 1.0 GeV is set

to 0.0 GeV and so the ET sum in the EM cluster or isolation ring can never be 0.5-1.0 GeV.

Fig. 4.6 The EM isolation energy against EM cluster energy for the RoIs in EB data, with the
original 22VHI and 24VHI cuts shown by the black lines. RoIs falling below and to the right
of the lines are kept by the trigger. The number of RoIs per bin is given in the colour scale.

Preliminary tests were undertaken with a smaller subset of the EB data. As a first pass to

see the maximum possible rate reduction, the sloped EM line of Figure 4.5 was removed

and the x extent of EMCutMin extended up to CutMax, where CutMax was kept constant

at 50.0 GeV. Since the trigger tower energies have a precision of 0.5 GeV, EMCutMin was

tested at 2.0, 1.5 and 1.0 GeV. The effect on the rate is shown in Figure 4.7. The maximum

rate reduction possible is almost 25% for 22VHI and 24VHI. Since this does not include the

sloped line (needed to improve the efficiency), the rate will go up again with this addition.
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Fig. 4.7 The relative rate of new cuts to original cuts as a function of EMCutMin for both
22VHI and 24VHI.

With the sloped line added back in, EMCutSlope and EMCutOff were varied individually

(keeping the other constant at the original cut value). EMCutMin was lowered to 1.0 GeV

and CutMax was kept constant at 50.0 GeV. Figure 4.8 shows how the rate changes with

these parameters.

Fig. 4.8 The relative rate of new cuts to original cuts as a function of EMCutSlope (left) and
EMCutOff (right) for both 22VHI and 24VHI.

As expected, the rate reduction increases as EMCutSlope and EMCutOff are both decreased.

The rate change is linear for EMCutSlope and curved for EMCutOff. Below �2.6 GeV
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the rate change for EMCutOff is small. It was decided to keep EMCutSlope constant at

1.0/8.0 (0.125) for the three working points. The CutMax variable was also kept the same at

50.0 GeV to ensure high-energy signal events were saved. The working points were therefore

defined by different EMCutMin and EMCutOff values where the rate was reduced by 5-7%

(loose), 10-15% (medium) and 18-20% (tight) – the ranges arising from 22VHI and 24VHI

thresholds. The full EB dataset was subsequently used to verify the rates, and the cut values

and rates compared with the original cuts are shown in Table 4.2. Efficiency tests were later

performed on the working points.

Working point EMCutMin (GeV) EMCutOff (GeV) Rate ratio (new/original)

22VHI 24VHI

Original 2.0 -1.8 1.000 1.000

Loose 1.5 -1.8 0.937 0.951

Medium 1.0 -2.0 0.853 0.892

Tight 1.0 -2.6 0.799 0.821

Table 4.2 The original cut and three working point relative rates for the full EB dataset.
Binomial errors of order 10�5 are not shown. EMCutSlope and CutMax are the same for all
cases at 1.0/8.0 and 50.0 GeV, respectively.

4.5.2 Efficiency Determination from Signal Events

To see the effect of the working point parameters on signal events in an efficiency estimate,

an Electron-Gamma Z (EGZ) dataset was used. EGZ data contain pre-selected events:

predominantly Z ! e+e� decays, to provide a good selection of typical electrons that are

important in many analyses. The EM isolation against cluster energies of the RoIs from the

events are shown in Figure 4.9. For the particles to be identified and reconstructed, they

needed to pass the HLT. Typically one (but possibly both) of the two electrons in the dataset

will have triggered the event. An efficiency measurement needs to establish whether an RoI
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would pass just the L1Calo e/g thresholds without a HLT requirement. Therefore, seeing

whether the RoIs in the figure pass the parameter cuts (as for the rate determination) would

give a biased estimate.

Fig. 4.9 The EM isolation energy against EM cluster energy for the RoIs in EGZ data.

To remove the bias, a tag-and-probe method was employed. This looks for an electron or

positron in the Z decay that triggered the event (known as the tag), having passed both the

L1 trigger and the HLT. It then determines if the other lepton (known as the probe) would

have passed the L1Calo e/g algorithm, which goes into the efficiency calculation. The

reconstructed events were required to meet the following criteria to be used in the efficiency

measurement:

• Two oppositely charged electrons of tight identification quality [92].

• Electron pT � 20 GeV to further improve the quality.

• Exclude the region between the electromagnetic calorimeter barrel and end-caps

(1.37 < |h | < 1.52) where reconstruction is poor.

• An invariant mass, Minv, in the Z window of 80  Minv  100 GeV.

Having selected the electron pairs, the tag-and-probe method worked as follows:
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1. Check if the first reconstructed electron in the pair matches an RoI in L1Calo. A

match requires DR =
p

(Dh)2 +(Df)2  0.15, where Dh and Df are the differences

in pseudorapidity and azimuthal angle between the electron and RoI.

2. Check if this electron passes the HLT.

3. If both of these criteria are met, then this electron is a tag and would have triggered the

event. The other reconstructed electron is a candidate probe.

4. Check if the second reconstructed electron is a tag and if so, the first electron in the

pair is a candidate probe.

5. If both the first and second electron in a pair pass the tag criteria, use a random number

generator to select one electron as the tag and the other as the probe.

6. See if the probe matches an RoI and also passes the e/g thresholds. If so, count the

electron as a passed probe.

7. The ratio of passed probes to all probes is the efficiency.

The efficiencies were determined in differential bins of ET , average pile-up (average number

of interactions per bunch crossing, hµi), and inclusively across all the data. The 22VHI and

24VHI ET distributions, known as turn-on curves, for the original cuts and working points

are shown in Figure 4.10. Far below the cluster energy cut-offs, no electrons will be flagged

due to the trigger requirement (giving efficiencies of 0), and far above, electrons should

pass the thresholds (giving efficiencies of 1). At around 22 and 24 GeV, there is a sharp rise

in efficiency. The rise is not a vertical line due to the more precise reconstructed electron

energies being smeared about their cluster cut-off energies from the trigger energy resolution,

and the pseudorapidity dependence of the cut-off energies. Tighter e/g algorithm thresholds

also affect the convergence to 1.
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Fig. 4.10 Efficiency as a function of reconstructed electron ET (turn-on curves) for the
original cuts and three working points. Upper plot: 22VHI trigger cuts. Lower plot: 24VHI
trigger cuts. The errors in efficiency are binomial, seff =

p
e(1� e)/n, where e is the

efficiency and n is the number of probes passing the original cuts.
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From the figures, it can be seen that the red points (tight thresholds) lie quite far below

the black points (original cuts). However, the yellow points (for medium thresholds) are

much closer so there is not much loss in efficiency. Small undulations such as at 81.25

GeV for 24VHI are present. These are due to rare cases where the DR matching between a

reconstructed electron and RoI is  0.15 but the measured ET of the RoI is small (so does

not pass the isolation cuts) and the reconstructed electron ET is large.

The efficiencies as a function of hµi are shown in Figure 4.11. The ET of the reconstructed

electron was required to be greater than 27 GeV (29 GeV) for 22VHI (24VHI) to ensure

only the plateau of the turn-on curves was considered, which is the usual case for physics

analyses.
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Fig. 4.11 Efficiency as a function of hµi for the original cuts and three working points. Upper
plot: 22VHI (ET > 27 GeV). Lower plot: 24VHI (ET > 29 GeV). The errors are binomial.
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As pile-up increases, the efficiency decreases for all cases, which could have an impact on

higher luminosity data taking. This is worst for the tight cuts (red), where the efficiency

drops by 2.1% (2.2%) between the 15-20 and 30-35 hµi bin for 22VHI (24VHI). This is

better for the medium cuts with a drop of 1.3% (1.4%) for 22VHI (24VHI). Looking at the

ratios of the working points to the original cuts, the loose and medium cuts stay rather flat,

though the tight cuts show a downward trend.

Inclusive efficiencies compared with the original cuts are shown in Table 4.3 for both 22VHI

(ET > 27 GeV) and 24VHI (ET > 29 GeV). The tight cuts have the most profound effect in

the efficiency whereas the loose and medium cuts have a modest effect.

Working point EMCutMin (GeV) EMCutOff (GeV) Efficiency ratio (new/original)

22VHI 24VHI

Original 2.0 -1.8 1.000 1.000

Loose 1.5 -1.8 0.995 0.996

Medium 1.0 -2.0 0.985 0.988

Tight 1.0 -2.6 0.960 0.962

Table 4.3 The original cut and three working point relative efficiencies for the EGZ dataset.
Binomial errors of order 10�4 are not shown. EMCutSlope and CutMax are the same for
all cases at 1.0/8.0 and 50.0 GeV, respectively. For 22VHI (24VHI), a cut of ET > 27 GeV
(ET > 29 GeV) is present.

4.6 Results and Conclusions

From the three working points, it was established that the medium cuts gave a good rate

reduction compared with the original cuts (14.7% for 22VHI and 10.8% for 24VHI). With

tag-and-probe measurements, the efficiency was affected by only a small amount (1.5% for
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22VHI and 1.2% for 24VHI) and the distributions with ET and hµi are similar to those of the

original cuts. A summary of the medium cuts is shown in Table 4.4 with their distributions

for the isolation and cluster energies in Figure 4.12. The CutMax, EMCutSlope and hadronic

parameters were kept the same as for the original cuts.

EMCutMin (GeV) EMCutSlope EMCutOff (GeV) CutMax (GeV)

1.0 1.0/8.0 -2.0 50.0

HadCutMin (GeV) HadCutSlope HadCutOff (GeV) CutMax (GeV)

1.0 1.0/23.0 -0.2 50.0

Table 4.4 Summary of the medium working point cuts that give the best balance between rate
reduction and signal loss. The EM cuts (top) were modified but the hadronic cuts (bottom)
kept the same. The cuts are common to both 22VHI and 24VHI.

Fig. 4.12 The new (solid lines) and original (dotted lines) cuts of the e/g algorithm. Left:
EM isolation energy against EM cluster energy. Right: hadronic core energy against EM
cluster energy. The format is the same as in Figure 4.5.

The new 24VHI thresholds were placed in the trigger menu, referred to as 24VHIM, where

the "M" stands for medium cuts. 22VHIM was not invoked since the original 22VHI and

24VHI cuts together with the 24VHIM cuts were sufficient to cover the expected luminosity.
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The 24VHIM efficiency measurements were repeated by the L1Calo collaboration with the

full 2016 ATLAS dataset used for analyses [93]. The ET and hµi distributions are shown in

Figure 4.13. Even with larger pile-up, the medium cuts still perform well compared with the

original cuts. For the remainder of Run 2 data-taking, the LHC luminosity did not reach high

enough values to require 24VHIM, but it was available as a backup in case circumstances

changed. It could also be required in Run 3.

Fig. 4.13 Efficiency distributions for the full 2016 ATLAS dataset produced by the L1Calo
collaboration comparing the new 24VHIM cuts (blue) with the original 24VHI cuts (black)
[93]. Left: efficiency turn-on curve as a function of ET . Right: efficiency as a function of
hµi.
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Chapter 5

Charge Asymmetry in Top Quark Pair

Production

5.1 The Top Quark

Numerous measurements of top quark properties have been and are currently being deter-

mined in accelerator experiments. Good theoretical descriptions of the production and decay

processes of the top quark (introduced in Sections 5.2 and 5.3) are important to understand

and make comparisons with the collision data. The top quark has a very short lifetime, t , of

order 10�25 s due to its large width, G, of 1.42+0.19
�0.15 GeV [17]1. This means it does not have

time to bind with other quarks (it does not hadronise, which takes of order 10�23 s [94]) and

so quantum mechanical information will be propagated to its decay products. It is therefore

possible to study the top quark’s fundamental properties.
1Here the conversion t = }/G is used, where } is the reduced Planck constant.
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5 Charge Asymmetry in Top Quark Pair Production

5.2 tt̄ Production

Top quarks can be produced in association with an antitop quark2 (known as tt̄ production)

or with other particles (single top production). In this thesis, tt̄ production is the process

under study. It occurs through quark-antiquark (qq̄) annihilation, gluon-gluon (gg) fusion, as

well as qg and q̄g mechanisms. The Leading Order (LO) Feynman diagrams are shown in

Figure 5.1. LO diagrams are those with the smallest power in the coupling constants that

make a non-zero contribution to the calculation of the process.

Fig. 5.1 LO diagrams for tt̄ production [95]. The upper diagram is for qq̄ annihilation and
the lower three for gg fusion. At Next-to-Leading Order (NLO) and higher orders, more
production methods are possible through qq̄, gg, as well as qg and q̄g diagrams.

The diagrams contribute different relative amounts to the tt̄ production cross-section owing to

the Parton Distribution Functions (PDFs) of the interacting partons. PDFs give the probability

of a type of parton in the proton to carry a fraction, x, of the total proton momentum. The

three uud quarks (known as valence quarks) carry the majority of the proton momentum at

low energy scales, Q (the momentum transfer in the interaction). However, there are also

gluons in the proton, which can split into qq̄ pairs (known as sea quarks), emitting further

gluons, and so on. At high Q, the proton is seen to a higher resolution and the density

of gluons and sea quarks becomes greater, with each individual parton carrying a smaller
2The top antiquark is referred to as an antitop quark in this thesis.
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fraction of the proton’s total momentum. The PDFs therefore depend on x and Q, as shown

in Figure 5.2.

Fig. 5.2 PDFs (here denoted f (x,Q2) and multiplied by x), for partons in the proton at two
different energy scales [17]: a) Q2 = 10 GeV2; b) Q2 = 104 GeV2. The PDFs are modelled
with the NNPDF3.0 NLO [96] set. The gluon PDFs (shown in red) are scaled down by a
factor of 10.

For collisions of partons, the effective centre of mass energy is given by ŝ = x1x2s, where x1

and x2 are the momentum fractions of the two partons. In order to produce a tt̄ pair with a

top mass of mt = Q (the approximate energy scale of Figure 5.2b), the threshold is:

p
x1x2s � 2mt , (5.1)

If x1 ' x2 = x, this approximates to:

x & 2mtp
s
. (5.2)
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Using this formula, tt̄ production at the Tevatron (
p

s = 1.96 TeV) required x & 0.2. From

Figure 5.2b, at this high value of x, the gluon PDF is very small but the quark PDFs are

higher. Therefore, quarks are more likely to have the required threshold for tt̄ production.

Furthermore, since the collisions are pp̄ at the Tevatron, the incoming quark and antiquark

can come from valence quarks in the proton and antiproton, respectively. The valence quarks

have higher PDF probabilities than sea quarks. Due to these effects, around 85% of the tt̄

production cross-section came from qq̄ annihilation at the Tevatron [97]. However, for Run 2

at the LHC (
p

s = 13 TeV), x & 0.03 for tt̄ production. At this lower value of x, the gluon

PDF is much greater than the quark PDFs. Also, since LHC collisions are pp, the antiquark

for qq̄ annihilation must come from a low PDF probability sea quark, further reducing the qq̄

production mechanism. Therefore, at 13 TeV, 90% of tt̄ production comes from gg fusion

[97].

The tt̄ production cross-sections are calculated by factorising out the PDFs, fi,A and f j,B (the

long distance interaction), and the parton scattering cross-sections, ŝi j!tt̄ (short distance

interaction):

s(s,mt) = Â
i, j=q,q̄,g

Z 1

0
dx1

Z 1

0
dx2fi,A(x1,µ2

F)f j,B(x2,µ2
F)ŝi j!tt̄(

m2
t

ŝ
,µ2

R,µ2
F ,as(µ2

R)).

(5.3)

A and B refer to the hadrons, and i and j the partons within them. The sum is performed over

all pairs of colliding partons and the integrals over all possible parton fractional momenta,

x1 and x2. The long distance interaction is non-perturbative, whereas the short distance

interaction is perturbative at high energy scales (when the strong coupling, as, is smaller than

one, as discussed in Section 1.3.3). µF is the factorisation scale, which separates out partons

participating in the main interaction and those in the PDFs. µR is the renormalisation scale

that accounts for divergences in higher order corrections. It is usual to set µ2
F = µ2

R =Q2 ' m2
t

in the calculations.
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5.3 tt̄ Decay

From Equation 1.2, |Vtb| is approximately one, meaning that the top quark almost always

decays into a bottom quark and W boson: t ! bW+. The W+ then either decays hadronically

to two quarks with a branching ratio of approximately 2⁄3 or leptonically to a lepton and

neutrino with a branching ratio of 1⁄3 [17]. The lepton can be a positron, antimuon or antitau

lepton, each with similar probabilities of being produced. The above also applies to the

t̄ ! b̄W� decay with the signs of the particles flipped.

For tt̄ decay, both W bosons can decay hadronically (all-jets channel), one can decay hadron-

ically and the other leptonically (lepton + jets channel), or both can decay leptonically

(dilepton channel). A Feynman diagram of all decay possibilities and a pie chart of branching

ratios are shown in Figures 5.3 and 5.4.

Fig. 5.3 The possible decay modes of tt̄ ! W+bW�b̄. Each W boson can decay hadronically
or leptonically. Diagram created using the package in Reference [52].
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Top Pair Branching Fractions

Fig. 5.4 The branching ratios of the tt̄ ! W+bW�b̄ decay modes [98].

5.4 Top Properties Measurements

Through measuring the decay products in experiments and reconstructing the top quarks,

many properties have been precisely determined. The top mass has been measured at ATLAS

and CMS using Run 1 data at
p

s = 7 and 8 TeV. The ATLAS integrated luminosities are

4.6 fb�1 at 7 TeV and 20.3 fb�1 at 8 TeV. For CMS, these are 5.0 fb�1 and 19.6 fb�1, re-

spectively. In combining the all-jets, lepton + jets and dilepton channels, ATLAS measured a

top mass, mt = 172.69 ± 0.25 ± 0.41 GeV [99], where the first uncertainty is the statistical

uncertainty and the second the systematic uncertainty. CMS equivalently measured a mass,

mt = 172.44 ± 0.13 ± 0.47 GeV [100] in the combination of channels. Ongoing analyses

at 13 TeV will reduce the uncertainties further and help to underpin our understanding of the

quantum vacuum minimum (see Section 1.4).

Given the top quark mass, predictions of the total tt̄ cross-section have been compared

with measurements at ATLAS and CMS. The results at
p

s = 13 TeV are summarised in
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Figure 5.5. Any deviations from the expectations could indicate BSM physics, such as heavy

particles decaying to tt̄ pairs, which themselves decay through the usual three channels and

enhance the cross-section. However, the theoretical predictions and data agree well within

the uncertainties.
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Fig. 5.5 A summary of ATLAS and CMS measurements [101] for the total tt̄ production cross-
section at

p
s = 13 TeV (points with error bars) compared with the theoretical calculations

(filled bands) such as a Next-to-Next-to-Leading Order (NNLO) QCD calculation with the
resummation of soft-gluon terms at Next-to-Next-to-Leading Logarithm (NNLL) [102]. The
measurements and the theory calculations are determined assuming mt = 172.5 GeV.
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The cross-sections can be also determined in bins of differential quantities. For instance,

the spin direction is correlated between the top and antitop quark, which propagates to

the dilepton decay products and can be accessed through angular variables between the

leptons. At
p

s = 13 TeV, the cross-section against the azimuthal opening angle, Df , and

the absolute difference in pseudorapidity, |Dh |, between the two leptons was measured using

the ATLAS data recorded in 2015 and 2016 at an integrated luminosity of 36.1 fb�1 [103].

The data were corrected for detector effects and mapped back to the full truth-level phase

space using a technique known as unfolding, described in Chapter 7. The data suggest an

enhancement in spin correlation over the Next-to-Leading Order (NLO) theory prediction by

2.2s , particularly noticeable in the Df plot of Figure 5.6, where the gradient is smaller in

data than the prediction.
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Fig. 5.6 The differential cross-section against Df between the two leptons in the dilepton
channel using

p
s = 13 TeV ATLAS data with an integrated luminosity of 36.1 fb�1 [103].

The data were unfolded to truth-level (here labelled parton-level).
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However, the agreement improves with Next-to-Next-to-Leading Order (NNLO) corrections,

and the 13 TeV CMS measurement with their 2015-2016 dataset of 35.9 fb�1 showed a less

pronounced difference between data and predictions [104].

In a similar fashion to spin correlation, the charge asymmetry in tt̄ production (discussed in

the next section) is propagated to the decay products.

5.5 Introduction to Charge Asymmetry

The LO tt̄ production processes in Figure 5.1 are symmetric under charge conjugation,

meaning there is no preferred direction for the emitted top or antitop quark to travel. In tt̄ pro-

duction via gg fusion, this is also true at NLO and beyond, where more branches (and hence

additional orders of the coupling constants) are added to the Feynman diagrams. However,

the qq̄ annihilation (and to a smaller extent qg ! tt̄q and q̄g ! tt̄q̄) production mechanisms

are not symmetric at NLO [105]. This is due to interference occurring particularly between

the qq̄ initial- and final-state gluon radiation (ISR and FSR) processes in addition to the box

and Born processes, as shown in Figure 5.7. In the tt̄ rest frame, this leads to the top quark

being emitted more often in the incoming quark direction and the antitop in the incoming

antiquark direction. This effect is known as charge asymmetry.

Charge asymmetry can be determined across all the data (inclusively) or differentially across

kinematic variables. One differential choice is the tt̄ transverse momentum, pT,tt̄ . At low

pT,tt̄ , the number of tt̄ events generated by the Born and box processes is greater, with their

interference giving a positive contribution to the asymmetry. However, at high pT,tt̄ , events

with an associated jet are more common (likely coming from the ISR and FSR production

processes), with their interference giving a negative contribution to the asymmetry [106].

Charge asymmetry is expected to increase with the tt̄ invariant mass, mtt̄ , since there is an
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Fig. 5.7 The lowest order qq̄ annihilation ! tt̄ production processes that give rise to charge
asymmetry [105]. (a) and (b) show the final- and initial-state gluon bremsstrahlung Feynman
diagrams and (c) and (d) the double virtual gluon exchange (box) and Born diagrams.
Interference between (a) and (b) leads to a decreasing charge asymmetry and interference
between (c) and (d) leads to an increasing charge asymmetry.

enhancement in the production from qq̄ annihilation, particularly relevant for the LHC. This

is also the case for the boost of the tt̄ system, which can be described by the velocity in the Z

direction, bZ,tt̄ , given by:

bZ,tt̄ =
|pZ,t + pZ,t̄ |

Et +Et̄
, (5.4)

where pZ,t and pZ,t̄ refer to the longitudinal momenta of the top and antitop quarks, and Et

and Et̄ their total energies.

BSM Physics could lead to deviations in expected charge asymmetries. The exchange of new,

heavy bosons between the incoming quark and antiquark such as axigluons [105], Z0 bosons

[107] and coloured octet Kaluza-Klein couplings [108], or more generally through Standard

Model extensions in the form of Effective Field Theories (EFTs) [109] are possible candidates.

Charge asymmetry has been measured at both the Tevatron (involving pp̄ collisions) and the

LHC (pp collisions).
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5.5.1 Charge Asymmetry at the Tevatron

For pp̄ collisions, the direction of the proton and antiproton are known. The incoming

quark is most likely to come from the proton and the antiquark from the antiproton in the

qq̄ annihilation process. Therefore, due to the Feynman diagram interference (and to an

extent momentum conservation), the outgoing top quark is more likely to be produced in

the incoming proton direction and the outgoing antitop quark in the incoming antiproton

direction (see Figure 5.8).

Fig. 5.8 The top and antitop rapidity distributions at the Tevatron, where Feynman diagram
interference leads to the two being offset from one another [110].

This asymmetry can be measured in the laboratory frame by either comparing the polar

angles, cosq , between the top and antitop quarks, or, more usually, their rapidities in a

forward-backward asymmetry, Att̄
FB, lab:

Att̄
FB, lab =

N(yt > 0)�N(yt̄ > 0)
N(yt > 0)+N(yt̄ > 0)

(5.5)

where N(yt) and N(yt̄) are the number of events as a function of the top and antitop rapidities,

respectively. The asymmetry is calculated as a ratio with the total number of events on the

denominator since it cancels normalisation uncertainties that are correlated between the first

and second terms of the numerator. The expected asymmetry is greater than zero in the
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Standard Model. It can be measured in all tt̄ decay channels.

Since differences in rapidity are Lorentz independent, a frame-independent (therefore ap-

plying to the tt̄ rest frame) asymmetry, Att̄
FB, can also be established by using the variable,

Dy = yt � yt̄ :

Att̄
FB =

N(Dy > 0)�N(Dy < 0)
N(Dy > 0)+N(Dy < 0)

. (5.6)

As Dy is expected to be on average greater than zero, Att̄
FB should therefore be positive.

In reconstructing the tt̄ systems to calculate the asymmetry, large uncertainties are involved

in the top and antitop rapidities due to uncertainties in the jet energies and in associating

jets to the top or antitop decay. However, in the dilepton channel, the asymmetry propagates

to the two leptons, which do not have such large modelling uncertainties. The leptons will

approximately follow (but not strictly) the direction of their top quark parents, leading to a

smaller, but more precise, asymmetry measurement. Since the leptons have a much smaller

mass than their energies, their pseudorapidities can be used in the leptonic asymmetry, All
FB:

All
FB =

N(Dh > 0)�N(Dh < 0)
N(Dh > 0)+N(Dh < 0)

, (5.7)

where Dh = hl+ � hl� . Pseudorapidity is easier to measure in detectors, since only the

angle from the beam axis, q , needs to be measured. For rapidity, the required energy and

momentum measurements suffer from larger uncertainties (see Section 6.8.1).

The CDF and D0 collaborations at the Tevatron measured the values of Att̄
FB and All

FB using

their full datasets of 9.4 fb�1 and 9.7 fb�1, respectively. The data were unfolded back to the

full truth-level phase space. The individual and combined inclusive results and references are
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shown in Figure 5.9. The asymmetries are typically of order 10% and are slightly larger than

the theory expectations. Furthermore, an earlier CDF measurement with 5.3 fb�1 of data

showed that at high tt̄ invariant mass, mtt̄ > 450 GeV, the data asymmetry was above that of

the NLO prediction by 3.4s [112]. In the combination of the full CDF and D0 datasets, with

the theoretical asymmetries calculated at NNLO, fits of Att̄
FB against mtt̄ were compared in

data and theory, as shown in Figure 5.10 [111]. The agreement was better although the slope

of the data fit was greater than the theory fit by 1.3s . With the results from the Tevatron,

there was high motivation to investigate charge asymmetry further at the LHC.

Fig. 5.9 Att̄
FB and All

FB measurements for the CDF and D0 detectors (and the combination of
their results) for their full datasets unfolded back to truth-level [111]. The data are shown by
the points and the theory by the grey hatched bands.
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Fig. 5.10 Att̄
FB vs mtt̄ measurements for the CDF and D0 detectors (and the combination of

their results) for their full unfolded datasets [111]. The data slope (black line) is greater than
the theory slope (orange line) by 1.3s . At D0, the highest mtt̄ point has a large uncertainty
due to limited events recorded in the detector at this scale.

5.5.2 Charge Asymmetry at the LHC

With pp collisions, it is impossible to determine the initial quark and antiquark directions.

The top and antitop quarks can be emitted in either direction along the beampipe with equal

probability. As such, the forward-backward asymmetries of Equations 5.6 and 5.7 would be

zero. However, a charge asymmetry can still be determined at the LHC, owing to the quark

configuration of the protons. In the qq̄ annihilation process, the incoming quark can be either

a valence or sea quark, whereas the antiquark must be a sea quark. Since the momentum

fraction of the valence quarks is usually greater than the sea quarks, the incoming quark, and

hence the top, will typically be more boosted along the beampipe than the antitop (see Figure

5.11).

Considering the absolute rapidities, |y|, of the top and antitop quarks, the difference in their

values, D|y| = |yt |� |yt̄ |, should be greater than zero on average, due to the broader shape
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Fig. 5.11 Upper plots: the top and antitop rapidity distributions at the LHC, with the tt̄ system
produced in either direction along the beampipe, depending on the relative magnitudes of the
initial qq̄ momenta [110]. Lower plot: the sum of the above two as seen experimentally.

from the top quark. One defines a new, central charge asymmetry, Att̄
C, which can be measured

in all tt̄ decay channels:

Att̄
C =

N(D|y| > 0)�N(D|y| < 0)
N(D|y| > 0)+N(D|y| < 0)

. (5.8)

Again, the equation compares the number of events with absolute rapidity difference greater

than zero, N(D|y| > 0) with those less than zero, N(D|y| < 0), for which the overall Att̄
C value

should be positive. However, D|y| is no longer Lorentz invariant, and since the rapidities

are measured in the laboratory frame, the asymmetry is that in the laboratory frame. The

equivalent leptonic asymmetry, only measurable in the dilepton channel, All
C, is given by:

All
C =

N(D|h | > 0)�N(D|h | < 0)
N(D|h | > 0)+N(D|h | < 0)

, (5.9)
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where D|h | = |hl+ |� |hl� |.

Both ATLAS and CMS have determined the charge asymmetries unfolded to truth-level at
p

s = 7 and 8 TeV with their full datasets [113–123]. The inclusive results are summarised in

Figure 5.12. Differential measurements in bins of pT,tt̄ , mtt̄ and bZ,tt̄ in the dilepton channel

at 8 TeV in ATLAS are also shown in Figure 5.13. The asymmetries typically lie around a

few percent and are smaller than those calculated at the Tevatron. This is expected due to the

higher energies at the LHC yielding more gg fusion, the collisions being pp rather than pp̄,

and that AC rather than AFB values are being calculated. No significant deviations were found

from the Standard Model expectation in either the inclusive or differential cases but they

suffer from large statistical uncertainties. This was particularly the case for the differential

measurements and so no sensitivity to asymmetry was observed or indeed an enhancement

seen across the mtt̄ bins like at the Tevatron.
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Fig. 5.12 Att̄
FB and All

FB measurements at the LHC for
p

s = 7 TeV (upper plot) and 8 TeV
(lower plot) for CMS and ATLAS (and their combination) unfolded back to the full truth-level
phase space [101]. The data are shown by the points and the theory by the grey hatched
bands.
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Fig. 5.13 Inclusive and differential unfolded charge asymmetries (Att̄
C in upper plot, All

C in
lower plot) in the dilepton channel for the ATLAS experiment at

p
s = 8 TeV [121]. The

data are shown by the points and the theory by the bands with blue or magenta outlines.
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This thesis details charge asymmetry measurements at
p

s = 13 TeV with the ATLAS

detector using the full Run 2 (2015-2018) dataset of 139 fb�1. The main focus is on the

dilepton channel, in which I had a significant role. Att̄
C was calculated for the inclusive case

and differentially across pT,tt̄ , mtt̄ and bZ,tt̄ for both the dilepton and lepton + jets channels

(and their combination). The higher energy and statistics in the dataset allowed more events

to be reconstructed and additional differential bins to be investigated, especially important

for the asymmetry as a function of mtt̄ . The differential bins considered were:

• pT,tt̄ - 3 bins: [0,30,120,•] GeV

• mtt̄ - 5 bins: [0,500,750,1000,1500,•] GeV

• bZ,tt̄ - 4 bins: [0,0.3,0.6,0.8,1].

For the dilepton channel, All
C was also calculated for the inclusive case and differentially

across the dilepton transverse momentum (pT,ll̄), mass (mll̄) and velocity in the Z direction

(bZ,ll̄). These were determined as a function of dilepton rather than tt̄ observables (as shown

in the 8 TeV results of Figure 5.13) to further reduce systematic uncertainties associated with

tt̄ reconstruction. The following bins were used:

• pT,ll̄ - 3 bins: [0,20,70,•] GeV

• mll̄ - 4 bins: [0,200,300,400,•] GeV

• bZ,ll̄ - 4 bins: [0,0.3,0.6,0.8,1].
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Chapter 6

Event Selection in the Dilepton Channel

6.1 Data and Simulation

Theoretical processes that should model collision data are simulated using Monte-Carlo

(MC) generators, which handle the following stages:

1. Generation of the main parton-parton interaction in the pp collision, known as the hard

scatter.

2. Simulation of other parton pair interactions in the collision, which are of lower energy

than the hard scatter, known as soft QCD processes.

3. Parton showering: one-to-two interactions of quarks radiating gluons, and gluons

splitting into quark-antiquark pairs.

4. Hadronisation: since bare quarks cannot exist (other than the top and antitop), they are

combined with other quarks to form bound, colourless states of baryons and mesons.

5. Resonance decays of unstable particles such as the top quark and B hadrons into leptons

and partons, which themselves shower and hadronise.
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In ATLAS, the MC events are finally passed through a model of the detector constructed

with the GEANT4 toolkit [124]. This simulates the limited phase space coverage of the

detector and the passage of particles through the detector material. To reduce the statistical

uncertainties in the simulation, many MC events are generated. Each event is then normalised

by the total number of events and multiplied by the integrated luminosity of 139 fb�1 from the

ATLAS data, the cross-section for the process, and the k-factor (a scale factor which accounts

for higher order corrections to the Feynman diagrams). Multiple primary vertices in pile-up

are also accounted for by reweighting the MC to match the pile-up in data. MC tt̄ signal

as well as background processes in the dilepton channel are generated. The backgrounds

can produce very similar signatures to the signal, especially taking into account detector

reconstruction effects. For instance, jets may be misidentified as leptons, or leptons may

fall outside the detector acceptance or not be reconstructed due to cracks or dead channels,

leading to an incorrect missing transverse energy determination.

The resultant signal plus background MC simulation (described in the next sections) should

map onto the data if the Standard Model is correct and fully described by the simulation, and

if the detector response is well-modelled. The MC samples used are shown in Appendix A.

6.1.1 Signal tt̄ Modelling

MC events that yield tt̄ pairs from theoretical matrix elements were produced at NLO in as

with the POWHEG BOX v2 generator [125] assuming a top mass, mt , of 172.5 GeV. The

renormalisation and factorisation scales, µR and µF , were set to
q

m2
t + p2

T,t , where pT,t is

the transverse momentum of the top quark. A parameter known as hdamp, which gives the

cut-off scale for the first gluon radiation emission was set to 1.5 mt . The PDFs were modelled

with the NNPDF3.0 NLO [96] set. The matrix element calculations were interfaced with the

parton showering and hadronisation generator, Pythia8.230 [126], which uses the NNPDF2.3
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LO [127] PDF set and the ATLAS 2014 (A14) set of tuned parameters [128]. The parameters

adjust the QCD calculations to account for higher order non-perturbative effects, leading to

better modelling of physical observables. The combined generators are henceforth referred to

as Powheg + Pythia8. The MC was normalised through a k-factor to the inclusive production

cross-section, s(tt̄) = 832 ± 51 pb, calculated at NNLO in QCD with the resummation of

soft-gluon terms at NNLL using Top++2.0 [129].

6.1.2 Single Top

Fig. 6.1 Main Feynman diagrams for single top production. Upper left: s-channel process.
Upper right: t-channel processes. Lower diagrams: tW associated production processes.

An important background is from single top production, which comes in three forms: the

s-channel, t-channel and tW associated production process, as shown in Figure 6.1. The MC

for all three channels were produced using the same tools as the tt̄ signal: POWHEG BOX

v2 (with the NNPDF3.0 NLO PDF set) interfaced to Pythia8.230 (with the NNPDF2.3 LO

set) using the A14 tune. The tW process can result in two leptons through the decay of the W

boson and top, whereas selection of the s- and t-channels will usually require an object to be
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misidentified as a lepton, and thus they were placed into the fake lepton background category

(see Section 6.1.6). At NLO, the tW process gives rise to an identical configuration (through

a gluon emission, followed by splitting into bb̄) as for the LO tt̄ signal. As such, a Diagram

Removal (DR) technique was used [130, 131], which sets the matrix element amplitude of

the single top NLO diagram to zero and removes the interference between this diagram and

the LO tt̄ diagram.

6.1.3 V + Jets

Fig. 6.2 Example Feynman diagrams for the V + jets background. In this case, two jets are
emitted. Left: Z + jets. Right: W + jets with just the W+ case shown.

Backgrounds from events yielding a Z or W boson in association with jets are collectively

known as V + jets. The matrix elements were simulated with the Comix [132] and OpenLoops

[133] generators, which calculate NLO matrix elements for up to two jets and LO matrix

elements for up to four jets. They were interfaced with the parton shower and hadronisation

generator, Sherpa2.2.1 [134] using a dedicated set of tuning parameters within Sherpa based

on the NNPDF3.0 NNLO PDF set. For the Z + jets background, the leptonic decay of the Z

boson closely resembles the tt̄ dilepton signal. MC samples were used for decays to e+e�,

µ+µ� and t+t�. These were further split into low mass (10 GeV < mll̄ < 40 GeV) and

high mass (mll̄ > 40 GeV) samples, and also for light (u, d or s quark), medium (c quark) and
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heavy (b quark) flavour jets. Data-driven control regions were used to aid the simulation (see

Section 6.9). The W + jets samples included the W boson leptonic decays to e+ne, µ+nµ

and t+nt (and the negative lepton equivalents). However, since their diagrams involve one

charged lepton, their contribution to the total background is much smaller than for Z +jets.

They require an additional lepton to mimic the tt̄ signature, and so were placed in the fake

lepton background category.

6.1.4 Diboson

Fig. 6.3 Example Feynman diagrams for the diboson background. WW , WZ (just the W+

case) and ZZ are shown as examples from left to right.

Feynman diagrams giving rise to WW , WZ and ZZ production (collectively known as VV or

diboson backgrounds) can also resemble the signal. The processes were simulated with the

Comix and OpenLoops matrix element generators for up to one parton at NLO and up to

three partons at LO. They were interfaced with Sherpa2.2.1 (for one-lepton samples) and

Sherpa2.2.2 (for two- and three-lepton samples) using the Sherpa tuning parameters based

on the NNPDF3.0 NNLO PDF set. Example diagrams are shown in Figure 6.3, where the W

and Z bosons can decay leptonically or hadronically.
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6.1.5 Rare SM

Fig. 6.4 Example Feynman diagrams for the rare SM background. The tt̄H, tt̄Z and tt̄W
processes are shown from left to right.

The background tt̄W and tt̄Z processes were simulated with MadGraph 5 (MG5_aMC) v2.3.3

[135], which generates matrix elements at NLO with the NNPDF3.0 NLO PDF set. They

were interfaced with Pythia8.210, which uses the A14 tune and the NNPDF2.3 LO PDF

set. In addition, tt̄H events were produced with the POWHEG BOX v2 matrix element

generator interfaced with Pythia8.230, again using the A14 tune and NNPDF2.3 LO PDF

set. Processes yielding tWZ and tZ events are important in control regions of same-sign

leptons, which were used to estimate the fake lepton backgrounds, as discussed in Section

6.9. These were both simulated with the MG5_aMC2.3.3 matrix element generator at NLO

with the NNPDF3.0 NLO PDF set and interfaced with Pythia8.212 using the A14 tune and

the NNPDF2.3 LO PDF set.

6.1.6 Fake Leptons

It is possible for leptons not coming from the main tt̄ event (non-prompt leptons) to be

incorrectly assigned to the dilepton decay channel, and for other particles to be misidentified
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Fig. 6.5 Example Feynman diagram for the main source of the fake lepton background:
lepton + jets production.

as leptons. These are collectively known as the fake lepton background. The main processes

which lead to fake leptons include:

• Semileptonic decays of heavy hadrons containing b or c quarks.

• In-flight decays of pions and kaons.

• p0 decays to two photons.

• Photons or photon conversions to leptons that are matched to inner detector tracks.

• High energy hadrons making their way into the muon system (punch-through).

The main source is from tt̄ decays to lepton + jets (see Figure 6.5) with an extra reconstructed

lepton, but all the other backgrounds can contribute fake leptons. Data-driven control regions

were used to help with the simulation (see Section 6.9).

6.2 Truth-Level Object Definitions

A truth-level (also known as parton-level) description of the tt̄ signal MC was also employed

in Powheg + Pythia8, in which the particles are not subjected to detector effects. In this

description, the top and antitop quarks are defined after final-state radiation. The W bosons

must originate from tt̄ decays and are defined after final-state radiation. The leptons from the
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W boson decays are taken prior to soft (low energy) emissions and required to be electrons,

muons or t leptons, where the t leptons decay to electrons or muons. The full possible

phase-space at
p

s = 13 TeV was considered with no kinematic cuts on the particles except

for the All
C measurements, discussed in Section 7.5.

6.3 Reconstructed-Level Object Definitions

The data and MC simulated events (except for the truth-level signal MC) were subjected to

selection requirements (cuts) and reconstruction algorithms to choose good quality events

with a high probability of coming from tt̄ dilepton decays and not backgrounds. These

events are referred to as detector-level, reconstructed-level, or simply reco-level events.

Requirements were made on the measurable physics signatures (objects) in the events:

electrons, muons, jets and Emiss
T associated with the two neutrinos, which are detailed below

and were combined to reproduce the tt̄ systems. Tau leptons which decay hadronically were

not included, but those decaying leptonically to electrons and muons were, as discussed in

Section 7.3.

6.3.1 Electrons

Electrons are reconstructed based on clusters in the electromagnetic calorimeter matched with

tracks in the ID. Requirements on parameters such as the electromagnetic shower shape and

number of hits in the ID (which are passed into a likelihood fitting method) lead to different

efficiencies for electron reconstruction, identification, isolation and trigger performance, as

well as background rejection [92, 136, 137]. The efficiencies are determined with Z ! e+e�

and J/y ! e+e� tag-and-probe methods. Operating points are then defined based on the

efficiencies and background rejections.
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For this analysis, the "tight" identification operating point was chosen, corresponding to

an 80% identification efficiency at ET ' 40 GeV, but with high background rejection of

misidentified electrons (above 99%) [136]. The operating point requires seven hits over the

pixel and silicon strip detectors, with at least two in the pixel detector; one of which in the

Insertable B-Layer.

The energy and momentum deposits around the electron candidates can be used to separate

prompt electrons in tt̄ decays from background processes such as electrons arising from

photon conversions and heavy flavour hadron decays, as well as light hadrons misidentified

as electrons. A gradient isolation scheme was used, which removes events with certain

pT deposits in cones of DR = min(0.2, 10 GeV/pT ) around the electron ID tracks and ET

deposits in cones of DR = 0.2 around the electron calorimeter clusters [92]. This yields

isolation efficiencies of � 90% (99%) at pT = 25 GeV (60 GeV).

Electron clusters were selected within the detector acceptance (|h | < 2.47), except for

the transition region between the barrel and the end-caps of the liquid argon calorimeter

(1.37 < |h | < 1.52), which contains a large amount of inactive material.

A close matching between the collision point (primary vertex) and ID track is required to

ensure the reconstructed electron is from the prompt interaction and not from a pile-up

interaction or a secondary electron such as bremsstrahlung emission and photon conversion.

The matching agreement is determined by two impact parameters: d0 (the transverse pa-

rameter defined by the distance of closest approach of the track to the primary vertex in the

r �f plane) and z0 sinq (the equivalent longitudinal parameter). The impact parameter cuts

applied were |d0|/s(d0)< 5, where s(d0) is the uncertainty on d0, and |z0 sinq | < 0.5 mm.
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6.3.2 Muons

Selection cuts for muons are based on the combination of information from the muon system

and the ID. An outside-in pattern recognition is employed, in which the muons are first re-

constructed in the muon system and then matched with an ID track by extrapolating inwards.

Similar to electrons, efficiencies in muon reconstruction, identification, isolation and trigger

performance are determined through techniques such as Z ! µ+µ� and J/y ! µ+µ�

tag-and-probe methods [138].

The "medium" identification operating point was required in the analysis, leading to identifi-

cation efficiencies above 95% and background rejections above 99.5% [138]. This selection

requires at least three hits in two or more MDT layers of the muon system, apart from at

|h | < 0.1, where this reduces to one or more layers.

A gradient isolation scheme was used again, which removes background events such as those

producing muons in semileptonic decays, which are embedded in jets. It considers the pT

deposits in cones of DR = min(0.3, 10 GeV/pT ) around the muon ID track and ET deposits

in cones of DR = 0.2 around the muon calorimeter cluster [138]. As for electrons, this yields

isolation efficiencies of � 90% (99%) at pT = 25 GeV (60 GeV).

Muons falling within |h | < 2.5 were selected and the impact parameters required were

|d0|/s(d0) < 3 and |z0 sinq | < 0.5 mm. This leads to good track-to-vertex association

(TTVA) and reduces the background from decays of secondary hadrons (rather than tt̄

decays) to muons.
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6.3.3 Jets

Hadronic jets are measured by first grouping neighbouring electromagnetic and hadronic

calorimeter cells that have energy deposits above noise thresholds [139]. The clusters are

then passed to the anti-kT algorithm [140]. Distance measures (functions of transverse

momentum) between pairs of clusters (di j) and clusters with respect to the beam direction

(diB) are calculated:

di j = min(k�2
T,i ,k

�2
T, j)

D2
i j

R2

diB = k�2
T,i ,

(6.1)

where R is the radius parameter (set to 0.4), D2
i j = (yi � y j)2 +(fi � f j)2, and yi, fi and

kT,i are respectively the rapidity, azimuthal angle and transverse momentum of cluster i.

All possible values of di j and diB are calculated for the clusters and are placed in a list. If

the smallest distance in the list is a di j, then clusters i and j are combined. If it is a diB,

cluster i is called a jet and removed from the list of clusters. The process repeats (updating

the list after each iteration) until no clusters remain in the list and they are all grouped into jets.

Pile-up corrections are applied to the pT values of the jets. The contribution of pile-up in a

jet is proportional to its area in h �f space, Ai = pR2, so is subtracted away [141]:

pcorr.
T,i = pT,i �Air, (6.2)

where pcorr.
T,i is the corrected transverse momentum of jet i, pT,i the jet’s transverse momentum

and r the mean amount of transverse momentum per unit area added to the event by pile-

up. Further residual corrections to the subtraction are also made based on calibrations

from simulation and data [142]. Some pile-up jets will still remain in the event and so a
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discriminant known as the Jet Vertex Tagger (JVT) [143] is used, which uses information

from the tracks matched to the jets in the jet phase space of pT < 60 GeV and |h | < 2.4. The

higher the value of the discriminant (falling between 0 and 1), the larger the probability the

jet is associated with the primary vertex of the hard scatter. The discriminant was required to

be greater than 0.59. This leads to an efficiency of 92% and a pile-up rejection of 99%.

6.3.4 b-Tagging

The MV2c10 algorithm [144–146] was employed to identify jets coming from b quarks.

It uses a Boosted Decision Tree (BDT) implemented in the Toolkit for Multivariate Data

Analysis (TMVA) package [147]. b quarks form B hadrons, which have relatively long

lifetimes, so the secondary vertices from the B decays are displaced from the primary vertex.

Impact parameter information, jet kinematics and decay products of the jet help to determine

whether a b quark was present. A BDT discriminant score between �1 and +1 is determined,

where the higher the value, the higher the probability the jet came from a b quark. However,

a more stringent cut also leads to more true b jets not passing the selection, reducing the

efficiency. Here, an MV2c10 score of greater than 0.63 was chosen, leading to high rejection

factors of 114, 5 and 19 for light quarks, c quarks and jets originating from hadronic t decays,

respectively. The identification efficiency for b quarks in tt̄ decays is 77%. This therefore

kept a high proportion of the events, which was important for the differential measurements

of charge asymmetry that suffer from large statistical uncertainties.

6.3.5 Missing Transverse Energy

Emiss
T is calculated from the vectorial pT sum of the reconstructed objects as in Equation 3.1.

Calibrated electrons, muons, photons, hadronically-decaying t leptons, and reconstructed

jets from calorimeter energy deposits, all known as hard objects, go into the calculation, as

well as soft hadronic deposits not associated with reconstructed objects. Since there are two
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neutrinos in the dilepton channel, the Emiss
T is shared between them, being determined by tt̄

reconstruction algorithms.

6.3.6 Overlap Removal

It is possible for a single object in the detector to pass the identification requirements of more

than one object type, leading to double-counting. As such, an overlap removal method was

employed:

• A candidate electron is removed if it shares a track with a candidate muon.

• A jet is removed if its angular distance from a candidate electron is DR < 0.2. However,

if more than one jet meets this condition, only the closest jet to the electron is dropped.

• A candidate electron is removed if its angular distance from a jet is 0.2 < DR < 0.4.

• If the angular distance between a candidate muon and jet is DR < 0.4, the muon is

removed if the jet has more than two associated tracks. Otherwise the jet is dropped.

6.4 Data Quality

The analysis used pp collision data at
p

s = 13 TeV, which were collected between 2015

and 2018 to give an integrated luminosity of 139 fb�1. The events were recorded under stable

beam conditions with all the LHC and ATLAS subdetector components operating well. The

data are placed into Good Run Lists (GRLs) [148] for use in physics analyses.

6.5 Trigger Requirements

At reconstructed-level, at least one lepton was required to pass either an electron or a muon

trigger. Low threshold triggers were used with ET > 24 GeV for electrons and pT > 20 GeV

for muons in the 2015 data, and ET > 26 GeV for electrons and pT > 26 GeV for muons
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in the 2016-2018 data. These were accompanied by high ET and pT threshold triggers with

looser identification and isolation requirements to increase the event acceptance. The full list

of triggers is detailed in Table 6.1:

Year Lepton Trigger

2015
Electron

HLT_e24_lhmedium (L1EM20VH)
HLT_e60_lhmedium (L1EM22VHI)
HLT_e120_lhloose (L1EM22VHI)

Muon HLT_mu20_iloose (L1MU15)
HLT_mu50 (L1MU20)

2016-2018
Electron

HLT_e26_lhtight_nod0_ivarloose (L1EM22VHI)
HLT_e60_lhmedium_nod0 (L1EM22VHI)
HLT_e140_lhloose_nod0 (L1EM22VHI)

Muon HLT_mu26_ivarmedium (L1MU20)
HLT_mu50 (L1MU20)

Table 6.1 The single-lepton triggers for the 2015 and 2016-2018 Run 2 datasets. The HLTs
are shown outside of brackets and the Level-1 electromagnetic calorimeter and muon triggers
(L1EM and L1MU) are shown inside brackets.

For the High-Level Triggers (HLTs), the "e" ("mu") followed by a number specifies that

the electron (muon) candidate must have an ET (pT ) greater than that number in GeV. The

"lhtight", "lhmedium" and "lhloose" notation refers to the lepton satisfying a likelihood-based

tight, medium or loose identification, and the "ivarmedium" and "ivarloose" that medium and

loose pT -dependent isolation criteria are required around the lepton [149, 150]. The "nod0"

states that no requirements are made on the transverse impact parameter, d0. For the Level-1

triggers, the number again refers to the electron ET and muon pT threshold, and the "V",

"H" and "I" that L1Calo pseudorapidity, hadronic core energy and isolation requirements are

applied (see Section 4.4).

6.6 Event Selection

To select tt̄ dilepton events of good quality, the following criteria were required to be met for

the objects in Section 6.3:
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• The primary vertex to have two or more outgoing tracks, and chosen according to

which vertex has the largest Â p2
T,track, where pT,track is the transverse momentum of a

track associated with the vertex.

• Exactly one charged lepton with pT > 28 GeV and a second charged lepton with

pT > 25 GeV. The leptons to be oppositely charged and of electron or muon flavour.

Three channels were subsequently defined corresponding to the final-state leptons: ee,

eµ and µµ .

• At least two jets with pT > 25 GeV.

• At least one b-tagged jet. Each of the three channels were further divided into two

sub-channels of exactly 1 b-tag and � 2 b-tag events. 1 b-tag events were accepted

since it is possible for true b jets to not be identified by the MV2c10 algorithm. The

1 b-tag and � 2 b-tag events were not merged since the background contributions

and systematic uncertainties on background normalisation and b-jet efficiencies (see

Section 6.8.1) for the two channels differ.

• For the ee and µµ channels, the reconstructed invariant mass of the dilepton system,

mll̄ , to fall outside the Z mass window: |mll̄ �mZ| > 10 GeV, where mZ = 91.2 GeV.

This reduces the background from Z + jets events.

• An additional mass cut, mll̄ > 15 GeV, in the ee (1 b-tag) and µµ (1 b-tag) channels to

remove low mass resonances such as the J/y and Drell-Yan processes.

• Cuts on Emiss
T to further reduce the Z + jets background: Emiss

T > 60 GeV (30 GeV) in

the 1 b-tag (� 2 b-tag) events for the ee and µµ channels. See Section 7.4 for detailed

studies.

• Reconstruction of the tt̄ system with the Neutrino Weighting algorithm, with a weight

greater than one. See Section 6.7 for details.

Tables that show how each of the cuts affect the number of data, MC signal and MC

background events in each channel are shown in Appendix B.
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6.7 tt̄ Event Reconstruction

In order to reconstruct the tt̄ system, the four-momentum of each of the six decay products

must be known, giving twenty-four degrees of freedom. The momenta of the jets and leptons,

as well as the masses of all the decay products (assuming zero mass for the neutrinos) are

known. The two neutrinos are not directly detected so there remain six degrees of freedom

and hence an under-constrained system. Two methods that solve this problem are the Neu-

trino Weighter (NW) [151] and Kinematic Likelihood Fitter (KLFitter) [152].

The NW works with additional kinematic constraints. The known masses of the top quark

(and hence antitop quark), and the W+ and W� bosons are used, removing four more degrees

of freedom:
(l1,2 +n1,2)

2 = m2
W = (80.4 GeV)2

(l1,2 +n1,2 +b1,2)
2 = m2

t = (172.5 GeV)2,
(6.3)

where l1,2, n1,2, and b1,2 are the four-momenta of the charged leptons, neutrinos and b-jets,

respectively. The two final degrees of freedom are included by assuming values of the

neutrino pseudorapidities (h(n), h(n̄) = h1, h2), trialling values of h1 and h2 between

�5 and +5 in steps of 0.2. Equation 6.3 can now be solved, leading to solutions for each

assumption of h(n) and h(n̄). Solutions leading to imaginary components, negative top or

antitop energies, and tt̄ invariant masses less than 300 GeV are discarded.

A complication is the possible presence of more than two jets per event, and the number of b-

tagged jets. For 1 b-tag events, the b-tagged jet and the non-tagged jet with the highest pT are

used in the reconstruction. In the case of � 2 b-tag events, the two b-tagged jets with the high-

est weight from the MV2c10 algorithm are used. Also, while the leptons can be matched to

the top or antitop according to their charges, this is less easy with the jets. Therefore, the two
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selected jets are tested in both the top and the antitop reconstruction, giving two permutations.

Sometimes, no solutions are found for Equation 6.3 for the given inputs. This may be due

to incorrect object assignments from background events but also poor measurements of the

four-momenta of the decay products for real signal events. To improve the signal efficiency,

smearing is allowed on the kinematic quantities. The pT values of the jets are smeared five

times according to Gaussian distributions (of width 8-14% depending on the pT value itself),

and the value of mt is varied from 171 to 174 GeV in steps of 0.5 GeV.

The measured pmiss
X and pmiss

Y values in the detector give the sum of the two neutrinos’ pX and

pY values, respectively. These two additional degrees of freedom can be used to determine

which of the solutions coming from the 51⇥51 neutrino h trials, 2 jet position permutations,

5⇥5 jet pT smearings and 7⇥7 top mass scannings (giving a total of 6,372,450 possible

arrangements per event) is the best. The measured pmiss
X and pmiss

Y values in the event are

compared with the reconstructed values inferred from Equation 6.3, using a weight, w:

w = exp

 
�(Dpmiss

X )2

2s2
X

!
· exp

 
�(Dpmiss

Y )2

2s2
Y

!
, (6.4)

where Dpmiss
X ,Y is the difference between the measured and reconstructed missing momentum,

and sX ,Y is the resolution of the measured missing momentum in the X and Y directions.

The solution giving the highest weight is matched to the tt̄ event. Cuts can be placed on w to

select higher quality events.

The KLFitter first uses the NW to select values for the neutrino pseudorapidities and calculate

weights according to Equation 6.4. The W mass is kept constant at 80.4 GeV and the top mass

of 172.5 GeV is allowed to be smeared within its decay width of 1.4 GeV [17]. As opposed

to choosing the highest value of w for the tt̄ reconstruction, the KLFitter combines the weight
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with other functions to calculate a likelihood for each jet permutation. For instance, Gaussian

functions are used to determine probabilities for the neutrino pseudorapidities given the top

mass. Transfer functions additionally give the probability of measuring certain kinematics for

an observable (such as lepton and jet energies) given their true values. These are derived from

MC, and depend on the detector geometry and resolution. The permutation and parameters

giving the highest likelihood are used for the tt̄ reconstruction.

The NW and KLFitter techniques were compared and the one giving the best performance

was used for the analysis. MC for tt̄ decays to eµ pairs was used, requiring one lepton of

pT > 28 GeV and the other of pT > 25 GeV, and at least one b-tagged jet. For the NW, cases

with no tt̄ pair reconstruction (weight < 0) were discarded (a loss of 5.8% of the events). For

the KLFitter, a candidate tt̄ pair was always reconstructed but could be of very low likelihood.

To compare the two algorithms, mean values of the reconstructed-level (reco-level) minus

truth-level D|y|, which should centre on zero, were plotted across bins of reconstructed

variables (see Figures 6.6 – 6.12). The error bars show the standard errors on the means,

sm = sp
N

, with s and N the standard deviation and number of events per bin, respectively.
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Fig. 6.6 Mean reconstructed � truth D|y| against NW weight (left) and KLFitter log likelihood
(right), the discriminants used in reconstruction quality.

98



6 Event Selection in the Dilepton Channel

0 100 200 300 400 500 600
310×

 [MeV]miss
TReco E

0.05−

0.04−

0.03−

0.02−

0.01−

0
0.01
0.02
0.03
0.04
0.05| tt

|y
Δ

N
W

 m
ea

n 
re

co
 - 

tru
th

 

0 100 200 300 400 500 600
310×

 [MeV]miss
TReco E

0.05−

0.04−

0.03−

0.02−

0.01−

0
0.01
0.02
0.03
0.04
0.05| tt

|y
Δ

KL
Fi

tte
r m

ea
n 

re
co

 - 
tru

th
 

Fig. 6.7 Mean reconstructed � truth D|y| against reconstructed Emiss
T for the NW (left) and

KLFitter (right).
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Fig. 6.8 Mean reconstructed � truth D|y| against reconstructed top pT for the NW (left) and
KLFitter (right).
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Fig. 6.9 Mean reconstructed � truth D|y| against reconstructed antitop pT for the NW (left)
and KLFitter (right).
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Fig. 6.10 Mean reconstructed � truth D|y| against reconstructed pT,tt̄ for the NW (left) and
KLFitter (right).
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Fig. 6.11 Mean reconstructed � truth D|y| against reconstructed mtt̄ for the NW (left) and
KLFitter (right). Invariant masses less than 300 GeV are discarded.
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Fig. 6.12 Mean reconstructed � truth D|y| against reconstructed bZ,tt̄ for the NW (left) and
KLFitter (right).
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Across most of the variables, there is little difference between the two algorithms, except for

the top and antitop pT , which shows a poor reconstruction in the KLFitter. To help improve

the KLFitter selection quality, events of log likelihood < 0 were discarded (a loss of 7.8% of

the events). This improves the pT dependence to a small degree, as shown in Figure 6.13.
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Fig. 6.13 Mean reconstructed � truth D|y| against reconstructed top pT (upper plot) and
antitop pT (lower plot) for the KLFitter. Here, events of log likelihood < 0 are removed. The
reconstruction is slightly improved with respect to the right-hand side plots of Figures 6.8
and 6.9.

A further test was to look at the performance of mean reconstructed-level minus truth-level

values for variables other than D|y| plotted against their truth-level values. These in general

should centre on zero, but are subject to edge effects. For example, for large positive and

negative values in truth top and antitop y, the lack of detector acceptance for leptons at

|h | > 2.5 disallows extreme reconstructed-level values for the top and antitop. This causes
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non-zero behaviour in the outer regions of Figures 6.14 and 6.15. A similar effect is seen for

mtt̄ , where the cut of 300 GeV causes a positive bias in the lower mass bins. However, the

response matrices described later in Section 7.1 can model this approximately. For the tests,

the NW weight > 0 and KLFitter log likelihood > 0 requirements were used. The error bars

show the standard errors on the means.
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Fig. 6.14 Mean reconstructed � truth top y against truth top y for the NW (left) and KLFitter
(right).
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Fig. 6.15 Mean reconstructed � truth antitop y against truth antitop y for the NW (left) and
KLFitter (right).
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Fig. 6.16 Mean reconstructed � truth mtt̄ against truth mtt̄ for the NW (left) and KLFitter
(right).

The NW and KLFitter show similar performance across the truth-level variables, but with

slightly flatter distributions for y and mtt̄ in the NW plots. From these results, and with a

smaller loss in signal events with NW weight > 0 compared with KLFitter log likelihood > 0,

and due to the faster processing time of the NW, it was decided to use the NW for tt̄

reconstruction.

6.8 Systematic Uncertainties

In addition to Poisson statistical fluctuations, systematic uncertainties (known also as nuisance

parameters, NPs, within the unfolding framework discussed in Chapter 7) affect the number

of selected events and kinematic distributions at reconstructed-level and therefore the charge

asymmetry values. The uncertainties fall into two broad groups: experimental and modelling

uncertainties, which can affect either or both the signal and background MC. For the

modelling uncertainties, the MC was sometimes generated with ATLAS fast simulation

software, ATLFAST 2.0 (AFII) [153] to reduce the MC processing time. This uses a faster

calorimeter simulation than the default in GEANT4, but does reduce the reconstruction

accuracy. To show the true effect of the systematic uncertainty, AFII samples that are not

shifted by the uncertainty were also generated. The systematically-shifted and non-shifted
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AFII samples were compared and the difference used as an uncertainty on the full simulation

sample. These cases are specified in the text.

6.8.1 Experimental Uncertainties

6.8.1.1 Luminosity

The uncertainty on the full Run 2 integrated luminosity is 1.7% [154]. This was determined

from beam separation scans (van der Meer scans [155, 156]) in dedicated low luminosity

runs and calibrated to the high luminosity data-taking runs.

6.8.1.2 Pile-Up

The PileupReweighting tool [157] was used to correct the MC pile-up distributions to match

those in data. A systematic uncertainty arises through variations of the scale factors in the

tool by ±1s .

6.8.1.3 Jet Vertex Tagger Efficiency

Scale factors to correct for differences in the JVT efficiency between MC and data are

extracted from Z ! µ+µ� and tt̄ events [158]. Uncertainties on the factors come from

statistical errors, different choices of MC generator and varying the event selection to increase

the contribution from pile-up jets. These are incorporated into a single uncertainty.

6.8.1.4 Jet Energy Scale

Jets clustered with the anti-kT algorithm have their energies calibrated to account for kine-

matic dependencies, the calorimeter materials, energy losses due to dead cells, leakage

outside the calorimeter acceptance and deposits below noise thresholds, as well as excess

energy due to pile-up [159, 160]. This correction is known as the jet energy scale (JES). The

sources of uncertainty on the JES used in the analysis are listed below:
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• Pile-up:

– The average jet energy density in the h �f plane, r , used in the area subtraction

method [141].

– The number of additional pp collisions per bunch crossing, µ .

– The number of reconstructed primary vertices in an event, NPV .

– The pT dependence of the NPV and µ pile-up terms as a residual uncertainty.

• Jet response in the central calorimeter regions (low |h |) across pT . Events producing

well-calibrated Z/g bosons with a low pT jet recoiling against the boson, and multijet

topologies with a high pT jet recoiling against well calibrated low pT jets are used

to calibrate central jets. A large range of uncertainties such as the lepton and photon

energy scales and resolutions of the boson decay products, JVT, MC generator choice,

jet angular measurements and statistical uncertainties are present. Many of these are

combined and reduced in number with an eigenvector decomposition method [160] to

give:

– Physics modelling effects (4 NPs).

– Detector effects (2 NPs).

– Effects which which cannot be fully attributed to either a detector or a modelling

uncertainty - hence labelled "mixed" (3 NPs).

– Statistical fluctuations (6 NPs).

• h-intercalibration. The response of the calorimeter is less well understood in the

forward regions (high |h |). As such, dijet events with one jet in the well-calibrated

central region and one jet in the forward region are studied. The pT of the jets should

be balanced at NLO in QCD and so the forward jets are corrected. Uncertainties

include:

– Mismodelling of physics effects in MC generator choice, pile-up and event

topologies.
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– Data-MC disagreement in h < 0, h > 0, and high energy regions.

– Statistical fluctuations.

• Very high pT jets of > 2 TeV that are beyond the reach of the above methods.

• Data-MC differences in the degree of punch-through of jets from the hadronic calorime-

ter to the muon system.

• Jets originating from light quarks, b quarks and gluons have different responses in the

calorimeter:

– Relative proportion of quarks to gluon jets.

– Detector response from different jet flavours (split into light jets and b-jets).

6.8.1.5 Jet Energy Resolution

The precision of the jet energy about its central value is termed the Jet Energy Resolution

(JER):
s(pT )

pT
=

N
pT

� S
ppT

�C, (6.5)

where N is the noise from electronics and pile-up, S a stochastic term from sampling in

the calorimeter and C a pT -independent constant term. Contributions to these terms are

determined in data through measurements of dijet and Z/g + jets events across jet pT

and h , taking into account pile-up, and are also established in MC [159]. An eigenvector

decomposition combines and decorrelates the contributions resulting in seven overall nuisance

parameters. An eighth uncertainty comes from the data-MC difference, in which the JER is

smeared further if the JER from data measurements is greater than that in the MC simulation,

but no additional smearing is made if the MC JER is greater than the data JER.

6.8.1.6 Jet Flavour Tagging

Scale factors adjust for data-MC efficiency differences in correctly tagging jets as b-jets and

incorrectly tagging c- and light jets as b-jets with the MV2c10 algorithm [145, 161, 162].
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These are derived in samples containing a high purity of the different jet flavours. The

numerous sources of uncertainty on the factors are combined using eigenvector decomposition

into a smaller set. Two additional uncertainties are assigned on the extrapolation of b-jet and

c-jet efficiencies to high pT .

• b-jet efficiencies (9 NPs and extrapolation uncertainty).

• c-jet efficiencies (4 NPs and extrapolation uncertainty).

• Light jet efficiencies (5 NPs).

6.8.1.7 Lepton Efficiency Scale Factors and Track Uncertainties

As described in 6.3.1 and 6.3.2, efficiencies in lepton reconstruction, identification, isolation

and trigger performance are obtained with tag-and-probe methods using Z and J/y decays.

These are calculated in both data and MC and the data-MC ratios used as scale factors

(usually close to one) to correct the simulation yields [136, 138]. Uncertainties on these

factors are established by varying selection requirements on the tag-and-probe leptons as

well as fit models of the signal and background, for example. For muons, the uncertainties

are split further into their statistical and systematic components. The uncertainties used in

the analysis are shown below:

• Reconstruction - a single uncertainty for electrons.

• Identification - one electron and two muon (statistical and systematic) uncertainties.

• Isolation - one electron and two muon (statistical and systematic) uncertainties.

• Trigger - one electron and two muon (statistical and systematic) uncertainties.

• Track-to-vertex association of muons to the hard-scatter vertex.

Alignment imperfections and deformities in the detector cause asymmetric track curvature

measurements in positive and negative muons, known as sagitta variations. Corrections are

applied from Z ! µ+µ� events. An uncertainty comes from this calibration as well as a

residual uncertainty after the correction [163].

107



6 Event Selection in the Dilepton Channel

6.8.1.8 Lepton Energy Scales and Resolutions

Additional data-MC corrections are made on the electron and muon energy scales (the

calibration of energy deposits in the EM or muon calorimeters to candidate lepton energies)

and their resolutions (sizes of the energy uncertainties compared with their energies) using

Z ! l+l� and J/y ! l+l� decays (and W ! en decays for electrons) [164, 138].

Uncertainties on the lepton scales and resolutions are determined by varying the signal

and background fits and sizes of the invariant mass windows for the decays, as well as

in modelling the detector materials. The electron and muon energy scales each have one

associated uncertainty. The electron resolution has one uncertainty and the muon resolution

has one uncertainty component from the inner detector and another from the muon system.

6.8.1.9 Missing Transverse Energy Scale and Resolution

The Emiss
T estimation includes signals associated with reconstructed objects, coined the hard

term, as well as detector signals not associated with objects, known as the soft term, as

described in Section 6.3.5. Uncertainties on the hard term are accounted for in the objects

themselves but separate systematic uncertainties are applied to the soft term. Z ! µ+µ�

and Z ! e+e� events are used where the soft term transverse momentum, psoft
T , should be

balanced against the hard term transverse momentum, phard
T [165, 166]. Differences between

data and different MC generators are used to determine three uncertainties:

• Energy scale - the mean value of the parallel projection of psoft
T against phard

T , psoft
k .

• Parallel energy resolution - the root-mean-square of psoft
k .

• Perpendicular energy resolution - the root-mean-square of the perpendicular projection

of psoft
T against phard

T , psoft
? .
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6.8.2 tt̄ Signal Modelling

6.8.2.1 tt̄ Parton Shower and Hadronisation Modelling

The MC generator choice can yield differences in the output distributions of simulated events

and so the parton shower and hadronisation generator was investigated1. The POWHEG

BOX v2 generator was interfaced with Herwig7.04 [167, 168] using a set of default tuning

parameters in Herwig known as the H7-UE tune [168] based on the MMHT14 LO PDF set

[169]. This was run through the AFII ATLAS simulation and so compared with the AFII

Powheg + Pythia8 MC.

6.8.2.2 tt̄ Radiation Modelling

Since ISR and FSR strongly affect the degree of charge asymmetry, uncertainties in their

emission were accounted for in the analysis:

• Variation of ISR µR factor by a multiple of 0.5 and 2 in the matrix element generators.

• Variation of ISR µF factor by a multiple of 0.5 and 2 in the matrix element generators.

• Up and down variation of as in the showering parameter, Var3c of the A14 tune [128],

for ISR.

• Changing the hdamp parameter from 1.5 mt to 3 mt .

• Variation of as for FSR QCD emission by shifting the µR factor by a multiple of 0.5

and 2 in the parton shower generators.

6.8.2.3 tt̄ Parton Distribution Functions

The uncertainties on the quark and gluon PDFs are described in the PDF4LHC framework

[170]. Uncertainties from the NNPDF3.0 [96], MMHT14 [169] and CT14 [171] PDF sets are
1A further systematic uncertainty can be accounted for by varying the matrix element generator and keeping

the parton shower and hadronisation generator the same. A MG5_aMC sample interfaced with Pythia8 does
exist, although the differences in matching between the two generators yields an unfair comparison with
Powheg + Pythia8. At the time of writing, the ATLAS recommendation was to neglect this uncertainty.
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combined into 30 eigenvector nuisance parameters. These variations were stored as weights

in the tt̄ Powheg + Pythia8 sample and the systematic uncertainties obtained by comparing

the 30 variations with the baseline PDF4LHC15 prediction.

6.8.2.4 tt̄ Mass

To account for a possible variation in charge asymmetry with top mass, four samples of

mt = 171, 172, 173 and 174 GeV were produced. These were generated in AFII through

POWHEG BOX v2 interfaced with Pythia8.230 using the same PDF sets and tuning parame-

ters as for the 172.5 GeV sample. The mass sample giving the largest variation across D|y|

and D|h | compared with the AFII 172.5 GeV sample (in this case 173 GeV) was used to

evaluate the uncertainty.

6.8.3 Background Uncertainties

6.8.3.1 Single Top tW Process Diagram Removal vs Diagram Subtraction

In addition to Diagram Removal (DR) (see Section 6.1.2), Diagram Subtraction (DS) [131]

can be used to prevent double-counting of events from the LO tt̄ and NLO single top tW

processes. In DS, the NLO tW cross-section (rather than the amplitude as for DR) is modified

to include a subtraction term to cancel the tt̄ contribution. The difference between the DR

and DS methods on the distribution of single top events across D|y| and D|h | was included as

a systematic uncertainty.

6.8.3.2 Single Top Parton Shower and Hadronisation Modelling

As for tt̄ modelling, the effect from a different parton shower and hadronisation generator

was evaluated for single top events. The POWHEG BOX v2 generator was interfaced with

Herwig7.04 using the H7-UE tune and MMHT14 LO PDF set. This was run through AFII

and so compared with the AFII Powheg + Pythia8 single top MC.
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6.8.3.3 Single Top Radiation Modelling

Variation of µR and µF , both by factors of 0.5 and 2, in the single top matrix element generator

give uncertainties on the magnitude of ISR emission. Adjusting the value of µR by a factor

of 0.5 and 2 in the parton shower generator changes the extent of QCD emission and yields

an uncertainty on FSR.

6.8.3.4 Z + Jets Scale Variations

Variation of the µR and µF scales by factors of 0.5 and 2 on the Z + jets samples leads to an

additional uncertainty.

6.8.3.5 Cross-Section and Normalisation

For the single top, diboson and rare SM background processes, calculations adjusting the

µR and µF scales and varying the PDFs within their uncertainties are performed leading to

uncertainties on their cross-sections. The values used in the analysis were 5.3% for single top

[172, 173], 6% for diboson [174] and 13% for the rare SM backgrounds [175]. The Z + jets

and fake lepton background uncertainties were determined in control regions (see Section

6.9). Normalisation uncertainties of 30% were applied to the Z + jets events, 30% for the

fake lepton ee and eµ events, and 50% for the fake lepton µµ events.

6.9 Z + Jets and Fake Lepton Normalisation Factors

6.9.1 Z + Jets

For the ee and µµ channels, scaling factors were applied to the Z + jets backgrounds due

to the difficulty of modelling the heavy flavour contributions in MC. For the eµ channels,

Z + jets events are produced where the Z decays to t+t� with one t weakly decaying to an
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electron and the other to a muon. This mechanism yields far fewer events so no scale factors

were determined in the eµ channels. To increase the statistics and given the processes are

similar, the ee (1 b-tag) and µµ (1 b-tag) channels were merged, as well as the ee (� 2 b-tag)

and µµ (� 2 b-tag) channels and labelled the ee+ µµ (1 b-tag) and ee+ µµ (� 2 b-tag)

channels, respectively. The proportion of light, c and b jets differs significantly between the

1 b-tag and � 2 b-tag events so these events were not merged. The Z boson mass window

(|mll̄ �mZ| < 10 GeV) of opposite-sign (OS) leptons was used as a control region to scale

the Z + jets MC (labelled the "OSZ" region). The Emiss
T cuts were not applied in order to

increase the number of Z + jets events in the control region. However, factors with Emiss
T cuts

were also calculated as a comparison. The scale factors, µZ , were then calculated according

to the following formula:

µZ =
NData � (Npredicted – Z + jets)

NZ + jets
, (6.6)

where NData is the number of data events in the channel, Npredicted – Z + jets is the number

of predicted MC events excluding the Z + jets events and NZ + jets the number of Z + jets

events in the MC. The event yields for the 1 b-tag and � 2 b-tag channels are shown in

Table 6.2. The extracted µZ scale factors are shown below the data field in each channel. The

uncertainties on the event numbers and µZ scale factors include the statistical and systematic

uncertainties. The factors evaluated with the Emiss
T cuts are also shown in the table with their

statistical uncertainties.

The OSZ control region events before and after application of the µZ factors for the 1 b-tag

and � 2 b-tag cases are shown in Figure 6.17 as a function of the tt̄ signal variable, D|y|.

Conservative 30% uncertainties on the factors were applied to cover the differences with

and without the Emiss
T cuts, as well as shape dependencies on the factors across the inclusive
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Sample ee+µµ (1 b-tag) ee+µµ (� 2 b-tags)
tt̄ 28530 ± 550 32400 ± 1100

Single top 1900 ± 100 773 ± 42
Diboson 3600 ± 230 788 ± 55
Z + jets 392800 ± 8200 50300 ± 1100

Rare SM 757 ± 99 608 ± 79
Fake lepton 5550 ± 170 1260 ± 44
Prediction 433200 ± 8200 86200 ± 1600

Data 515182 105558
µZ 1.21 ± 0.03 1.39 ± 0.04

µZ (with Emiss
T cut) 1.23 ± 0.02 1.47 ± 0.02

Table 6.2 Event yields and Z + jets scale factors in the OSZ control region for the merged
ee+ µµ channels. The uncertainties include the statistical and systematic uncertainties
summed in quadrature except on the µZ values with the Emiss

T cuts, which only include
statistical uncertainties.

and differential variables. The plots in Figure 6.18 show the residual µZ factors across bins

of pT,ll̄ for the ee+ µµ 1 b-tag and � 2 b-tag channels after the global factors have been

applied. For low pT , the global factor is too large but at high pT , it is too small. However,

the 30% normalisation uncertainties cover this trend. The other differential variables were

shown to have much smaller shape dependencies.

A 30% background normalisation uncertainty was also applied to the Z + jets events in the

eµ 1 b-tag and � 2 b-tag channels, which have no derived scaling factor. The final global

Z + jets scale factors and uncertainties for all channels are summarised in Table 6.3. These

were then applied to the Z + jets events in the signal regions where the uncertainties have

negligible impact on the overall charge asymmetry uncertainties.
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Fig. 6.17 The events in the ee+µµ 1 b-tag (upper plots) and � 2 b-tag (lower plots) OSZ
regions across the tt̄ D|y| variable before (left) and after (right) the µZ factors are applied.
The breakdown of light, c and b quark Z + jets events is shown, which differs for the two
regions. Uncertainties on the data points are plotted but are too small to see.

Channel µZ

ee+µµ (1 b-tag) 1.21±0.36

ee+µµ (� 2 b-tags) 1.39±0.42

eµ (1 b-tag) 1.00±0.30

eµ (� 2 b-tags) 1.00±0.30

Table 6.3 Final Z + jets scaling factors for the four channels with their overall background
normalisation uncertainties.
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Fig. 6.18 The residual binned µZ factors in the ee+µµ 1 b-tag (left) and � 2 b-tag (right)
OSZ regions across the pT,ll̄ variable after the global µZ factors are applied. The uncertainties
before (red error bars) and after (blue error bars) the 30% Z + jets background uncertainties
are included are shown.

6.9.2 Fake Leptons

As for Z + jets, data-MC agreement for fake leptons can be poor due to inaccurate modelling

of their individual sources. A same-sign lepton control region (denoted "SS"), where the

events are dominated by those containing fake leptons, was used to scale the MC prediction.

Misidentification of muons is less likely than for electrons owing to good momentum

matching between the muon system and inner detector. Therefore, the ee and eµ channels

were merged (labelled ee+eµ) since the electron is most likely to be the fake lepton candidate,

and the µµ channels were treated separately. The scale factors, µFake, were determined for

the ee+ eµ and µµ channels in both the 1 b-tag and � 2 b-tag cases:

µFake =
NData � (Npredicted – fake)

Nfake
, (6.7)

where NData is the number of data events, Npredicted – fake is the number of predicted MC events

excluding the fake lepton events and Nfake the number of MC fake lepton events. Tables 6.4

and 6.5 show the event yields in the SS region for the ee+ eµ and µµ channels for both

the 1 b-tag and � 2 b-tag events. The numbers from the tables were then substituted into
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Equation 6.7 to obtain the fake lepton scale factors, which are shown below the data field

in each channel. The uncertainties on the event numbers and µFake scale factors include the

statistical and systematic uncertainties.

A possible data-MC mismatch in the fraction of events where an electron is incorrectly

identified with the wrong charge (charge-flipped) was investigated. Events in the SS region

that come from dilepton tt̄, single top and Z + jets processes will certainly have an electron

candidate with the wrong charge. To investigate the mismatch, two regions were considered:

the Z mass window of same-sign events (denoted "SSZ" region) that contains predominantly

charge-flipped leptons, and the Z mass window of OS events (labelled "OSZ" region, the

same used in the µZ estimation) that will usually have correctly assigned lepton charges.

The ratio of SSZ to OSZ events in data was compared with that in MC. Only the ee+ eµ

channels were considered since a muon in the µµ channels is very unlikely to be assigned

the wrong charge, again due to the good matching of inner detector and muon system tracks.

The MC fake leptons were scaled by both the µZ and µFake factors first in these two regions

to ensure any data-MC discrepancies were really due to charge misidentification and not the

background normalisation. The disagreement can be seen across the electron h variable, with

the charge-flip probability slightly overestimated in MC relative to data (see Figure 6.19). To

account for this, the tt̄, single top and Z + jets MC contributions in the SS region (outside

the Z window) were reweighted for the discrepancy across electron h and the µFake scale

factors were recalculated. These new scale factors are also shown at the bottom of Table 6.4

with their statistical uncertainties. Their differences with the non-weighted scale factors were

incorporated into the fake lepton normalisation uncertainty.
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Fig. 6.19 Ratio of SSZ to OSZ events across electron h for data (black) and MC (red). The
error bars show the statistical uncertainties.

Sample ee+ eµ (1 b-tag) ee+ eµ (� 2 b-tags)
tt̄ 751 ± 22 701 ± 30

Single top 55.0 ± 4.0 29.7 ± 2.6
Diboson 278 ± 21 22.6 ± 1.8
Z + jets 16.1 ± 4.6 10.2 ± 3.2

Rare SM 586 ± 76 519 ± 68
Fake lepton 2649 ± 48 1875 ± 47
Prediction 4335 ± 95 3158 ± 88

Data 4230 3049
µFake 0.96 ± 0.04 0.94 ± 0.06

µFake (charge-flip reweight) 0.98 ± 0.02 0.98 ± 0.02

Table 6.4 Event yields and fake lepton scale factors in the SS control region for the merged
ee+ eµ channels. The uncertainties include the statistical and systematic uncertainties
summed in quadrature except on the µFake values with the charge-flip corrections, which only
include statistical uncertainties.

The SS control region events before and after application of the non-weighted µFake factors

for the 1 b-tag and � 2 b-tag cases are shown for the ee+ eµ and µµ channels in Figures

6.20 and 6.21, respectively. The variable shown is dilepton D|h | since tt̄ events from SS

leptons cannot be reconstructed in the NW.
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Sample µµ (1 b-tag) µµ (� 2 b-tags)
tt̄ 0.15 ± 0.10 0 ± 0

Single top 0 ± 0 0 ± 0
Diboson 40.8 ± 3.3 5.85 ± 0.53
Z + jets 0.02 ± 0.03 0.04 ± 0.04

Rare SM 129 ± 17 154 ± 20
Fake lepton 63.3 ± 4.3 24.1 ± 2.5
Prediction 234 ± 18 184 ± 20

Data 319 261
µFake 2.3 ± 0.4 4.2 ± 1.2

Table 6.5 Event yields and fake lepton scale factors in the SS control region for the µµ
channels. The uncertainties include the statistical and systematic uncertainties summed in
quadrature.
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Fig. 6.20 The events in the ee+ eµ 1 b-tag (upper plots) and � 2 b-tag (lower plots) SS
regions across the dilepton D|h | variable before (left) and after (right) the µFake factors are
applied.
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Fig. 6.21 The events in the µµ 1 b-tag (upper plots) and � 2 b-tag (lower plots) SS regions
across the dilepton D|h | variable before (left) and after (right) the µFake factors are applied.

For the ee+ eµ channels, Table 6.4 shows the overall integral of data and MC is in good

agreement and so the fake lepton factors are close to one. However, the uncertainties do

not account for the charge-flip differences or fully cover the shape differences across the

inclusive and differential variables, such as in Figure 6.20. Therefore, 30% uncertainties

were applied to the factors. The plots in Figure 6.22 show the residual µFake factors for the

ee+ eµ 1 b-tag and � 2 b-tag channels after the global factors have been applied. The 30%

fake lepton normalisation uncertainties fully cover any shape dependencies.
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Fig. 6.22 The residual binned µFake factors in the ee+ eµ 1 b-tag (left) and � 2 b-tag
(right) SS regions across the D|h | variable after the global µFake factors are applied. The
uncertainties before (red error bars) and after (blue error bars) the 30% fake lepton background
uncertainties are included are shown.

For the µµ channels, there are very few events in the SS regions, the data-MC agreement

is poor, and the regions are dominated by rare SM events. Due to this high contamina-

tion, highly conservative uncertainties of 50% were applied to the µµ fake lepton factors.

Confidence is gained in that the µFake factors and uncertainties are consistent with those

in other public results [121, 176]. Since the µµ fake leptons make up less than 1% of the

signal events, the 50% uncertainties have negligible effect on the overall charge asymmetry

uncertainty. The final fake lepton factors are shown in Table 6.6 and were applied to the

signal region fake lepton events.

Channel µFake

ee+ eµ (1 b-tag) 0.96±0.29

ee+ eµ (� 2 b-tags) 0.94±0.28

µµ (1 b-tag) 2.3±1.2

µµ (� 2 b-tags) 4.2±2.1

Table 6.6 Final fake lepton scale factors for the four channels with their overall uncertainties.
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6.10 Event Yields and Control Plots

To verify the agreement between the MC and data after the scaling factors have been applied,

event yields in the signal regions are shown in Tables 6.7 and 6.8. There is excellent data-MC

agreement within the uncertainties. Control plots of the yields binned by several variables

are shown in Figures 6.23 – 6.29.

Sample ee channel µµ channel
1 b-tag � 2 b-tags 1 b-tag � 2 b-tags

tt̄ Pow+Py8 (no t) 42300 ± 1800 77300 ± 5700 52700 ± 1900 96700 ± 7300
tt̄ Pow+Py8 (t) 5220 ± 240 8910 ± 680 5320 ± 220 9190 ± 660

Single top 2760 ± 280 1820 ± 320 3330 ± 330 2230 ± 390
Diboson 133 ± 15 23.4 ± 2.7 162 ± 19 31.1 ± 3.7
Z + jets 1490 ± 580 1620 ± 560 2000 ± 880 2180 ± 710

Rare SM 182 ± 24 394 ± 53 207 ± 28 451 ± 61
Fake lepton 940 ± 290 1380 ± 480 240 ± 140 520 ± 280
Prediction 53000 ± 1900 91400 ± 5800 64000 ± 2200 111300 ± 7400

Data 52505 91888 63591 111079
tt̄ Pow+Hw7 (no t) 41740 ± 87 75930 ± 120 52320 ± 92 94830 ± 130

tt̄ Pow+Hw7 (t) 5132 ± 31 8655 ± 41 5353 ± 29 9025 ± 39

Table 6.7 Event yields in the ee and µµ channels split by b-tag multiplicity. The uncertainties
include statistical and systematic uncertainties, and the µZ and µFake factors have been
applied. The tt̄ Powheg + Pythia8 (Pow+Py8) signal is split whereby the W bosons decay
directly into electrons or muons (no t case), and where one or both W bosons decay through
a t lepton into an electron or muon (t case). The alternative Powheg+Herwig7 tt̄ samples
(Pow+Hw7) are also shown with their statistical uncertainties.

Sample eµ channel
1 b-tag � 2 b-tags

tt̄ Pow+Py8 (no t) 203000 ± 7200 237000 ± 17000
tt̄ Pow+Py8 (t) 22320 ± 780 25100 ± 1800

Single top 13800 ± 1200 5590 ± 900
Diboson 653 ± 71 45.1 ± 5.8
Z + jets 610 ± 200 77 ± 25

Rare SM 690 ± 91 1040 ± 140
Fake lepton 2460 ± 790 2120 ± 670
Prediction 243500 ± 7400 271000 ± 17000

Data 244258 273856
tt̄ Pow+Hw7 (no t) 203060 ± 190 232820 ± 200

tt̄ Pow+Hw7 (t) 22256 ± 62 24507 ± 66

Table 6.8 Event yields in the eµ channels with the same format as in Table 6.7.
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Fig. 6.23 The events in the ee (upper plots), µµ (middle plots) and eµ (lower plots) channels
for the 1 b-tag (left) and � 2 b-tag (right) cases across the Emiss

T variable.
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Fig. 6.24 The events in the ee (upper plots), µµ (middle plots) and eµ (lower plots) channels
for the 1 b-tag (left) and � 2 b-tag (right) cases as a function of the number of jets.
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Fig. 6.25 The events in the ee (upper plots), µµ (middle plots) and eµ (lower plots) channels
across as a function of the number of b-tagged jets. The 1 b-tag and � 2 b-tag events are
combined.
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Fig. 6.26 The events in the ee (upper plots) and eµ (lower plots) channels for the 1 b-tag
(left) and � 2 b-tag (right) cases across the electron h variable.
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Fig. 6.27 The events in the µµ (upper plots) and eµ (lower plots) channels for the 1 b-tag
(left) and � 2 b-tag (right) cases across the muon h variable.
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Fig. 6.28 The events in the ee (upper plots), µµ (middle plots) and eµ (lower plots) channels
for the 1 b-tag (left) and � 2 b-tag (right) cases across the mtt̄ variable.
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Fig. 6.29 The events in the ee (upper plots), µµ (middle plots) and eµ (lower plots) channels
for the 1 b-tag (left) and � 2 b-tag (right) cases across the pT,ll̄ variable.
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6 Event Selection in the Dilepton Channel

Consistent data-MC agreement is seen across Emiss
T , jet multiplicity and pT,ll̄ except for the

highest bins, which suffer from limited statistical precision. For the b-tagged jet multiplicity,

there is a slight excess in data events above the expectation for � 3 b-tags, since b-tagging is

difficult to model. These make up around 2.5% of the total events in each of the � 2 b-tag

channels, so the discrepancies have a negligible impact on the total number of expected

events. The agreement between data and MC across electron h is good for the ee and eµ

channels. For muon h in the eµ and µµ channels, there is a small shape dependency with an

excess of data at high |h | and an excess of MC at low |h |. The dependency is fully covered

in the uncertainty bands. Across the mtt̄ variable, there is also a trend of excess data at low

mtt̄ and excess MC at high mtt̄ . This will also be evident in the pre-marginal signal region

plots of Figure 7.30 where D|y| is plotted for the differential mtt̄ bins. However, the unfolding

technique described in the following chapter was able to rectify this effect (as seen in the

post-marginal plots) without introducing significant bias into the asymmetry measurements.

For the signal regions, as in the OSZ control regions, the ee (1 b-tag) and µµ (1 b-tag)

events were merged together, as were the ee (� 2 b-tag) and µµ (� 2 b-tag) events. The

processes that yield ee and µµ events are very similar and it is sensible to correlate the

systematic uncertainties between them. However, the ee and µµ fake lepton normalisation

uncertainties were kept decorrelated within the channels. The mergers help to reduce the

statistical uncertainties in the channels, which suffer from reduced signals owing to the Emiss
T

cuts.

Given the ATLAS data and MC simulation at reconstructed-level, the events in the channels

were unfolded and charge asymmetries were determined, as described in Chapter 7. The

unfolded asymmetries were compared with the asymmetries of the truth-level events defined

in Section 6.2.
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Chapter 7

Unfolding and Results in the Dilepton

Channel

7.1 Introduction

Measured quantities such as charge asymmetry can be determined at reconstructed-level.

However, the results will depend on the detector capabilities, making it difficult to compare

them across different experiments. Furthermore, MC that can be passed through detector

simulations may not exist for theory calculations, making direct comparisons with the

experimental data impossible. In light of this, a technique known as unfolding is applied,

which maps the reconstructed-level events on to truth-level events that are independent of the

experimental setup. The unfolding procedure corrects for the following processes:

• Limited detector acceptance: due to detector geometry, inefficiencies and trigger

requirements, the full phase space of event production cannot be covered and recorded

at reconstructed-level.
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7 Unfolding and Results in the Dilepton Channel

• Migrations: the finite detector resolution and fluctuations in measured observables

cause reconstructed-level quantities to be smeared about or shifted from the truth-level

quantities.

A Fredholm convolution equation of the first kind can be used for the reconstructed-truth

mapping [177]:

r(x) =
Z

A(x,y)t(y)dy, (7.1)

where r(x) is the reconstructed-level distribution of a measured variable, x, and t(y) the

truth-level distribution of the variable, y. A(x,y) is the kernel function used to describe the

detector response. With an infinite amount of data, A(x,y) could be established and Equation

7.1 used directly. Since there are only finite data, a solution is to bin the reconstructed- and

truth-level distributions so there are sufficient events per bin, and to determine the average

response in those bins. In discrete form, Equation 7.1 becomes:

ri =
Nt

Â
j=0

Mi jt j, (7.2)

where ri and t j are the entries per i and j bin of the reconstructed- and truth-level distributions,

respectively, and Nt the number of truth-level bins. Mi j are the elements of the response

matrix that are probability factors for a truth-level event in bin j to be reconstructed in bin i:

Mi j = P(reconstructed in bin i | truth value in bin j). (7.3)

In matrix form, over the Nr reconstructed-level bins, Equation 7.2 can be written as:

R = MT, (7.4)
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7 Unfolding and Results in the Dilepton Channel

where R = (r1,r2, ...,rNr) and T = (t1, t2, ..., tNt ). For physics analyses, the response matrices

are typically generated with MC simulation using the expected truth- and reconstructed-level

distributions. They are then used to unfold the raw data from the detector back to truth-level.

Figures 7.1 – 7.5 show the response matrices for the inclusive and differential bins of the

tt̄ D|y| and dilepton D|h | variables with the Powheg + Pythia8 simulation. Eight D|y| and

D|h | bins are shown, whose edges are identical in the reconstructed-level and truth-level

bins. These are presented for display purposes before binning optimisation, discussed in

Section 7.5. The four channels are separated with thick black lines and the differential bins

with thinner black lines. Each square shows the percentage probability for an event to be

reconstructed in bin i (x-axis) of channel n given there is a truth-level dilepton event in bin j

(y-axis). The limited detector acceptance means the row values do not sum to 100% over all

channels, and the off-diagonal elements show migrations. Migrations can be seen across the

D|y| bins and the D|h | bins. They are much greater for D|y| than D|h | due to uncertainties in

the top and antitop y reconstruction, where the leptons, jets and Emiss
T are combined. Leptonic

h values are well-defined from the inner detector and electromagnetic calorimeter or muon

system deposits. Migrations also occur between the differential bins, particularly for the tt̄

quantities. For instance, there are important migrations between a given truth-level mtt̄ bin

and the next highest reconstructed-level mtt̄ bin. This can be also been seen in Figure 6.16

where the NW has a bias for reconstructing higher tt̄ mass.

Given the response matrices, an obvious step would be to invert the matrices and apply them

to the distributions of data events to return the unfolded distributions. However, the matrices

can sometimes not be inverted numerically and the results are highly sensitive to statistical

fluctuations. The true unfolded spectrum may have very fine structure that is smeared out

at reconstructed-level. Slightly different reconstructed-level distributions, such as a data

spectrum in comparison with a simulated spectrum that encodes the same underlying physics
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7 Unfolding and Results in the Dilepton Channel

but differs only in Poisson statistics, can lead to vastly different unfolded results [178].

A more stable approach is to sample different distributions of truth-level events and fold

these to reconstructed-level. This involves calculating Equation 7.4 directly, by applying the

response matrix to the truth-level events. One can then determine how well the folded distri-

butions agree with the actual reconstructed-level distributions and select the truth distribution

giving the best match. This is the principle employed in Fully Bayesian Unfolding.

133



7 Unfolding and Results in the Dilepton Channel

00.
2

0.
4

0.
6

0.
8

1

0.
07

0.
03

0.
00

0.
00

0.
00

0.
00

0.
00

0.
12

0.
05

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
14

0.
06

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
16

0.
07

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
17

0.
38

0.
16

0.
06

0.
03

0.
01

0.
01

0.
00

0.
17

0.
77

0.
29

0.
07

0.
02

0.
02

0.
01

0.
00

0.
36

0.
77

0.
35

0.
13

0.
06

0.
03

0.
02

0.
00

0.
22

1.
01

0.
40

0.
10

0.
04

0.
02

0.
01

0.
00

0.
06

0.
19

0.
33

0.
17

0.
08

0.
04

0.
02

0.
00

0.
02

0.
29

0.
73

0.
31

0.
10

0.
05

0.
02

0.
00

0.
13

0.
40

0.
67

0.
36

0.
17

0.
10

0.
04

0.
01

0.
03

0.
39

0.
97

0.
43

0.
15

0.
08

0.
03

0.
00

0.
04

0.
10

0.
24

0.
37

0.
23

0.
11

0.
05

0.
02

0.
01

0.
10

0.
42

0.
82

0.
43

0.
15

0.
04

0.
00

0.
08

0.
22

0.
51

0.
77

0.
50

0.
25

0.
11

0.
04

0.
02

0.
15

0.
58

1.
11

0.
60

0.
22

0.
07

0.
01

0.
02

0.
05

0.
11

0.
23

0.
37

0.
24

0.
10

0.
04

0.
01

0.
05

0.
15

0.
43

0.
82

0.
42

0.
10

0.
01

0.
04

0.
11

0.
25

0.
50

0.
77

0.
51

0.
22

0.
08

0.
01

0.
07

0.
22

0.
60

1.
11

0.
58

0.
15

0.
01

0.
00

0.
02

0.
04

0.
08

0.
17

0.
33

0.
18

0.
06

0.
00

0.
02

0.
05

0.
10

0.
31

0.
73

0.
29

0.
02

0.
01

0.
05

0.
10

0.
18

0.
36

0.
67

0.
39

0.
13

0.
00

0.
03

0.
08

0.
15

0.
43

0.
97

0.
39

0.
03

0.
00

0.
01

0.
01

0.
03

0.
06

0.
16

0.
38

0.
17

0.
00

0.
01

0.
02

0.
02

0.
07

0.
29

0.
77

0.
17

0.
00

0.
02

0.
04

0.
06

0.
13

0.
35

0.
77

0.
35

0.
00

0.
01

0.
02

0.
04

0.
10

0.
40

1.
01

0.
22

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
03

0.
07

0.
00

0.
00

0.
00

0.
00

0.
01

0.
05

0.
13

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
06

0.
13

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
07

0.
16

[-5, -2]

[-2, -1]

[-1, -0.5]

[-0.5, 0]

[0, 0.5]

[0.5, 1]

[1, 2]

[2, 5]

[-5, -2]

[-2, -1]

[-1, -0.5]

[-0.5, 0]

[0, 0.5]

[0.5, 1]

[1, 2]

[2, 5]

[-5, -2]

[-2, -1]

[-1, -0.5]

[-0.5, 0]

[0, 0.5]

[0.5, 1]

[1, 2]

[2, 5]

[-5, -2]

[-2, -1]

[-1, -0.5]

[-0.5, 0]

[0, 0.5]

[0.5, 1]

[1, 2]

[2, 5] |y
|

Δ
R

ec
o-

le
ve

l 

[-5
, -

2]

[-2
, -

1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]

[2
, 5

]

|y| Δ Truth-level 
(%

)
(1

 b
-ta

g)
 
µ
µ+

ee
 2

 b
-ta

gs
)

≥( 
µ
µ+

ee
(1

 b
-ta

g)
 
µe

 2
 b

-ta
gs

)
≥( 

µe

Fi
g.

7.
1

R
es

po
ns

e
m

at
rix

fo
rt

t̄D
|y

|(
in

cl
us

iv
e

ca
se

)d
et

er
m

in
ed

w
ith

th
e

Po
w

he
g

+
Py

th
ia

8
M

C
.T

he
nu

m
be

rs
in

th
e

sq
ua

re
ss

ho
w

th
e

pe
rc

en
ta

ge
pr

ob
ab

ili
ty

fo
ra

tru
th

-le
ve

le
ve

nt
to

fa
ll

in
to

a
pa

rti
cu

la
rr

ec
on

st
ru

ct
ed

-le
ve

lb
in

an
d

ch
an

ne
l.

B
la

nk
w

hi
te

sq
ua

re
s

m
ea

n
th

er
e

is
ze

ro
pr

ob
ab

ili
ty

of
re

co
ns

tru
ct

io
n.

134



7 Unfolding and Results in the Dilepton Channel

00.
2

0.
4

0.
6

0.
8

1

|y
|

Δ
R

ec
o-

le
ve

l 

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

|y| Δ Truth-level 
(%

)
(1

 b
-ta

g)
 
µ
µ+

ee
 2

 b
-ta

gs
)

≥( 
µ
µ+

ee
(1

 b
-ta

g)
 
µe

 2
 b

-ta
gs

)
≥( 

µe

 [GeV]: t T,t p[0,30][30,120]] ∞ [120,

Fi
g.

7.
2

R
es

po
ns

e
m

at
rix

fo
rt

t̄D
|y

|a
cr

os
s

th
e

th
re

e
di

ff
er

en
tia

lp
T,

tt̄
bi

ns
.T

he
bi

nn
in

g
in

D|
y|

an
d

p T
,tt̄

on
th

e
y-

ax
is

is
th

e
sa

m
e

fo
r

al
lc

ha
nn

el
s

on
th

e
x-

ax
is

.

135



7 Unfolding and Results in the Dilepton Channel

00.
2

0.
4

0.
6

0.
8

1

|y
|

Δ
R

ec
o-

le
ve

l 

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

|y| Δ Truth-level 
(%

)
(1

 b
-ta

g)
 
µ
µ+

ee
 2

 b
-ta

gs
)

≥( 
µ
µ+

ee
(1

 b
-ta

g)
 
µe

 2
 b

-ta
gs

)
≥( 

µe
 [GeV]: tt m[0,500][500,750][750,1000][1000,1500]] ∞ [1500,

Fi
g.

7.
3

R
es

po
ns

e
m

at
rix

fo
rt

t̄D
|y

|a
cr

os
s

th
e

fiv
e

di
ff

er
en

tia
lm

tt̄
bi

ns
.T

he
bi

nn
in

g
in

D|
y|

an
d

m
tt̄

on
th

e
y-

ax
is

is
th

e
sa

m
e

fo
ra

ll
ch

an
ne

ls
on

th
e

x-
ax

is
.

136



7 Unfolding and Results in the Dilepton Channel

00.
2

0.
4

0.
6

0.
8

1

|y
|

Δ
R

ec
o-

le
ve

l 

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

|y| Δ Truth-level 
(%

)
(1

 b
-ta

g)
 
µ
µ+

ee
 2

 b
-ta

gs
)

≥( 
µ
µ+

ee
(1

 b
-ta

g)
 
µe

 2
 b

-ta
gs

)
≥( 

µe

:t z,t
β[0.0,0.3][0.3,0.6][0.6,0.8][0.8,1.0]

Fi
g.

7.
4

R
es

po
ns

e
m

at
rix

fo
rt

t̄D
|y

|a
cr

os
st

he
fo

ur
di

ffe
re

nt
ia

lb
Z,

tt̄
bi

ns
.T

he
bi

nn
in

g
in

D|
y|

an
d

b Z
,tt̄

on
th

e
y-

ax
is

is
th

e
sa

m
e

fo
ra

ll
ch

an
ne

ls
on

th
e

x-
ax

is
.

137



7 Unfolding and Results in the Dilepton Channel

00.
5

11.
5

22.
5

0.
16

0.
00

0.
27

0.
00

0.
00

0.
32

0.
00

0.
36

0.
00

0.
00

0.
00

0.
76

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

1.
36

0.
00

0.
00

0.
00

0.
00

0.
00

1.
63

0.
00

0.
00

0.
00

0.
00

0.
00

1.
85

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
97

0.
00

0.
00

0.
00

0.
00

0.
00

1.
76

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

2.
06

0.
01

0.
00

0.
00

0.
00

0.
00

0.
01

2.
41

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

1.
04

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

1.
93

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

2.
24

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

2.
65

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

1.
04

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

1.
93

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

2.
24

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

2.
65

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
97

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

1.
76

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

2.
06

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

2.
40

0.
01

0.
00

0.
00

0.
00

0.
00

0.
76

0.
00

0.
00

0.
00

0.
00

0.
00

1.
35

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

1.
62

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

1.
84

0.
00

0.
00

0.
16

0.
00

0.
00

0.
00

0.
27

0.
00

0.
00

0.
32

0.
00

0.
00

0.
00

0.
35

[-5, -2]

[-2, -1]

[-1, -0.5]

[-0.5, 0]

[0, 0.5]

[0.5, 1]

[1, 2]

[2, 5]

[-5, -2]

[-2, -1]

[-1, -0.5]

[-0.5, 0]

[0, 0.5]

[0.5, 1]

[1, 2]

[2, 5]

[-5, -2]

[-2, -1]

[-1, -0.5]

[-0.5, 0]

[0, 0.5]

[0.5, 1]

[1, 2]

[2, 5]

[-5, -2]

[-2, -1]

[-1, -0.5]

[-0.5, 0]

[0, 0.5]

[0.5, 1]

[1, 2]

[2, 5] |η|
Δ

R
ec

o-
le

ve
l 

[-5
, -

2]

[-2
, -

1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]

[2
, 5

]

| η| Δ Truth-level 

(%
)

(1
 b

-ta
g)

 
µ
µ+

ee
 2

 b
-ta

gs
)

≥( 
µ
µ+

ee
(1

 b
-ta

g)
 
µe

 2
 b

-ta
gs

)
≥( 

µe

Fi
g.

7.
5

R
es

po
ns

e
m

at
rix

fo
rd

ile
pt

on
D|

h
|(

in
cl

us
iv

e
ca

se
).

138



7 Unfolding and Results in the Dilepton Channel

00.
5

11.
5

22.
5

3

|η|
Δ

R
ec

o-
le

ve
l 

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

| η| Δ Truth-level 
(%

)
(1

 b
-ta

g)
 
µ
µ+

ee
 2

 b
-ta

gs
)

≥( 
µ
µ+

ee
(1

 b
-ta

g)
 
µe

 2
 b

-ta
gs

)
≥( 

µe

 [GeV]: l T,l p[0,20][20,70]] ∞ [70,

Fi
g.

7.
6

R
es

po
ns

e
m

at
rix

fo
rd

ile
pt

on
D|

h
|a

cr
os

s
th

e
th

re
e

di
ff

er
en

tia
lp

T,
ll̄

bi
ns

.T
he

bi
nn

in
g

in
D|

h
|a

nd
p T

,ll̄
on

th
e

y-
ax

is
is

th
e

sa
m

e
fo

ra
ll

ch
an

ne
ls

on
th

e
x-

ax
is

.

139



7 Unfolding and Results in the Dilepton Channel

00.
5

11.
5

22.
5

33.
5

|η|
Δ

R
ec

o-
le

ve
l 

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

| η| Δ Truth-level 
(%

)
(1

 b
-ta

g)
 
µ
µ+

ee
 2

 b
-ta

gs
)

≥( 
µ
µ+

ee
(1

 b
-ta

g)
 
µe

 2
 b

-ta
gs

)
≥( 

µe

 [GeV]: ll m[0,200][200,300][300,400]] ∞ [400,

Fi
g.

7.
7

R
es

po
ns

e
m

at
rix

fo
rd

ile
pt

on
D|

h
|a

cr
os

s
th

e
fo

ur
di

ff
er

en
tia

lm
ll̄

bi
ns

.T
he

bi
nn

in
g

in
D|

h
|a

nd
m

ll̄
on

th
e

y-
ax

is
is

th
e

sa
m

e
fo

ra
ll

ch
an

ne
ls

on
th

e
x-

ax
is

.

140



7 Unfolding and Results in the Dilepton Channel

00.
5

11.
5

22.
5

3

|η|
Δ

R
ec

o-
le

ve
l 

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

[-5
, -

2]
[-2

, -
1]

[-1
, -

0.
5]

[-0
.5

, 0
]

[0
, 0

.5
]

[0
.5

, 1
]

[1
, 2

]
[2

, 5
]

| η| Δ Truth-level 
(%

)
(1

 b
-ta

g)
 
µ
µ+

ee
 2

 b
-ta

gs
)

≥( 
µ
µ+

ee
(1

 b
-ta

g)
 
µe

 2
 b

-ta
gs

)
≥( 

µe

:l z,l
β[0.0,0.3][0.3,0.6][0.6,0.8][0.8,1.0]

Fi
g.

7.
8

R
es

po
ns

e
m

at
rix

fo
rd

ile
pt

on
D|

h
|a

cr
os

s
th

e
fo

ur
di

ff
er

en
tia

lb
Z,

ll̄
bi

ns
.T

he
bi

nn
in

g
in

D|
h

|a
nd

b Z
,ll̄

on
th

e
y-

ax
is

is
th

e
sa

m
e

fo
ra

ll
ch

an
ne

ls
on

th
e

x-
ax

is
.

141



7 Unfolding and Results in the Dilepton Channel

7.2 Fully Bayesian Unfolding

The foundations of Fully Bayesian Unfolding (FBU) [179] lie in the application of Bayes’

Theorem [180]. A posterior distribution, P(T|D,M), for the truth spectrum given the data

spectrum, D = (d1,d2, ...,dNr), is given by:

P(T|D,M) µ L(D|T,M)p(T), (7.5)

where L(D|T,M) is the likelihood function of data given truth and p(T) is a prior probability

distribution assigned to the truth bin entries. These are described in more detail below.

7.2.1 Likelihood

The likelihood is calculated assuming that the data follow Poisson statistics. Signal values,

ri, are calculated by sampling truth values, t j, (see Section 7.2.4) and substituting into

Equation 7.2. These are are added to the background bi values from the MC spectrum,

B = (b1,b2, ...,bNr), to give expected yields, ri +bi, per bin. These yields are compared with

the data values, di, in the likelihood equation:

L(D|T,M) =
Nr

’
i=1

(ri +bi)di

di!
e�(ri+bi). (7.6)

7.2.2 Prior

The truth prior probability distribution, p(T), is a user-defined initial spectrum of the truth-

level events in D|y| or D|h | used by the Bayesian framework. Lower and upper limits

(denoted tpj and tqj , respectively) can be set on the bin entries in the spectrum based on

expected behaviour and to reduce the computing time. The shape of the prior distribution

for each bin can be a uniform distribution over a range of values or have a functional form
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7 Unfolding and Results in the Dilepton Channel

with lower probability for certain truth values to disfavour their choice. However, this can

introduce bias into the overall measurement, so the uniform, bounded prior distribution was

chosen:

p(T) µ

8
>><

>>:

1, if t j 2 [tpj , tqj ],8 j 2 [1, Nt ]

0, otherwise
. (7.7)

The bounded range was chosen to be very large: [tpj , tqj ] = [0, 2t̃ j], where t̃ j is the Powheg + Pythia8

MC truth prediction for bin j. This ensures there is no truncation in the posterior distribution

even if there are large discrepancies from the SM expectation. Figure 7.9 shows the bounded

prior ranges for the inclusive D|y| case.

Fig. 7.9 The prior probability ranges (blue regions covering [0, 2t̃ j]) on the truth expectations
(green lines of t̃ j) for eight D|y| bins in the inclusive case. For each bin, the prior probability
distribution is uniform across the range.
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7 Unfolding and Results in the Dilepton Channel

7.2.3 Inclusion of Systematic Uncertainties

Systematic uncertainties can be included in FBU by extending the likelihood with nuisance

parameters (NPs), qqq = (q1,q2, ...,qNNP), where qk refers to a particular NP in qqq and NNP is

the total number of NPs:

L(D|T,M) =
Z

L(D|T,M;qqq)p(qqq)dqqq . (7.8)

The NPs are split into two categories:

• Experimental and modelling uncertainties, qqq o, affecting both signal and background,

as detailed in Sections 6.8.1, 6.8.2 and Section 6.8.3 (except Section 6.8.3.5).

• Background normalisation uncertainties, qqq bn, as detailed in Section 6.8.3.5.

The signal and background distributions are therefore denoted as R(T,M;qqq o) and B(qqq o,qqq bn),

respectively. The p(qqq) are Gaussian prior distributions, G, on the NPs. These prior distribu-

tions are centred on zero and given standard deviations of one. The full signal prediction in

bin i is now given by:

ri(T,M;qqq o) = ri(T,M;0)

 
1+Â

k
q k

o Drk
i

!
, (7.9)

where ri(T,M;0) is that calculated from Equation 7.2 and Drk
i is the relative systematic

uncertainty variation from nuisance parameter k on the signal yield in reconstructed-level bin

i, which is multiplied by its prior distribution, q k
o .

The background prediction in bin i is:

bi(qqq o,qqq bn) = bi(0)(1+qbnDb)

 
1+Â

k
q k

o Dbk
i

!
, (7.10)
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7 Unfolding and Results in the Dilepton Channel

where bi(0) is the MC background yield in that bin, Db the relative uncertainty on the back-

ground normalisation, which is multiplied by its prior distribution, qbn, and Dbk
i is the relative

systematic uncertainty variation from nuisance parameter k on the background yield in bin i,

which is multiplied by its prior distribution, q k
o .

In full, Equation 7.8 becomes:

L(D|T,M) =
Z

L(D|R(T,M;qqq o),B(qqq o,qqq bn))G(qqq o)G(qqq bn)dqqq odqqq bn. (7.11)

7.2.4 Sampling

P(T|D,M) is determined in practise by sampling the probability space. For each truth bin, a

value, t j, is tested (within the prior distribution bounds) and similarly, for each NP, a value qk.

This means a hyperspace of Nt +NNP dimensions is investigated. With such a large volume

to test, it is unfeasible to calculate L(D|T,M)p(T) in a grid-like fashion across the whole

space. For most points, L(D|T,M)p(T) will be zero or close to zero. Instead, Markov

Chain Monte-Carlo (MCMC) methods [181] are used, which are much faster. These produce

sequences of sampling points, where the choice of location for a particular sampling point

depends on information obtained from the previous sampling point. For this analysis, the

No-U-Turn Sampler (NUTS) MCMC algorithm [182] was employed.

To understand the NUTS algorithm, consider the 2D gravitational potential of Figure 7.10.

A position is chosen in the 2D space and a kick of random velocity (grey arrow) is given

to a fictitious ball placed at the point, so it follows the turquoise trajectory. At the same

time, a second ball placed at the same point is given a kick of the same magnitude but in

the opposite direction and follows the dark blue trajectory. From the two trajectories, the

algorithm determines when the paths start to turn around (perform a U-turn). The balls are
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7 Unfolding and Results in the Dilepton Channel

Fig. 7.10 The NUTS algorithm in a 2D circular potential well [183]. The grey arrow shows
the initial kick momentum (starting at the previous sampling point), the turquoise and dark
blue lines the path of the ball (from the kick in both directions) and the green arrow the
position of the new sampling point along the path with respect to the previous point. The
grey sampling points map out the potential.

then stopped and a sampling point is chosen at a random position on either the turquoise or

dark blue paths and saved (here on the turquoise path). The tip of the green arrow shows

the position of the new sampling point from the kick position. Once saved, the balls are

then kicked from the position of the new sampling point and the process is repeated. With

many sampling points saved, the distribution of points maps out the potential with more

points clustering at lower values of the potential. This technique is applied to the Nt +NNP

dimensions for this analysis, with the gravitational potential replaced by the negative log of

the posterior distribution. Four Markov chains using separate CPU cores are run in parallel.

For each chain, 2,500 initial tuning samples are run so the parameters of the sampler are

adapted for the setup. Then, 10,000 actual samples are run per chain giving a total of 40,000

points of L(D|T,M)p(T). The NUTS sampling is implemented through the open-source

PYMC3 package [184], which itself takes input from the FBU framework.
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7 Unfolding and Results in the Dilepton Channel

7.2.5 Combination of Channels

For the dilepton events, the four channels (eµ and ee+µµ , each divided into 1 b-tag and

� 2 b-tag events) are merged at truth-level. This is since there is no expected dependence on

channel for the underlying asymmetry. In FBU, it is possible to combine Nch reconstructed-

level channels and obtain a merged result by adjusting the posterior probability distribution:

P(T|{D1 · · ·DNch}) =
Z Nch

’
n=1

L (Dn|Rn(T,M;qqq o),Bn(qqq o,qqq bn))

G(qqq o)G(qqq bn)p(T)dqqq odqqq bn.

(7.12)

In practise, the reconstructed, background, truth, response matrix and systematic uncertainty

events are put into arrays, which are concatenated for the four channels (except in truth where

they are already merged) and a joint fitting of all channels for the likelihood is performed.

Some NPs, such as fake background normalisation uncertainties, are decorrelated across the

channels by having channel-specific names for the NPs and setting their contributions to zero

in the channels that they should not affect. It is possible for the resultant posterior distribu-

tions of the NPs to be different from the prior distributions due to information gained in the

channel combination and correlations between the NPs. This is detailed in Section 7.6.6.

To see how each NP is affected, the full multi-dimensional posterior distribution of Equa-

tion 7.12 is integrated out over all the truth bins and systematic uncertainties, except the one

being investigated, to show a one-dimensional posterior distribution for that NP. This is

known as marginalisation.

For each posterior sampling point, an AC value is calculated from the number of events

in the positive and negative unfolded D|y| (or D|h |) bins as in Equations 5.8 and 5.9. The

distribution of values for all sampling points gives the AC posterior distribution. The mean is

taken as the central AC value and the standard deviation the AC uncertainty, which reflects
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7 Unfolding and Results in the Dilepton Channel

the statistics of the data and the constrained systematic uncertainties. An example posterior

distribution is shown in Figure 7.11, where the mean of the Gaussian fit to the unfolded blue

posterior distribution coincides with the expected truth asymmetry, since this is performed in

simulated MC. For the following sections, the unfolding tests are undertaken with simulation

(rather than the raw ATLAS data) unless otherwise stated.
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Fig. 7.11 Unfolded Att̄
C posterior distribution (blue histogram) for the inclusive case in

simulated Powheg + Pythia8 (PP8) MC. All four channels are combined in the results. A
Gaussian fit to the posterior distribution is plotted with a red curve. The mean and standard
deviation (RMS) of the fit are shown with red vertical lines. The PP8 truth expectation is
given by a green vertical line.

7.3 Inclusion of Leptonically-Decaying Taus

Tests were undertaken to determine whether tt̄ decays yielding tau leptons that themselves

decay into electrons and muons should be included in the signal or treated as a background

at reconstructed-level. Matrices showing the number of reconstructed-level events that fall in

the different reconstructed-level against truth-level bins in D|y| and D|h | are shown in Figures

7.12 and 7.13. The matrices are split into events where tt̄ decays must include t leptons, tt̄

decays without t leptons, and tt̄ decays with both possibilities. All channels are merged in
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the plots and the inclusive cases are considered for simplicity. The t leptons account for

10.7% of the total tt̄ events. On the diagonal elements, efficiencies are plotted, which show

the ratio of events where the reconstructed- and truth-level bin is the same to all events in

that reconstructed-level bin column. With no migrations, this ratio would be one. Despite

the NW sharing the Emiss
T between two neutrinos and each t lepton yielding two additional

neutrinos, the tt̄ reconstruction remains good. The upper matrix of Figure 7.12 shows only

slightly reduced efficiencies compared with the middle plot. Indeed, when these events are

added to the signal (as in the lower plot) the overall matrix diagonality is decreased by a very

small amount. This is even better for the dilepton D|h | bins of Figure 7.13 since the lepton

quantities are well measured in the detector.

A further test was to see how the tau inclusion as signal or background affected the unfolded

AC values and uncertainties. The unfolding was performed without systematic uncertainties

to see purely the statistical difference. Tables 7.1 and 7.2 show the inclusive and differential

results for the Att̄
C and All

C values, respectively. In all cases, the uncertainty is reduced by

several percent when they are in the signal. Owing to the good reconstruction and reduced

uncertainties, it was decided to include the t lepton contribution in the signal.
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(b) tt̄ decays without t leptons.
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(c) tt̄ decays yielding any lepton flavour.

Fig. 7.12 Matrices showing the number of reconstructed-level events in eight reconstructed-
level and truth-level tt̄ D|y| bins. Plots (a) and (b) are matrices where tt̄ decays yield and do
not yield t leptons, respectively, and (c) is the sum of matrices (a) and (b).
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(b) tt̄ decays without t leptons.
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(c) tt̄ decays yielding any lepton flavour.

Fig. 7.13 Matrices showing the number of reconstructed-level events in eight reconstructed-
level and truth-level dilepton D|h | bins. The format is the same as in Figure 7.12.
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t in background t in signal D(Att̄
C stat. unc.)

Unfolded Att̄
C Unfolded Att̄

C

Inclusive 0.0035 ± 0.0036 0.0036 ± 0.0033 0.0003 (7.0%)
pT,tt̄ 2 [0, 30] GeV 0.0085 ± 0.0115 0.0089 ± 0.0108 0.0007 (6.1%)
pT,tt̄ 2 [30, 120] GeV 0.0007 ± 0.0101 0.0004 ± 0.0095 0.0006 (6.3%)
pT,tt̄ 2 [120, •] GeV 0.0007 ± 0.0132 0.0009 ± 0.0124 0.0008 (6.0%)
mtt̄ 2 [0, 500] GeV 0.0030 ± 0.0119 0.0036 ± 0.0117 0.0002 (2.1%)
mtt̄ 2 [500, 750] GeV 0.0041 ± 0.0064 0.0038 ± 0.0060 0.0004 (6.4%)
mtt̄ 2 [750, 1000] GeV 0.0047 ± 0.0199 0.0049 ± 0.0185 0.0014 (7.1%)
mtt̄ 2 [1000, 1500] GeV 0.0052 ± 0.0379 0.0044 ± 0.0354 0.0025 (6.6%)
mtt̄ 2 [1500, •] GeV 0.0099 ± 0.1424 0.0089 ± 0.1311 0.0113 (7.9%)
bZ,tt̄ 2 [0.0, 0.3] <0.0001 ± 0.0186 0.0001 ± 0.0179 0.0007 (3.7%)
bZ,tt̄ 2 [0.3, 0.6] 0.0012 ± 0.0121 0.0017 ± 0.0116 0.0005 (4.3%)
bZ,tt̄ 2 [0.6, 0.8] 0.0029 ± 0.0097 0.0029 ± 0.0092 0.0005 (5.3%)
bZ,tt̄ 2 [0.8, 1.0] 0.0085 ± 0.0075 0.0081 ± 0.0069 0.0006 (7.9%)

Table 7.1 Comparison of the expected unfolded Att̄
C values and statistical uncertainties, where

tt̄ decays yielding t leptons that themselves decay into electrons or muons are included
as either background or signal. The comparison is done for an older setup, where the
D|y| binning is not yet optimised. The last column shows the changes in the Att̄

C statistical
uncertainties when the t lepton events are included as signal or background, with the
percentage differences, accounting for rounding errors, in brackets.

t in background t in signal D(All
C stat. unc.)

Unfolded All
C Unfolded All

C

Inclusive 0.0019 ± 0.0014 0.0019 ± 0.0012 0.0001 (11%)
pT,ll̄ 2 [0, 20] GeV 0.0016 ± 0.0065 0.0017 ± 0.0064 0.0002 (2.3%)
pT,ll̄ 2 [20,70] GeV 0.0017 ± 0.0021 0.0017 ± 0.0020 0.0001 (6.6%)
pT,ll̄ 2 [70, •] GeV 0.0022 ± 0.0019 0.0022 ± 0.0018 0.0001 (7.1%)
mll̄ 2 [0, 200] GeV 0.0017 ± 0.0015 0.0017 ± 0.0014 0.0001 (8.3%)
mll̄ 2 [200, 300] GeV 0.0036 ± 0.0041 0.0036 ± 0.0040 0.0001 (2.7%)
mll̄ 2 [300, 400] GeV 0.0049 ± 0.0086 0.0049 ± 0.0083 0.0002 (2.5%)
mll̄ 2 [400, •] GeV 0.0058 ± 0.0126 0.0056 ± 0.0120 0.0006 (4.8%)
bZ,ll̄ 2 [0.0, 0.3] 0.0001 ± 0.0029 0.0001 ± 0.0028 0.0002 (6.3%)
bZ,ll̄ 2 [0.3, 0.6] 0.0007 ± 0.0026 0.0008 ± 0.0024 0.0002 (6.6%)
bZ,ll̄ 2 [0.6, 0.8] 0.0018 ± 0.0028 0.0018 ± 0.0026 0.0002 (7.2%)
bZ,ll̄ 2 [0.8, 1.0] 0.0040 ± 0.0030 0.0040 ± 0.0028 0.0002 (7.6%)

Table 7.2 Comparison of the expected unfolded All
C values and statistical uncertainties, where

tt̄ decays yielding t leptons that themselves decay into electrons or muons are included as
either background or signal. The format is the same as in Table 7.1.
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7.4 Optimisation of the Emiss
T Cut

As discussed in Section 6.1.3, a large source of background in the ee+µµ channels origi-

nates from Z + jets events. Since these do not have neutrinos in their final states, placing a

cut on Emiss
T will reduce the background. Figure 7.14 shows the percentage of Z + jets events

that make up the total MC prediction against increasing Emiss
T cuts. Figure 7.15 shows how

the cuts affect the number of tt̄ signal events and the signal statistical significance, S/
p

S+B,

where S is the number of signal tt̄ events and B the total number of background events. Two

working points were investigated: a loose and tight setup. The loose setup used Emiss
T cuts

of 20 GeV (0 GeV) in the ee and µµ 1 b-tag (� 2 b-tag) channels, where the significance

was highest. The tight setup used Emiss
T cuts of 60 GeV (30 GeV) in the ee and µµ 1 b-tag

(� 2 b-tag) channels, where the Z + jets background is reduced to only 2-3% of the MC

expectation. The tight setup was tested as a maximum threshold since Emiss
T cuts greater than

these have minimal reduction in the background and reduce the tt̄ signal events substantially.

Unfolding of the inclusive and differential bins for the loose and tight working points was

undertaken including the systematic uncertainties. The Att̄
C and All

C values are shown in Tables

7.3 and 7.4, respectively. The last columns show the changes in the AC uncertainties between

the loose and tight working points.

From the results, the tight setup generally gives the smallest uncertainties on Att̄
C and All

C,

particularly for the inclusive cases. This arises due to large Z + jets MC statistical uncertain-

ties and scale variation systematic uncertainties becoming less important. Whilst the tight

working point does halve the number of tt̄ events in the 1 b-tag channels, the significance

is not strongly affected. Minimising the background is also preferable to ensure the charge

asymmetry measurement is as pure as possible for the tt̄ signal.
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Fig. 7.14 The percentage of Z + jets events to total predicted MC events as a function of the
Emiss

T cut. The error bars show the MC statistical uncertainties.

Fig. 7.15 The number of tt̄ events (left) and the signal statistical significance (right) as a
function of the Emiss

T cut. The error bars show the MC statistical uncertainties.
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Loose working point Tight working point D(Att̄
C stat. + syst. unc.)

Unfolded Att̄
C Unfolded Att̄

C

Inclusive 0.0036 ± 0.0054 0.0035 ± 0.0045 0.0009 (16%)
pT,tt̄ 2 [0, 30] GeV 0.0088 ± 0.0157 0.0084 ± 0.0136 0.0021 (13%)
pT,tt̄ 2 [30, 120] GeV 0.0004 ± 0.0126 0.0006 ± 0.0111 0.0015 (12%)
pT,tt̄ 2 [120, •] GeV 0.0013 ± 0.0153 0.0010 ± 0.0149 0.0004 (2.8%)
mtt̄ 2 [0, 500] GeV 0.0031 ± 0.0147 0.0030 ± 0.0150 -0.0003 (-2.3%)
mtt̄ 2 [500, 750] GeV 0.0041 ± 0.0074 0.0040 ± 0.0073 0.0001 (1.0%)
mtt̄ 2 [750, 1000] GeV 0.0046 ± 0.0207 0.0048 ± 0.0202 0.0005 (2.2%)
mtt̄ 2 [1000, •] GeV 0.0061 ± 0.0270 0.0059 ± 0.0264 0.0006 (2.1%)
bZ,tt̄ 2 [0.0, 0.3] <0.0001 ± 0.0224 0.0001 ± 0.0209 0.0015 (6.9%)
bZ,tt̄ 2 [0.3, 0.6] 0.0012 ± 0.0134 0.0010 ± 0.0130 0.0004 (2.7%)
bZ,tt̄ 2 [0.6, 0.8] 0.0023 ± 0.0108 0.0028 ± 0.0104 0.0004 (3.7%)
bZ,tt̄ 2 [0.8, 1.0] 0.0088 ± 0.0084 0.0086 ± 0.0081 0.0003 (3.7%)

Table 7.3 Comparison of the expected unfolded Att̄
C values and uncertainties (joint statistical

and systematic) for the loose and tight Emiss
T cut working points. An older arrangement is

used in the comparison, with non-merger of the ee and µµ channels and the fourth and fifth
mtt̄ bins merged together. The last column shows the changes in the Att̄

C uncertainties between
the two working points, with the percentage differences, accounting for rounding errors, in
brackets.

Loose working point Tight working point D(All
C stat. + syst. unc.)

Unfolded All
C Unfolded All

C

Inclusive 0.0021 ± 0.0023 0.0021 ± 0.0014 0.0009 (40%)
pT,ll̄ 2 [0, 20] GeV 0.0017 ± 0.0070 0.0020 ± 0.0069 0.0001 (1.1%)
pT,ll̄ 2 [20,70] GeV 0.0021 ± 0.0023 0.0020 ± 0.0022 0.0001 (2.7%)
pT,ll̄ 2 [70, •] GeV 0.0023 ± 0.0020 0.0022 ± 0.0018 0.0002 (8.8%)
mll̄ 2 [0, 200] GeV 0.0019 ± 0.0016 0.0019 ± 0.0015 0.0001 (6.3%)
mll̄ 2 [200, 300] GeV 0.0042 ± 0.0046 0.0043 ± 0.0044 0.0002 (4.4%)
mll̄ 2 [300, 400] GeV 0.0050 ± 0.0093 0.0050 ± 0.0090 0.0003 (3.2%)
mll̄ 2 [400, •] GeV 0.0058 ± 0.0128 0.0055 ± 0.0124 0.0004 (3.5%)
bZ,ll̄ 2 [0.0, 0.3] 0.0001 ± 0.0030 0.0001 ± 0.0029 0.0001 (4.5%)
bZ,ll̄ 2 [0.3, 0.6] 0.0005 ± 0.0028 0.0006 ± 0.0025 0.0003 (9.3%)
bZ,ll̄ 2 [0.6, 0.8] 0.0018 ± 0.0028 0.0018 ± 0.0030 -0.0002 (-5.8%)
bZ,ll̄ 2 [0.8, 1.0] 0.0046 ± 0.0033 0.0045 ± 0.0031 0.0002 (4.8%)

Table 7.4 Comparison of the expected unfolded All
C values and uncertainties (joint statistical

and systematic) for the loose and tight Emiss
T cut working points. In this older arrangement,

unfolding is undertaken to the full D|h | phase-space, which is later modified (see Section
7.5.2). The format is the same as in Table 7.3.

155



7 Unfolding and Results in the Dilepton Channel

7.5 Binning Choice and Bias

Since the data will be unfolded with the Powheg + Pythia8 response matrix, it is essential

that deviations in data from the MC expectation do not lead to biases in the AC measurements.

The number of bins and positioning of bin edges in D|y| and D|h | can affect the migrations

and lead to different unfolded results. More bins allows better tracking of the migrations

and hence smaller biases in the measurement. Fewer bins reduce the relative statistical

uncertainties in each bin. In the analysis, two positive and two negative bins were tested in

D|y| and D|h | for the inclusive and differential cases. Migrations which change the sign of

D|y| and D|h | are most important for the AC values so four bins should suffice. The binning

was therefore [�5, �x, 0, x, 5] for the distributions, where x was to be determined. For this

evaluation, the truth- and reconstructed-level D|y| and D|h | MC events were scaled using two

methods that modify the asymmetry:

• Protos reweighting: a 250 GeV BSM axigluon that yields tt̄ in pair-production was

modelled with the PROTOS generator [185]. Different coupling strengths of the

axigluon to the top and light quarks yield different asymmetries. The reweighting

functions, wp(true(D|y|)) and wp(true(D|h |)), are functional scale factors that depend

on the truth-level D|y| and D|h | values. The truth-level events and reconstructed-level

events were multiplied by these factors. The Protos reweighting function for an injected

+4% asymmetry is shown in Figure 7.16. Since there is no form beyond ±3 on the

x-axis, any values of D|y| and D|h | outside this range were reweighted with the value

at wp(±3).

• Linear reweighting: the truth- and reconstructed-level distributions were reweighted

according to wl = 1+ k ⇥ true(D|y|) or wl = 1+ k ⇥ true(D|h |), where k is a constant

to vary the asymmetry.
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7 Unfolding and Results in the Dilepton Channel

Fig. 7.16 The Protos reweighting function corresponding to a +4% asymmetry above the
SM expectation.

For each method, eight functions were produced that vary the asymmetry between �4% and

+4% at the truth-level in 1% steps, giving eight working points. For the inclusive case and

each differential bin, the x values were determined separately. In FBU, x can be different

for the truth- and reconstructed-level bins but the initial tests kept them identical for simplicity.

For a chosen value of x, the reconstructed-level events for each Protos working point were

smeared according to Poisson statistics in 100 separate pseudo-experiments. Each pseudo-

experiment was then unfolded (without including systematic uncertainties first of all) with

the SM response matrix. The mean and standard deviation of the set of unfolded asymmetries

from the pseudo-experiments were taken as the overall asymmetry value and its uncertainty,

respectively, for each working point. A plot of the unfolded asymmetries against the actual

truth-level asymmetries from MC for each working point was produced and a straight line

fit to the points. The line should have a gradient of 1 and offset of 0. Any deviations were

incorporated as a bias:

bias = unfolded AC � truth AC

= unfolded AC � unfolded AC �offset
slope

.
(7.13)
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7 Unfolding and Results in the Dilepton Channel

The bias on the slope scales with the magnitude of the unfolded AC, whereas the bias on the

offset is independent of the value. An example linearity plot is shown in Figure 7.17. Here,

the offset is close to 0 but there is a significant bias in the slope. This is therefore not a good

bin edge to use. The best bin edges were determined by scanning different values of x and

Fig. 7.17 An example linearity test for the eight Protos points (shown as green points with
statistical error bars) for the inclusive tt̄ asymmetry. A bin edge of x = 1.0 is used here for
the truth- and reconstructed-level bins.

producing the linearity plots. The edges leading to the smallest biases were chosen. These

were then verified by running 300 pseudo-experiments with full-systematic uncertainties on

each Protos point, and 300 statistical-only pseudo-experiments on each linearly reweighted

point for the binning configurations as a cross-check. The systematic uncertainties only

have a small effect on the slope and offset uncertainties and negligible effect on their central

values. The biases were then compared between Protos and linear reweighting.

7.5.1 Binning Optimisation for tt̄ D|y|

For the inclusive Att̄
C, x values between 0.3 and 1.1 were tried for the initial 100 pseudo-

experiment scan with the Protos points. Their slopes and offsets are shown in Figure 7.18.
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At x = 0.5, these are very close to 1 and 0, respectively.
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Fig. 7.18 The slopes (left) and offsets (right) against x for the inclusive tt̄ asymmetry bin
scan. The uncertainties are statistical.

For each pT,tt̄ , mtt̄ and bZ,tt̄ differential bin, similar scans were repeated but taking into

account migrations between the differential bins (as can be seen in Figures 7.2, 7.3 and 7.4)

in addition to the D|y| bins. Changing the bin edge, xb, in differential bin b can lead to a

different linearity in differential bin a when its bin edge, xa, is kept constant. This is most

significant between adjacent differential bins. The bin scanning was therefore conducted

such that for each scan of xa, the adjacent bin edges were also scanned and the set of edges

giving the best linearity in all bins was chosen.

With the proposed bin edges, the verification tests of 300 pseudo-experiments for the Protos

and linearly reweighted points are shown in Tables 7.5 and 7.6. For both reweighting methods,

the biases are small with respect to the overall Att̄
C uncertainties (shown in Section 7.8) so

these bin edges were used for the analysis. The biases from Protos (as opposed to linear)

reweighting were included as an uncertainty on Att̄
C since they are generally a little larger,

include effects from the full-systematic uncertainties (though in practise these have neg-

ligible impact on the biases), and are based on a BSM model the analysis could be sensitive to.
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7 Unfolding and Results in the Dilepton Channel

Should the measured asymmetry be much greater in magnitude than the SM expectation,

the effect from the offset bias becomes negligible and the slope bias is significant. In this

case, the bias from linear reweighting would be greater and may be used as the uncertainty.

The bias would be large with respect to the overall Att̄
C uncertainty but in the worst-case

scenarios (of slopes around 0.9), the bias uncertainty would be 10% of the Att̄
C central value

(itself large), meaning a precise measurement of its value could still be made. However, from

previous LHC analyses (see Figures 5.12 and 5.13), no significant deviations were expected

from the SM predictions.

Att̄
C x

Protos reweighting

Slope Offset |Bias| |Bias|
Total unc. (%)

Inclusive 0.0036 0.5 0.998±0.002 0.0000±0.0001 <0.0001 <0.1
pT,tt̄ 2 [0, 30] GeV 0.0090 0.6 1.009±0.009 0.0017±0.0002 0.0017 12.6
pT,tt̄ 2 [30, 120] GeV 0.0003 0.5 1.003±0.007 -0.0015±0.0002 0.0015 12.3
pT,tt̄ 2 [120, •] GeV 0.0012 0.4 0.970±0.009 0.0013±0.0003 0.0013 8.6
mtt̄ 2 [0, 500] GeV 0.0035 0.4 0.986±0.010 0.0007±0.0002 0.0006 4.4
mtt̄ 2 [500, 750] GeV 0.0039 0.6 0.995±0.004 0.0002±0.0001 0.0002 2.3
mtt̄ 2 [750, 1000] GeV 0.0049 1.0 1.012±0.011 0.0013±0.0004 0.0014 6.5
mtt̄ 2 [1000, 1500] GeV 0.0046 0.9 1.008±0.019 0.0000±0.0007 <0.0001 <0.1
mtt̄ 2 [1500, •] GeV 0.0104 0.9 0.978±0.080 0.0017±0.0026 0.0015 1.1
bZ,tt̄ 2 [0.0, 0.3] 0.0002 0.3 0.987±0.028 0.0003±0.0004 0.0003 1.3
bZ,tt̄ 2 [0.3, 0.6] 0.0016 0.3 0.988±0.009 0.0002±0.0002 0.0002 1.5
bZ,tt̄ 2 [0.6, 0.8] 0.0029 0.5 1.011±0.006 -0.0004±0.0002 0.0003 3.1
bZ,tt̄ 2 [0.8, 1.0] 0.0081 0.7 0.997±0.005 0.0013±0.0001 0.0013 15.1

Table 7.5 Linearity results with Protos reweighting of Att̄
C for the best bin edges, x. 300

pseudo-experiments with full-systematic uncertainties were used in the unfolding. The slopes,
offsets and biases (for the expected asymmetries given in the second column) are shown.
The last column shows the biases as a percentage of the total Att̄

C uncertainties, determined in
Section 7.8.
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Att̄
C x

Linear reweighting

Slope Offset |Bias| |Bias|
Total unc. (%)

Inclusive 0.0036 0.5 0.935±0.003 0.0002±0.0001 <0.0001 <0.1
pT,tt̄ 2 [0, 30] GeV 0.0090 0.6 0.934±0.011 0.0012±0.0002 0.0006 4.5
pT,tt̄ 2 [30, 120] GeV 0.0003 0.5 0.950±0.010 -0.0008±0.0002 0.0008 6.8
pT,tt̄ 2 [120, •] GeV 0.0012 0.4 0.922±0.014 0.0004±0.0002 0.0004 2.5
mtt̄ 2 [0, 500] GeV 0.0035 0.4 0.950±0.015 0.0007±0.0002 0.0006 3.9
mtt̄ 2 [500, 750] GeV 0.0039 0.6 0.921±0.004 0.0001±0.0001 0.0002 3.0
mtt̄ 2 [750, 1000] GeV 0.0049 1.0 0.973±0.012 0.0013±0.0003 0.0012 5.8
mtt̄ 2 [1000, 1500] GeV 0.0046 0.9 0.888±0.023 -0.0023±0.0007 0.0032 8.3
mtt̄ 2 [1500, •] GeV 0.0104 0.9 0.917±0.100 0.0016±0.0026 0.0008 0.6
bZ,tt̄ 2 [0.0, 0.3] 0.0002 0.3 0.955±0.047 -0.0010±0.0003 0.0010 5.0
bZ,tt̄ 2 [0.3, 0.6] 0.0016 0.3 0.972±0.012 0.0001±0.0002 <0.0001 0.2
bZ,tt̄ 2 [0.6, 0.8] 0.0029 0.5 0.990±0.007 -0.0006±0.0002 0.0007 6.3
bZ,tt̄ 2 [0.8, 1.0] 0.0081 0.7 0.919±0.005 0.0012±0.0001 0.0006 6.5

Table 7.6 Linearity results with linear reweighting of Att̄
C for the best bin edges, x. 300

pseudo-experiments without systematic uncertainties were used in the unfolding. The format
is the same as in Table 7.5.

7.5.2 Binning Optimisation for Dilepton D|h |

As for tt̄ D|y|, x values were scanned for the inclusive and differential dilepton D|h | bins,

initially with 100 pseudo-experiments for each Protos point without systematic uncertainties.

The inclusive slopes and offsets are shown in Figure 7.19.

All of the bin edges give slopes of 0.9 or less, which would lead to a large bias with respect

to the total uncertainty if the unfolded data gave an asymmetry much larger than the MC

expectation. An attempt to reduce the bias was to split D|h | into more than four bins. Table

7.7 shows the slopes and offsets for these cases.
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Fig. 7.19 The slopes (left) and offsets (right) against x for the inclusive leptonic asymmetry
bin scan with 100 pseudo-experiments. The uncertainties are statistical.

D|h | binning Slope Offset

6 bins: ± [0, 1.4, 2.2, 5] 0.787 ± 0.003 0.00049 ± 0.00005
6 bins: ± [0, 1.4, 2.5, 5] 0.825 ± 0.002 0.00036 ± 0.00004

10 bins: ± [0, 0.2, 0.6, 1, 1.5, 5] 0.936 ± 0.003 -0.00003 ± 0.00004

20 bins:
± [0, 0.1, 0.2, 0.4, 0.6,
0.8, 1, 1.2, 1.5, 1.8, 5]

0.953 ± 0.003 -0.00006 ± 0.00004

24 bins:
± [0, 0.1, 0.2, 0.4, 0.6, 0.8,

1, 1.2, 1.5, 1.8, 2, 2.5, 5]
0.868 ± 0.002 0.00011 ± 0.00004

30 bins:
± [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8,

1, 1.1, 1.2, 1.5, 1.8, 2, 2.5, 5]
0.869 ± 0.003 0.00039 ± 0.00004

Table 7.7 Slopes and offsets for additional bins in D|h |. The binning in the square brackets
is symmetrical between positive and negative D|h | and is identical at reconstructed- and
truth-level. 100 pseudo-experiments were performed without systematic uncertainties.

The 20 bin configuration does give better linearity but this becomes worse again for the

24 and 30 bin configurations. In all cases the slope is less than one so it is clear the

bias is coming from another source. One possible source is from a detector acceptance

effect. As described in Section 3.4, the inner detector and electromagnetic calorimeter only

cover the phase space |h | < 2.5 and the muon system |h | < 2.7 (though selection was for

|h | < 2.5) and so all leptons fall within |h | < 2.5 (see Sections 6.3.1 and 6.3.2). Therefore,

|D|h || = ||hl+ | � |hl� || < 2.5. Although this also applies to the tt̄ events, the jets can
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be reconstructed up to |y| < 4.9 so it is possible to reconstruct top quarks in the range

|D|y|| < 4.9. The acceptance effect is shown in Figure 7.20, where the cut-off at |D|h || < 2.5

can be seen in the ratio plot.
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Fig. 7.20 The reconstructed- and truth-level tt̄ D|y| (upper plot) and dilepton D|h | (lower
plot) distributions. All four channels are merged for display purposes. Ratios are shown at
the bottom of each plot.

Approximately 2% of the truth-level events fall in D|h |<�2.5 and a further 2% in D|h |> 2.5.

If these truth events are reweighted with the Protos +4% asymmetry, this changes to 1.85%

and 2.16% for D|h | < �2.5 and D|h | > 2.5, respectively. However, the lack of detector

acceptance means these events are not propagated to reconstructed-level. The response
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matrices therefore have probabilities of zero for |D|h || > 2.5 regardless of changes in truth-

level asymmetry at |D|h || > 2.5. For the Protos +4% asymmetry, the unfolded asymmetry

will therefore be less than the actual truth-level value. To see this effect in FBU, the 6 bin

configuration, [�5, �2.5, �1.4, 0, 1.4, 2.5, 5] (applied at reconstructed- and truth-level),

was studied. Since there are no events in the outermost bins at reconstructed-level, there

are no preferred numbers of truth-level events in the unfolding for these bins, meaning all

possibilities in the flat prior distribution, [0, 2t̃ j] are equally likely. The posterior distributions

for the outermost two truth bins for the Protos +4% asymmetry can be seen in the upper

plots of Figure 7.21. The mean value is simply the expected SM t̃ j and not the expected

Protos value. Hence the unfolded asymmetry is smaller than expected. For the Protos �4%

asymmetry, the same effect is observed whereby the outer truth bins again match the SM

expectation, which leads to a more positive unfolded asymmetry than expected. This can

be seen in the lower plots of Figure 7.21. Table 7.8 shows a summary of the expected

truth-level and unfolded All
C values for the Protos +4% and �4% asymmetries in this 6 bin

configuration.
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Fig. 7.21 Unfolded outer bin posterior distributions in [�5, �2.5] (left) and [2.5, 5] (right)
for the +4% (upper) and �4% (lower) Protos reweighting working points. No reconstructed-
level events occur in these bins. A clearly unsuitable Gaussian fit (red curve) to the flat
posterior distribution yields a mean (red vertical line) that does not overlap with the truth
Protos expectation (green vertical line).

Additional Protos asymmetry Expected truth All
C Unfolded All

C

+4% 0.04546 ± 0.00006 0.0217 ± 0.0163

�4% -0.03843 ± 0.00006 -0.0175 ± 0.0165

Table 7.8 The expected truth-level and unfolded All
C values for the 6 bin configuration.

A 4 bin configuration, [�5, � 1.4, 0, 1.4, 5], was also considered. Here, reconstructed-

level events can fall in the outer bins and so the posterior distributions should be Gaussian.

However, the response in bin [1.4, 5] is a smearing of the response in [1.4, 2.5] and the zero

response in [2.5, 5], so the unfolded truth event counts (and hence asymmetries) still lie
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closer to the SM expectations rather than the Protos expectations.
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Fig. 7.22 Unfolded outer bin posterior distributions in [�5, �1.4] (left) and [1,4, 5] (right)
for the +4% (upper) and �4% (lower) Protos reweighting working points. Since there are
reconstructed-level events, the unfolded posterior distributions are Gaussian but their means
do not reflect the expected Protos truth values.

It is this effect that caused the slopes of the unfolded against truth All
C values to be less than

one in the bin scans. The unfolded Protos +4% and �4% outer truth bins are shown in

the upper and lower plots of Figure 7.22, respectively. Table 7.9 shows a summary of the

expected truth-level and unfolded All
C values for the Protos +4% and �4% asymmetries in

this 4 bin configuration.
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Additional Protos asymmetry Expected truth All
C Unfolded All

C

+4% 0.04546 ± 0.00006 0.0234 ± 0.0012

�4% -0.03843 ± 0.00006 -0.0192 ± 0.0012

Table 7.9 The expected truth-level and unfolded All
C values for the 4 bin configuration.

To combat the bias, it was decided to calculate the All
C values in the reduced phase space of

|D|h || < 2.5 to ensure there was always detector acceptance for the events at truth-level. Bin

scans were repeated, this time with just 20 pseudo-experiments per Protos working point

without systematic uncertainties for a quick test, and the slopes and offsets can be seen in

Figure 7.23.
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Fig. 7.23 The slopes (left) and offsets (right) against x for the inclusive leptonic asymmetry
bin scan with 20 pseudo-experiments in the reduced phase space, |D|h || < 2.5. The varied
bin edges are identical at truth- and reconstructed-level. The uncertainties are statistical.

There is a large improvement with respect to Figure 7.19 but the slopes are still less than one.

FBU allows the truth- and reconstructed-level binning to differ, so the best bin edge from

the slope and offset plots, x = 1.4, was kept constant at reconstructed-level and a scan of

just the truth bins was undertaken. The results are shown in Figure 7.24. From interpolating

the plot, a truth bin edge at x = 0.9 was likely to give the best slope and a good offset. This

was verified with 300 full-systematic pseudo-experiments for each Protos point and 300
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statistical-only pseudo-experiments for each linear reweighting point. The process was also

repeated for the differential bins in dilepton m, pT and bZ . The final reconstructed- and

truth-level bin edges with their slopes, offsets and biases for the Protos and linear reweighting

methods are shown in Tables 7.10 and 7.11, respectively. Good linearity is obtained with

both methods, yielding small expected biases that are in good agreement between the two

methods.
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Fig. 7.24 The slopes (left) and offsets (right) against x for the inclusive leptonic asymmetry
bin scan with 20 pseudo-experiments in the reduced phase space, |D|h || < 2.5. The bin
edges are kept constant at x = 1.4 at reconstructed-level and varied only at truth-level. The
uncertainties are statistical.
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All
C x

Protos reweighting

Slope Offset |Bias| |Bias|
Total unc. (%)

Inclusive 0.0019 1.4 (0.9) 0.999±0.002 0.0000±<0.0001 <0.0001 1.5
pT,ll̄ 2 [0, 20] GeV 0.0015 1.6 (1.0) 1.008±0.009 0.0003± 0.0001 0.0003 4.9
pT,ll̄ 2 [20, 70] GeV 0.0017 1.4 (0.9) 0.996±0.003 -0.0001±<0.0001 0.0001 4.1
pT,ll̄ 2 [70, •] GeV 0.0022 1.2 (0.6) 1.002±0.003 -0.0001±<0.0001 0.0001 3.7
mll̄ 2 [0, 200] GeV 0.0016 1.2 (0.6) 1.001±0.002 0.0000±<0.0001 <0.0001 <0.1
mll̄ 2 [200, 300] GeV 0.0036 1.6 (1.0) 0.999±0.005 0.0001± 0.0001 0.0001 1.2
mll̄ 2 [300, 400] GeV 0.0049 1.6 (1.2) 0.984±0.009 -0.0002± 0.0002 0.0003 3.7
mll̄ 2 [400, •] GeV 0.0057 1.6 (1.2) 0.980±0.014 0.0009± 0.0002 0.0008 6.0
bZ,ll̄ 2 [0.0, 0.3] 0.0001 0.8 (0.9) 0.969±0.008 -0.0001± 0.0001 0.0001 4.6
bZ,ll̄ 2 [0.3, 0.6] 0.0008 1.6 (1.4) 1.002±0.004 0.0001± 0.0001 0.0001 4.7
bZ,ll̄ 2 [0.6, 0.8] 0.0018 1.8 (1.0) 1.004±0.003 -0.0003± 0.0001 0.0003 9.0
bZ,ll̄ 2 [0.8, 1.0] 0.0040 1.8 (1.4) 0.988±0.003 0.0004± 0.0001 0.0003 11.1

Table 7.10 Linearity results with Protos reweighting of All
C for the best bin edges, x. The best

reconstructed-level edge is shown without brackets and the best truth-level edge within brack-
ets. 300 pseudo-experiments with full-systematic uncertainties were used in the unfolding.
The slopes, offsets and biases (for the expected asymmetries given in the second column)
are shown. The last column shows the biases as a percentage of the total All

C uncertainties,
determined in Section 7.8.

All
C x

Linear reweighting

Slope Offset |Bias| |Bias|
Total unc. (%)

Inclusive 0.0019 1.4 (0.9) 0.991±0.001 0.0000±<0.0001 <0.0001 2.2
pT,ll̄ 2 [0, 20] GeV 0.0015 1.6 (1.0) 1.004±0.005 0.0002± 0.0001 0.0002 2.6
pT,ll̄ 2 [20, 70] GeV 0.0017 1.4 (0.9) 0.988±0.002 -0.0001±<0.0001 0.0002 7.4
pT,ll̄ 2 [70, •] GeV 0.0022 1.2 (0.6) 0.994±0.002 0.0000±<0.0001 <0.0001 1.0
mll̄ 2 [0, 200] GeV 0.0016 1.2 (0.6) 0.991±0.001 0.0000±<0.0001 <0.0001 2.0
mll̄ 2 [200, 300] GeV 0.0036 1.6 (1.0) 0.991±0.003 0.0002± 0.0001 0.0001 3.1
mll̄ 2 [300, 400] GeV 0.0049 1.6 (1.2) 0.973±0.006 -0.0002± 0.0001 0.0004 4.1
mll̄ 2 [400, •] GeV 0.0057 1.6 (1.2) 0.981±0.009 0.0006± 0.0002 0.0005 4.2
bZ,ll̄ 2 [0.0, 0.3] 0.0001 0.8 (0.9) 0.967±0.004 -0.0001± 0.0001 0.0001 3.9
bZ,ll̄ 2 [0.3, 0.6] 0.0008 1.6 (1.4) 0.996±0.002 0.0001± 0.0001 0.0001 2.0
bZ,ll̄ 2 [0.6, 0.8] 0.0018 1.8 (1.0) 1.000±0.002 -0.0002± 0.0001 0.0002 7.2
bZ,ll̄ 2 [0.8, 1.0] 0.0040 1.8 (1.4) 0.986±0.002 0.0003± 0.0001 0.0003 8.8

Table 7.11 Linearity results with linear reweighting of All
C for the best bin edges, x. 300

pseudo-experiments without systematic uncertainties were used in the unfolding. The format
is the same as in Table 7.10.
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7 Unfolding and Results in the Dilepton Channel

7.6 Treatment of Systematic Uncertainties

Before processing with FBU, the systematic uncertainties were transformed to remove

unnecessary effects, statistical fluctuations and to be compatible with the framework. The

following sections describe these modifications and their manipulation within FBU.

7.6.1 Signal Modelling Normalisation

For all of the signal-modelling uncertainties (described in Section 6.8.2), their overall nor-

malisations with respect to the expected nominal (unshifted) events were removed. This is

since the asymmetries from Equations 5.8 and 5.9 are calculated as fractions. Normalisation

effects in the signal cancel between the numerator and denominator. Thus, only the shape

effect of the systematic uncertainty across the D|y| and D|h | bins with respect to the nominal

expectation needs to remain.

However, a signal modelling uncertainty can alter the acceptance of the signal to enter a

certain channel. In removing the normalisation effect from the signal modelling systematic

uncertainties, this freedom is significantly reduced. To resolve this, new relative normalisation

uncertainties were created in three of the four channels: ee+µµ � (2 b-tag), eµ (1 b-tag) and

eµ � (2 b-tag). An additional degree of freedom exists in the simultaneous fitting of events

in the reconstructed-level bins across all the channels so there are four degrees of freedom in

total. The three new NPs were given flat prior distributions between 0% and 200% of the

expected normalisation in that channel. The intention was for the FBU fitting procedure to

greatly constrain the normalisation ranges relative to the large prior distributions.
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7 Unfolding and Results in the Dilepton Channel

7.6.2 Bootstrapping

It is possible for statistical fluctuations to occur in the systematic uncertainties due to limited

MC sample sizes. A bootstrapping method [186] was used, where for each systematically

shifted and nominal event, 100 random weights from a Poisson distribution of P(l = 1)

were generated. Each weight then contributed to a new histogram, giving 100 replicas of

both the systematically shifted and nominal D|y| or D|h | distributions. The run and event

numbers were used as random seeds for generating the weights to ensure the events in the

shifted and nominal distributions behaved in a correlated way. For each replica, the relative

difference between the shifted and nominal distribution in each bin was calculated. The mean

relative difference over the replicas was taken as the systematic uncertainty and the standard

deviation as the statistical uncertainty. The following algorithm was then applied:

• For each D|y| or D|h | bin, calculate the significance, s , of the systematic uncertainty

events minus the nominal events, with respect to the statistical uncertainty.

• If any of the four bins differ by more than 2s , the systematic uncertainty for that

sample is significant, so do not modify the uncertainty.

• If all of the bins differ by less than 2s , merge the four bins, and recalculate the

systematic shift with respect to nominal.

• If the merged shift differs by more than 2s , set the systematic uncertainty in all four

bins to this merged value, effectively removing the shape but keeping the normalisation

of the uncertainty.

• If the merged shift differs by less than 2s , the systematic uncertainty is likely a

statistical fluctuation so set all four bins of the uncertainty to zero.

This was undertaken for all the signal and background samples separately that are affected by

the systematic uncertainties. The criterion of 2s was used rather than 1s due to there being

four bins. In binomial statistics, the probability that a fluctuation will pass the 2s threshold is
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7 Unfolding and Results in the Dilepton Channel

0 5 10 15 20

30000
40000
50000
60000
70000
80000

N
um

be
r o

f e
ve

nt
s

 (1 b-tag)µµee+  2 b-tags)≥ (µµee+  (1 b-tag)µe  2 b-tags)≥ (µe

 Pow+Py8tt

 resolution para.miss
TE

0 5 10 15 20
|y| binΔ

0.4−

0.3−

0.2−

0.1−

0

0.1

 [%
]

N
om

Sy
st

.-N
om

0 5 10 15 20

30000
40000
50000
60000
70000
80000

N
um

be
r o

f e
ve

nt
s

 (1 b-tag)µµee+  2 b-tags)≥ (µµee+  (1 b-tag)µe  2 b-tags)≥ (µe

 Pow+Py8tt

 resolution para.miss
TE

0 5 10 15 20
|y| binΔ

0.4−

0.3−

0.2−

0.1−

0

0.1

 [%
]

N
om

Sy
st

.-N
om

Fig. 7.25 The parallel Emiss
T resolution systematic uncertainty on the tt̄ signal before (upper

plot) and after (lower plot) bootstrapping for the four D|y| bins in each channel of the inclusive
case. The x-axis refers to the bin number with a gap of one bin between each channel.

1�0.954 = 19%. It is therefore unlikely a true statistical fluctuation will pass the bootstrap

criteria. For 1s , this is 1�0.684 = 79% so the majority of statistical fluctuations would be

greater than the threshold and not be affected by the bootstrapping method. An example of

bootstrapping for the parallel Emiss
T resolution uncertainty (described in 6.8.1.9 and labelled

"Emiss
T resolution para.") is shown in Figure 7.25. For the two eµ channels, all four bins in

D|y| for the uncertainty fall within 2s of the nominal expected MC so the bins were merged

to remove the shape effect. The merged shift with respect to nominal was still less than 2s
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7 Unfolding and Results in the Dilepton Channel

so the uncertainty was set to zero in these channels. For the ee+µµ channels, the shifts in

the individual D|y| bins are sufficiently large so the uncertainty was not bootstrapped.

7.6.3 Symmetrisation

FBU does not allow asymmetric up and down variations of systematic uncertainties. For

two-sided systematic uncertainties such as the jet energy scale NPs, the average of the up

and down variation was taken as a symmetric two-sided systematic variation on the nominal

sample. For one-sided systematic uncertainties such as the jet energy resolution NPs and

hdamp, the difference between the shifted variation and the nominal sample was taken as the

uncertainty and symmetrised.

7.6.4 Signal Statistical Uncertainties

The likelihood fitting does not incorporate statistical uncertainties in the MC signal events.

This was resolved by smearing the bins of the response matrix 500 times according to Poisson

statistics to give 500 matrices. The unfolding was then repeated for each smeared matrix and

a distribution of AC values obtained. The standard deviation of the distribution was taken as

the signal MC statistical uncertainty and added in quadrature to the overall AC uncertainty.

Figure 7.26 shows an example for the inclusive Att̄
C case. Summaries of the smearing results

are shown later in Tables 7.12 and 7.13.
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7 Unfolding and Results in the Dilepton Channel

Fig. 7.26 An example distribution of Att̄
C in the inclusive case for 500 smeared response

matrix unfoldings. The histogram is shifted to centre on zero and a Gaussian fit yields the
mean and standard deviation shown by the red vertical lines.

7.6.5 Background Statistical Uncertainties

As for the signal, FBU does not account for statistical uncertainties in the MC background

samples. Since the reconstructed-level background MC is used directly in the likelihood,

each background D|y| or D|h | bin, i, was multiplied by an additional NP (gi parameter). The

sampling of each gi value was controlled by a Poisson prior probability distribution based on

the background bin’s statistical uncertainty. Equation 7.10 was modified to become:

bi(qqq o,qqq bn,ggg) = gibi(qqq o,qqq bn)⇥Poisson(ti|giti), (7.14)

where ti = (bi(0)/dbi)2, and bi(0) and dbi is the MC background yield and its statistical

uncertainty, respectively.
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7 Unfolding and Results in the Dilepton Channel

7.6.6 Pulls and Constraints

As described in Section 7.2.5, the NP posterior distribution of a systematic uncertainty can

be narrower (or occasionally wider) than its prior distribution in the FBU likelihood fitting.

This means that the uncertainty has been constrained and its effect is smaller (or larger in rare

cases) on the overall charge asymmetry uncertainty, compared with the initial expectation.

The mean value of the NP posterior distribution can also be displaced (pulled) from the

prior distribution’s mean, which is centred on zero. This has the effect of shifting the MC

expectation up or down. The pulls and constraints act to increase the likelihood in the FBU

fitting procedure. Figure 7.27 shows an example pull and constraint for a JER NP in the

inclusive case, where the ATLAS data (rather than MC simulation) were unfolded. The

mean of the posterior distribution is pulled slightly in the negative direction by 0.067 relative

to the prior distribution, which shifts the expected number of events down. The posterior

distribution is also narrower than the prior distribution, constrained by a factor of 0.87, so

will have a smaller effect on the overall Att̄
C uncertainty had its prior value been kept.
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Fig. 7.27 A jet energy resolution uncertainty ("JER NP1") in the inclusive tt̄ case, where the
ATLAS data have been unfolded. The Gaussian prior distribution (with a standard deviation
of one on the x-axis) is shown in black and the constrained posterior distribution in blue with
a fitted Gaussian is shown in red.
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7 Unfolding and Results in the Dilepton Channel

To visualise the effects from all of the NPs, the unfolded D|y| and D|h | truth distributions

were folded back to reconstructed-level with the SM response matrices, the backgrounds

added on, the pulls included, and resultant systematic uncertainties shown. These are known

as post-marginal plots. There should be good agreement between the ATLAS data and folded

values if the likelihood fitting has worked and not introduced bias. In addition, reconstructed-

level plots where FBU was not run and the systematic uncertainties were simply summed

in quadrature for the expected MC reconstructed-level bins were created. These are known

as pre-marginal plots. Here, the data-MC agreement may not be as good. In both sets of

plots, the background MC statistical uncertainties are included in the light grey uncertainty

band (as they are accounted for the in the FBU gi parameters) but the signal MC statistical

uncertainties are not since they do not directly go into the likelihood. Figures 7.28 – 7.35

show the comparisons for the inclusive and differential bins in D|y| and D|h |.
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Fig. 7.28 Pre-marginal (upper plot) and post-marginal (lower plot) events in the inclusive
D|y| bins. The four channels are shown side-by-side. The x-axis refers to the bin number
with a gap of one bin between each channel.
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Fig. 7.29 Pre-marginal (upper plot) and post-marginal (lower plot) events in the D|y| bins
across the three pT,tt̄ bins per channel. The x-axis refers to the bin number with a gap of one
bin between each differential distribution and channel.
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Fig. 7.30 Pre-marginal (upper plot) and post-marginal (lower plot) events in the D|y| bins
across the five mtt̄ bins per channel.
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Fig. 7.31 Pre-marginal (upper plot) and post-marginal (lower plot) events in the D|y| bins
across the four bZ,tt̄ bins per channel.
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Fig. 7.32 Pre-marginal (upper plot) and post-marginal (lower plot) events in the inclusive
D|h | bins.
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Fig. 7.33 Pre-marginal (upper plot) and post-marginal (lower plot) events in the D|h | bins
across the three pT,ll̄ bins per channel.
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Fig. 7.34 Pre-marginal (upper plot) and post-marginal (lower plot) events in the D|h | bins
across the four mll̄ bins per channel.
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Fig. 7.35 Pre-marginal (upper plot) and post-marginal (lower plot) events in the D|h | bins
across the four bZ,ll̄ bins per channel.
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In comparing the pre-marginal and post-marginal ratio plots, the systematic uncertainties

are greatly reduced, particularly in the D|y| bins, which suffer from greater fluctuations than

in the D|h | bins, due to the complications in tt̄ reconstruction. The reductions come about

due to constraints and correlations between the NPs in the likelihood sampling. Shifts in

the post-marginal folded events with respect to the pre-marginal MC expectations can be

clearly seen in the inclusive plots, with upward shifts for the outer two D|y| and D|h | bins and

downward shifts for the inner two bins. Moreover, the data in the positive bins looks to be

even greater than in the negative bins, compared with the MC predictions, already suggesting

that the data asymmetries are larger than the predictions at reconstructed-level. Across the

differential bins such as the four mll̄ bins in Figure 7.34, the overall normalisations in the

post-marginal plots are adjusted, with the low mll̄ bins shifted up and the high mll̄ bins shifted

down.

In general, there is excellent data-MC agreement within uncertainties following the FBU

fitting procedure, even with the pulls and reductions in the systematic uncertainties. One

can be confident that the pulls and constraints do not bias the charge asymmetry since they

come about due to information gained in combining the channels. Should the unfolded data

asymmetry not be consistent with the SM, the stress tests from Section 7.5 demonstrate the

asymmetries are in good agreement with the injected BSM asymmetries.

7.7 Systematic Uncertainty Ranking

In order to determine which systematic uncertainties were the most important for charge

asymmetry following the FBU procedure, a ranking procedure was performed. The pull (P)

and constraint (C) in each NP’s posterior distribution compared with its prior distribution

was first obtained from the nominal full-systematic unfolding results. Then, for each NP, its

individual effect on AC was determined with the following algorithm:
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7 Unfolding and Results in the Dilepton Channel

• Set the NP’s qk value to P+1 (pre-marginal up variation) or P�1 (pre-marginal down

variation).

• Perform unfolding for each variation, freezing qk in the likelihood at its set value (for

the NP under study) but letting the qk values of all the other NPs float as usual.

• Calculate the difference between the new AC value and the nominal full-systematic AC

value for both the up and down variation (DAup, pre
C and DAdown, pre

C ).

• Repeat the unfolding for the constrained variations of the NP, freezing qk at P+C (post-

marginal up variation) or P�C (post-marginal down variation). Again, calculate the

the difference in AC compared with the nominal AC value for each variation (DAup, post
C

and DAdown, post
C ).

The systematic uncertainty variations were then plotted and ranked according to the average

post-marginal difference:

1
2

⇥ (|DAup, post
C |+ |DAdown, post

C |). (7.15)

Figures 7.36 and 7.37 show the 20 highest ranked systematic uncertainties for the Att̄
C and All

C

inclusive cases, respectively, where the MC simulation and data were unfolded. The blue bars

are for the events being shifted up by the NPs and the red bars for the events being shifted

down. The pre-marginal results are given by the empty bars and the post-marginal results

by the filled bars. For the background gi NPs (where i refers to the bin number) and signal

normalisation NPs, the pre-marginal bars are not shown since their values are intentionally

large to give the fitting procedure freedom to constrain them. The purple and green points

show the nominal full-systematic unfolding pulls of the NPs. Purple corresponds to a positive

pull and green a negative pull. For most NPs, if there were no pull, the point would be

centred at zero on the plots. However, for the background gi NPs and signal normalisation

NPs, a centering at +1 would correspond to no pull. The error bars on the points show the
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magnitude of the nominal full-systematic unfolding constraint. An error bar spanning �1 to

+1 means there is no constraint.
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Fig. 7.36 The 20 highest ranked NPs (according to the post-marginal results) in the inclusive
tt̄ asymmetry. Left: unfolding in MC simulation. Right: unfolding in data.
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Fig. 7.37 The 20 highest ranked NPs (according to the post-marginal results) in the inclusive
leptonic asymmetry. Left: unfolding in MC simulation. Right: unfolding in data.
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7 Unfolding and Results in the Dilepton Channel

The ordering of the systematic uncertainty ranking is similar in the MC simulation and data

unfolding. There are only very small pulls in the plots on the left since there is perfect

mapping of the truth-level to reconstructed-level events through the response matrix, so

there should be minimal shifts in the MC. For data, there is a not a perfect mapping, so the

likelihood fit can shift the numbers of folded events through systematic uncertainty pulls.

In the tt̄ asymmetries, the highest ranked systematic uncertainties are typically the signal

modelling, JES and JER NPs. The purple and green error bars show that the parton shower

and hadronisation signal modelling uncertainty is constrained, which leads to an important

reduction in the overall FBU uncertainty because of its high rank. The JES and JER uncer-

tainties are high up because of large migrations between bins in the D|y| distributions where

the tt̄ systems are reconstructed using information from jet kinematics.

For the leptonic asymmetries, the effect from the systematic uncertainties is typically smaller

than on the tt̄ asymmetries. This is because the JER and JES uncertainties, for example,

cause few migrations between D|h | bins and mostly affect the event selection. The gi factors

now appear higher in ranking. Figure 7.38 shows the MC background statistical uncertainties

for the D|h | bins of the four channels in the inclusive leptonic case. It can be seen that the

Z + jets uncertainties are dominant for the ee+ µµ channels and will be the largest con-

tribution to the gi NPs. This adds further motivation for applying the large Emiss
T selection cuts.

The tt̄ signal normalisation uncertainties are also significant for the leptonic asymmetries.

These are similar in magnitude to those in the tt̄ asymmetries, but the other systematic

uncertainties are smaller so the normalisation uncertainties shift up in the ranking. However,

as indicated by the gi uncertainties and from the overall uncertainties discussed later in

Table 7.13, the statistical uncertainties are dominant for the leptonic asymmetries and the
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7 Unfolding and Results in the Dilepton Channel

Fig. 7.38 The MC statistical uncertainties for the individual backgrounds (coloured lines)
and the total background (black lines). The upper plot shows the absolute uncertainties and
the lower plot the uncertainties as a fraction of the background events. Each group of four
bins corresponds to the D|h | bin content in a channel.

systematic uncertainties have little effect on the overall All
C uncertainties.

Whilst not so much the case for the inclusive cases, the top quark mass modelling systematic

uncertainty was very highly ranked and constrained in the differential bins. Example system-

atic uncertainty ranking plots for the unfolded MC simulation in the pT,tt̄ and mtt̄ bins are

shown in Figures 7.39 and 7.40.

Being a physical quantity, the constraint could be interpreted as a precise measurement on

the top mass, with its prior uncertainty of 173 � 172.5 = 0.5 GeV being greatly reduced.

For an analysis not focussing on a top mass measurement, it was important to understand

this constraint. Firstly, the 173 GeV mass point was used to define the uncertainty as it gave

the largest change in events across D|y| and D|h | as opposed to 171, 172 and 174 GeV, and
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Fig. 7.39 The 20 highest ranked NPs for the three pT,tt̄ bins, just for the unfolded MC
simulation.

it was also made shape-only. The variation of the systematic uncertainty across D|y| for

the four channels in the pT,tt̄ and mtt̄ bins is shown in Figure 7.41. Almost all bins of the

uncertainty are set to zero due to bootstrapping except for a few outliers. FBU was able to

use this information to place a large constraint on the uncertainty but not set it to zero.

It is likely the bins not meeting the bootstrap criteria do show large statistical fluctuations

in reality. To see if charge asymmetry was truly dependent on top mass, unfolding tests

were undertaken on all the mass points. For each 171, 172, 173 and 174 GeV variation, 100
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Fig. 7.40 The 20 highest ranked NPs for the five mtt̄ bins, just for the unfolded MC simulation.
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Fig. 7.41 The 173 GeV top mass shape systematic uncertainty after bootstrapping for the tt̄
signal MC. For each channel, a group of four D|y| bins shows the events in each differential
pT,tt̄ bin (upper plot) and mtt̄ bin (lower plot).

pseudo-experiments were created, based on their AFII simulation. Each pseudo-experiment

was a smearing of the D|y| or D|h | bin content according to a Gaussian function based on the

bin’s MC statistical uncertainty. The AFII 172.5 GeV baseline was then subtracted from each
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7 Unfolding and Results in the Dilepton Channel

pseudo-experiment and the difference added to the full-simulation 172.5 GeV nominal tt̄

sample. Unfolding with the full-simulation response matrix (without including the systematic

uncertainties) was then undertaken to give 100 results for each mass point. The mean and

standard deviation of the distribution of the unfolded results for that mass point was taken as

the AC value and uncertainty. The unfolded results were compared with the truth-level MC

values for the mass. Figure 7.42 shows these results for the pT,tt̄ and mtt̄ bins, as well as the

reconstructed-level asymmetries. The full-simulation 172.5 GeV points are also shown but

without error bars since they are included in the uncertainties of the other mass points.

Across all differential bins, there is no dependence on the truth-level asymmetry with top

mass. The unfolded asymmetries do show some variation (following the shape of the

reconstructed-level asymmetries), likely due to migrations between the differential bins, but

there is no obvious trend with top mass and the statistical uncertainties are large. Given these

results, as well as the fact that the 173 GeV mass points typically show the largest variations

across D|y| compared with the other mass points, and that even in the 173 GeV case, most of

the bins were set to zero through bootstrapping, it was decided (in the approval process) to

drop the top mass uncertainty altogether. However, this is subject to change, especially when

new mass samples of higher statistics are available.
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Fig. 7.42 Reconstructed-level Att̄
C values (red points in upper plots), and unfolded and truth-

level Att̄
C values (black and green points in lower plots) against top quark mass for the pT,tt̄

(left) and mtt̄ (right) bins.

7.8 Expected Charge Asymmetries

Tables 7.12 and 7.13 show the breakdown of the expected unfolded Att̄
C and All

C values with

their uncertainties, respectively. In all cases, the statistical uncertainties are the largest

sources of uncertainty. This is in great part due to the correlations and constraints placed on
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7 Unfolding and Results in the Dilepton Channel

the systematic uncertainties from the FBU likelihood method, which from the pre-marginal

plots in Section 7.6.6 would otherwise be more similar in size to the statistical uncertainties.

The systematic uncertainties are smallest for the All
C values since they have only a small

impact on the event selection and mostly affect the reconstructed tt̄ (rather than dilepton)

quantities. The biases and statistical uncertainties in the response matrices only make small

contributions to the overall uncertainties when summed in quadrature with the unfolding

uncertainties, although the bias uncertainties will scale with the AC values in data, where the

linearity test slopes (see Section 7.5) are not equal to one.

The unfolded asymmetries are fully consistent with the truth-level asymmetries (also given

in Tables 7.12 and 7.13) showing the FBU technique gives good closure. The expected asym-

metries are small (typically less than 1%). The leptonic asymmetries are typically smaller

than the tt̄ asymmetries (a factor of 1.8 smaller in the inclusive case) but the uncertainties

are also smaller (a factor of 2.9 in the inclusive case). Clear trends are seen across the

differential bins, with increasing asymmetry for mtt̄ , bZ,tt̄ , pT,ll̄ , mll̄ and bZ,ll̄ , but decreasing

asymmetry for pT,tt̄ . However, in all the tt̄ asymmetries, the uncertainties pass through zero

asymmetry, suggesting there may be limited sensitivity to charge asymmetry if the AC values

in data match those of the SM. This is particularly the case for the last mtt̄ bin, which has

a very large statistical uncertainty due to very few expected events at high invariant mass.

Nonetheless, in the combination with results from the lepton + jets channel, the uncertainties

are reduced significantly (see Section 8.3). Furthermore, if the data lie greatly above or

below the expectations, their uncertainty bands may not pass through zero, demonstrating a

discrepancy with the SM.
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7 Unfolding and Results in the Dilepton Channel

7.9 ATLAS Data Charge Asymmetries

Following optimisation of the analysis using the simulated MC, the ATLAS data were un-

folded. The unfolded (and expected NLO Powheg + Pythia8 truth-level) Att̄
C and All

C values

together with a breakdown of their uncertainties are shown in Tables 7.14 and 7.15, respec-

tively. These are preliminary results and small changes could arise as the approval process

continues.

The bias uncertainties were determined using the data AC central values, and the slopes and

offsets from Protos reweighting (see Equation 7.13). These are similar in magnitude to the

expected MC bias uncertainties shown in Tables 7.12 and 7.13. They make negligible contri-

butions to the overall uncertainties, which are again dominated by statistical uncertainties.

Bias uncertainties were also calculated for the linear reweighting model but are similar to

the Protos uncertainties. Therefore, the Protos biases were used since they are based on a

physical BSM theory.

Figures 7.43 and 7.44 show the unfolded data asymmetries with their statistical and total

error bars plotted along with the NLO Powheg + Pythia8 truth-level asymmetries (red bands).

Higher order truth-level asymmetries were also produced with fixed-order calculations at

NNLO in the perturbative expansion of as in QCD, and NLO electroweak (EW) corrections

[187, 188] for the tt̄ asymmetries. They were also produced at NLO in QCD with NLO EW

corrections [189] for the leptonic asymmetries (including the |D|h || < 2.5 requirements).

The higher order values are shown in Tables 7.16 and 7.17, and plotted in Figures 7.43 and

7.44 (green bands).
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7 Unfolding and Results in the Dilepton Channel

NNLO QCD + NLO EW Att̄
C

Inclusive 0.0064+0.0005
�0.0006

pT,tt̄ 2 [0, 30] GeV 0.0150+0.0006
�0.0046

pT,tt̄ 2 [30, 120] GeV 0.0008+0.0028
�0.0011

pT,tt̄ 2 [120, •] GeV 0.0044+0.0030
�0.0013

mtt̄ 2 [0, 500] GeV 0.0055+0.0006
�0.0006

mtt̄ 2 [500, 750] GeV 0.0072+0.0006
�0.0006

mtt̄ 2 [750, 1000] GeV 0.0079+0.0004
�0.0006

mtt̄ 2 [1000, 1500] GeV 0.0096+0.0009
�0.0009

mtt̄ 2 [1500, •] GeV 0.0094+0.0015
�0.0011

bZ,tt̄ 2 [0.0, 0.3] 0.0011+0.0005
�0.0004

bZ,tt̄ 2 [0.3, 0.6] 0.0023+0.0006
�0.0004

bZ,tt̄ 2 [0.6, 0.8] 0.0042+0.0003
�0.0003

bZ,tt̄ 2 [0.8, 1.0] 0.0146+0.0012
�0.0014

Table 7.16 Summary of the Att̄
C values and uncertainties calculated at NNLO in QCD and

NLO in EW theory [188]. The uncertainties include variations in the µR and µF scales by
factors of two and numerical integration errors.

NLO QCD + NLO EW All
C

Inclusive 0.0040+0.0002
�0.0001

pT,ll̄ 2 [0, 20] GeV 0.0026+0.0002
�0.0002

pT,ll̄ 2 [20, 70] GeV 0.0034+0.0001
�0.0000

pT,ll̄ 2 [70, •] GeV 0.0050+0.0002
�0.0003

mll̄ 2 [0, 200] GeV 0.0033+0.0001
�0.0001

mll̄ 2 [200, 300] GeV 0.0084+0.0002
�0.0001

mll̄ 2 [300, 400] GeV 0.0108+0.0003
�0.0006

mll̄ 2 [400, •] GeV 0.0120+0.0009
�0.0002

bZ,ll̄ 2 [0.0, 0.3] 0.0022+0.0001
�0.0001

bZ,ll̄ 2 [0.3, 0.6] 0.0016+0.0001
�0.0000

bZ,ll̄ 2 [0.6, 0.8] 0.0034+0.0000
�0.0001

bZ,ll̄ 2 [0.8, 1.0] 0.0069+0.0003
�0.0003

Table 7.17 Summary of the All
C values and uncertainties calculated at NLO in QCD and NLO

in EW theory [189]. The uncertainties include variations in the µR and µF scales by factors
of two and numerical integration errors.
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7 Unfolding and Results in the Dilepton Channel
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Fig. 7.43 The data Att̄
C values and uncertainties. Clockwise from the upper left are the asym-

metries in the inclusive, pT,tt̄ , bZ,tt̄ and mtt̄ bins. The highest mtt̄ bin is not shown due to its
large uncertainty. The unfolded asymmetries are shown with the grey points, where the dark
grey error bars are the statistical uncertainties and the light grey bars the total uncertainties
including the systematic uncertainties, bias and response matrix statistical fluctuations. The
red bands show the MC truth-level asymmetries from NLO Powheg + Pythia8 (PP8). The
green bands show higher order calculations (NNLO in QCD and NLO in EW theory).

For the inclusive asymmetries, excesses are seen above zero to 2.0s and 4.1s for Att̄
C and All

C,

respectively, giving strong evidence for charge asymmetry in the latter case. The excesses

above the NLO Powheg + Pythia8 truth-level asymmetries are 1.1s and 2.8s , respectively.

However, with the higher order calculations, there is better agreement with the data to

0.4s and 1.3s . In the differential bins, the unfolded data are typically consistent with the

truth-level expectations. The asymmetry in the first pT,ll̄ bin does differ from the higher

order expectation by 2.1s , however. For the bZ,tt̄ and bZ,ll̄ bins, an increasing trend can

be seen going from left to right and the slope in the central values is greater in the data

than the truth-level expectations (for both NLO Powheg + Pythia8 and the higher order

calculations). The mtt̄ bins show no clear trend but there is a possible increase in charge

asymmetry with mll̄ . No trend in asymmetry is seen across the pT,tt̄ bins but the pT,ll̄ bins
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7 Unfolding and Results in the Dilepton Channel
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Fig. 7.44 The data All
C values and uncertainties. Clockwise from the upper left are the

asymmetries in the inclusive, pT,ll̄ , bZ,ll̄ and mll̄ bins. The format is the same as in Figure
7.43 but with the green bands showing the higher order calculations at NLO in QCD and
NLO in EW theory.

all exhibit positive asymmetries. The unfolded data are in better agreement with the higher

order theory calculations in general.

7.10 Cross-Checks of Inclusive All
C Result

The disagreement between the unfolded data and red MC band in the inclusive All
C measure-

ment is perhaps not too surprising given the disagreement at reconstructed-level shown in

the pre-marginal plot of Figure 7.32. In merging the four channels, the reconstructed-level

leptonic asymmetry in data is All
C = 0.0039 ± 0.0012 and the NLO Powheg + Pythia8 expec-

tation is All
C = 0.00102 ± 0.00022, where the uncertainties are statistical. For comparison,

the reconstructed-level tt̄ inclusive asymmetry in data is Att̄
C = 0.0052 ± 0.0012 and the

NLO Powheg + Pythia8 expectation is Att̄
C = 0.00201 ± 0.00022, so there is a discrepancy

here, too. Since the inclusive leptonic asymmetry shows the largest discrepancy, a test was

203



7 Unfolding and Results in the Dilepton Channel

performed to check the robustness of the unfolded result. Different D|h | bins were trialled to

see how they affected the asymmetry, similar to the linearity tests in Section 7.5, but using

the actual data rather than simulated BSM predictions. The data were smeared 300 times

according to Poisson statistics in separate pseudo-experiments. Each pseudo-experiment was

unfolded (without systematic uncertainties) for the given binning configuration. The means

and standard deviations of the All
C values for each configuration are shown in Table 7.18.

In increasing the number of bins, there is only a small decrease in All
C but all values are fully

consistent within their statistical errors. The decrease is likely due to statistical fluctuations

and biases since the binning is not optimised except in the 4 bin case. As an example, a

Protos-reweighted linearity test was performed for the 22 bin case and the All
C value corrected.

The asymmetry increased from 0.0051 ± 0.0012 to 0.0053 ± 0.0012. One can therefore

be confident the unfolded data value is accurate. The improved agreement with the higher

order theory calculation adds further weight to this.

D|h | binning All
C

4 bins of analysis: ± [0, 1.4 (0.9), 2.5] 0.0055 ± 0.0012
8 bins: ± [0, 0.2, 0.6, 1, 2.5] 0.0054 ± 0.0012

18 bins: ± [0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.5, 2.5] 0.0054 ± 0.0013

22 bins:
± [0, 0.1, 0.2, 0.4, 0.6, 0.8,

1, 1.2, 1.5, 1.8, 2.0, 2.5]
0.0051 ± 0.0012

28 bins:
± [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8,

1, 1.1, 1.2, 1.5, 1.8, 2, 2.5]
0.0053 ± 0.0014

Table 7.18 Unfolded inclusive All
C values in data for different binning configurations. The

data were smeared according to Poisson statistics in 300 separate pseudo-experiments and
unfolding without systematic uncertainties was performed. The means and standard devia-
tions of the pseudo-experiments were taken as the All

C values and uncertainties, respectively.
The binning in the square brackets is symmetrical between positive and negative D|h |. It
is identical at reconstructed- and truth-level, except for the 4 bin case used in the analysis,
where the reconstructed-level inner bin edge is shown outside brackets and the truth-level
edge inside brackets.
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Chapter 8

Conclusions and Combination of the

Dilepton and Lepton + Jets Channel

8.1 Conclusions of Dilepton Channel Charge Asymmetry

The charge asymmetry in top quark pair production was measured in the dilepton channel

using 139 fb�1 of data from
p

s = 13 TeV pp collisions in the ATLAS detector. The tt̄

events were reconstructed with the Neutrino Weighting algorithm, which uses kinematic

quantities from recorded jets, charged leptons and missing transverse energy from unde-

tectable neutrinos in the detector. The leptons were split into ee, eµ and µµ pairs, which also

included t leptons decaying to electrons and muons. The ee and µµ channels were merged.

The data were further split into the case of exactly one jet being b-tagged, and greater than or

equal to two jets being b-tagged in the event.

The events were rebinned into four D|y| bins for each channel with a binning optimisation

method and unfolded with Fully Bayesian Unfolding to truth-level using response matrices

to account for limited detector acceptance and reconstruction inefficiencies. The unfolding
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method enabled the separate channels to be combined and systematic uncertainties to be in-

cluded in a likelihood method, resulting in posterior distributions of charge asymmetries. The

means and standard deviations of the distributions were taken as the charge asymmetry values

and uncertainties, respectively. The asymmetries were calculated for the reconstructed tt̄ pairs

and also for the two leptons from the tt̄ decays, which have smaller expected asymmetries but

smaller associated uncertainties. In both cases, the asymmetries were measured inclusively

across all the data, and in bins of tt̄ (or dilepton) invariant mass, transverse momentum and

velocity in the direction along the beampipe. The systematic uncertainties were constrained

and correlations between them accounted for in the unfolding, which reduced the overall

charge asymmetry uncertainties.

For the leptonic asymmetries, large unfolding biases were encountered in stress tests of

BSM asymmetries. This was determined to be due to lack of detector acceptance for leptons

at |h | > 2.5, meaning there was no sensitivity to enhancements in charge asymmetry at

|D|h || > 2.5. It was therefore decided to work in the reduced phase-space of |D|h || < 2.5 for

the leptonic asymmetries. Uncertainties due to the remaining small biases in the leptonic

and tt̄ asymmetries were added in quadrature to the overall charge asymmetry uncertainties.

Statistical uncertainties from the response matrices were also added in quadrature to the

overall uncertainties.

The predicted truth-level asymmetries at
p

s = 13 TeV are small (between 0% and +1%)

in the NLO Powheg + Pythia8 simulation. In the inclusive tt̄ case, the Att̄
C expectation is

0.00351 ± 0.00006. This is smaller than the
p

s = 7 TeV (0.0123 ± 0.0005 [116]) and

8 TeV (0.0111 ± 0.0004 [121]) NLO predictions by 71% and 68%, respectively. The de-

crease is due to an enhanced contribution from gg fusion as energy increases (see Section 5.2),
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which dilutes the asymmetry.

Comparing the unfolded data results in the dilepton channel, the total uncertainty in the

13 TeV inclusive tt̄ measurement (0.0081 ± 0.0041) is less than the total uncertainty in the

7 TeV (0.021 ± 0.030 [116]) and 8 TeV (0.021 ± 0.0016 [121]) measurements by 86%

and 75%, respectively. Therefore, the decrease in uncertainty at 13 TeV compared with 7 and

8 TeV is greater than the decrease in expected asymmetry, giving a better overall sensitivity.

Improvements are also seen with respect to the 7 and 8 TeV CMS results. The sensitivities

of the leptonic asymmetries are also improved with respect to the former ATLAS and CMS

results. The Run 1 Att̄
C and All

C values are summarised in Figure 5.12.

For the inclusive All
C measurement, strong evidence of non-zero charge asymmetry was

observed to 4.1s . No evidence had been seen in the 7 and 8 TeV results. Furthermore, the

unfolded data lie 2.8s away from the NLO Powheg + Pythia8 prediction so there will be

interest to understand the discrepancy. The higher order NLO QCD + NLO EW prediction

does however lead to better agreement with the data to 1.3s .

It was possible to use more bins across the differential measurements than at
p

s = 7 TeV

and 8 TeV due to the large 139 fb�1 dataset. For instance, five mtt̄ bins were used at 13 TeV

compared with two bins ([0, 500] GeV and [500, •] GeV) at 8 TeV. In the 13 TeV results,

the Att̄
C values do not show any obvious trend across the mtt̄ bins, but there is a clear increasing

pattern in the bZ,tt̄ and bZ,ll̄ distributions. The slopes of the central values are slightly greater

than the truth-level predictions (in the lower order MC) so further investigation will be of

interest.

207



8 Conclusions and Combination of the Dilepton and Lepton + Jets Channel

The largest sources of uncertainty in the charge asymmetries were due to statistical uncer-

tainties in the data, particularly for the leptonic asymmetries and highest mtt̄ bins. These are

reduced in the combination with the lepton + jets channel (see Section 8.3).

8.2 Charge Asymmetry in the Lepton + Jets Channel

As shown by the pie chart in Figure 5.4, tt̄ decay through the lepton + jets channel

(tt̄ !W+b W�b̄ ! l+nlb qq̄b̄ or qq̄b l�n̄l b̄) has a larger branching ratio than for the dilepton

channel. However, with more jets, multijet QCD backgrounds are more important so the

event selection is less pure in the signal.

The event signature required for the leptonically-decaying top (or antitop) quark was an

isolated lepton (electron or muon), missing transverse momentum (for the neutrino) and one

jet. For the hadronically-decaying top (or antitop), either three jets with distance parameter,

R = 0.4 [140], were required (resolved topology), or a single large jet with R = 1.0 (boosted

topology). The boosted topology occurs due to the hadronically-decaying top or antitop

quark having a very large pT , such that the b quark produced in association with the W boson

and the two quarks from the W decay overlap to produce a single cluster of large area in the

hadronic calorimeter.

For the resolved and boosted topoologies, the electron and muon events were further split into

1 b-tag and � 2 b-tag channels, giving a total of eight channels. These were then combined

in the FBU framework. The preliminary data results [190] are shown in Figure 8.1.

In the inclusive case, the measured data yields Att̄
C = 0.0060 ± 0.0015 giving strong

evidence of charge asymmetry to a significance of 4.0s . This is almost twice the value of

the truth-level NLO Powheg + Pythia8 MC prediction of Att̄
C = 0.00356 ± 0.00005, with a
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Fig. 8.1 The Att̄
C values and uncertainties for the lepton + jets channel [190]. Upper plot:

inclusive asymmetry. Lower plots: Asymmetries in the mtt̄ bins (left) and bZ,tt̄ bins (right).
The unfolded asymmetries are shown with the black points, where the inner bar is the
statistical error and the outer bar the total error including the FBU uncertainty with systematic
uncertainties, bias and response matrix statistical fluctuations. The red bands show the
MC truth-level asymmetries from Powheg + Pythia8. The green bands show higher order
predictions (NNLO in QCD and NLO in EW theory).

small disagreement to 1.6s . However, the NNLO QCD + NLO EW inclusive prediction of

Att̄
C = 0.0064+0.0005

�0.0006 (see Table 7.16) is in good agreement with the data to 0.2s .

Across the mtt̄ and bZ,tt̄ bins1, the data-MC agreement is good and the precision is limited by

the statistics of the data. As for the dilepton channel, there appears to be a slight increasing
1The pT,tt̄ bins were not considered in these results but are now included for the combination with the

dilepton channel.
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asymmetry with bZ,tt̄ . Across the mtt̄ bins, there is also an increase in asymmetry, not seen

in the dilepton channel, which suffers from large statistical uncertainties at high mtt̄ . In

comparison with the ATLAS lepton + jets results at
p

s = 7 TeV and 8 TeV (see Figure 5.12),

the inclusive uncertainties are 87% [113] and 70% [118] smaller, respectively, showing a

large improvement. This is enhanced in the combination with the dilepton channel.

8.3 Dilepton and Lepton + Jets Channel Combination

It is simple within the FBU framework to combine the six dilepton and eight lepton + jets

channels through Equation 7.12 for the tt̄ asymmetries. The reconstructed- and truth-level

binning was kept the same across all channels and is identical to that in Table 7.5. All of the

experimental systematic uncertainties common to the channels were correlated between the

channels, as well as the majority of the tt̄ signal modelling and single top background normal-

isation uncertainties. However, the other background normalisation uncertainties were kept

uncorrelated between the dilepton and lepton + jets channels since the relative contributions

to the backgrounds from various processes differ and the uncertainties were determined by

different methods. The expected unfolded sensitivities for the combination (and the individ-

ual lepton + jets and dilepton channels for comparison) are shown in Table 8.1, as well as the

expected truth-level values, all determined with NLO Powheg + Pythia8 MC. The table does

not yet include the response matrix statistical uncertainties or the bias uncertainties and may

not be the final setup, though some conclusions can be drawn. The data are yet to be unfolded.

For all bins, the expected unfolded asymmetries are consistent between the dilepton and

lepton + jets channels, and the uncertainties are reduced in the combination. They are also

consistent with the truth-level values, as expected for the simulation. In the inclusive case,

the addition of the dilepton channel reduces the uncertainty by 12%. A similar trend is seen

for the differential bins, with a 19% reduction in the uncertainty for the highest pT,tt̄ bin. The
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decreases occur due to the extra statistics gained (⇠ 20% more from the dilepton channel)

and more constraining power in the systematic uncertainties when the joint fitting of the

channels is performed in FBU.

Measurement Bin Expected truth Expected unfolded
Att̄

C Stat. unc. Channel Att̄
C Stat. unc. Stat. + syst. unc.

Inclusive 0.00351 0.00006
Lepton + jets 0.0036 0.0011 0.0017

Dilepton 0.0036 0.0033 0.0041
Combination 0.0035 0.0011 0.0015

pT,tt̄

[0, 30] GeV 0.00854 0.00009
Lepton + jets 0.0086 0.0034 0.0044

Dilepton 0.009 0.011 0.014
Combination 0.0086 0.0032 0.0040

[30, 120] GeV 0.00062 0.00008
Lepton + jets 0.0007 0.0027 0.0037

Dilepton <0.001 0.009 0.012
Combination 0.0007 0.0026 0.0033

[120, •] GeV 0.00076 0.00014
Lepton + jets 0.0004 0.0047 0.0064

Dilepton 0.001 0.012 0.014
Combination 0.0004 0.0043 0.0052

mtt̄

[0, 500] GeV 0.00296 0.00007
Lepton + jets 0.0030 0.0029 0.0038

Dilepton 0.003 0.012 0.014
Combination 0.0029 0.0028 0.0034

[500, 750] GeV 0.00413 0.00010
Lepton + jets 0.0042 0.0020 0.0025

Dilepton 0.0039 0.0060 0.0065
Combination 0.0040 0.0019 0.0022

[750, 1000] GeV 0.00473 0.00022
Lepton + jets 0.0049 0.0047 0.0056

Dilepton 0.005 0.019 0.021
Combination 0.0047 0.0045 0.0051

[1000, 1500] GeV 0.00502 0.00040
Lepton + jets 0.0055 0.0071 0.0084

Dilepton 0.005 0.035 0.038
Combination 0.0055 0.0068 0.0080

[1500, •] GeV 0.0083 0.0011
Lepton + jets 0.007 0.022 0.026

Dilepton 0.01 0.13 0.14
Combination 0.008 0.022 0.025

bZ,tt̄

[0.0, 0.3] -0.00023 0.00012
Lepton + jets <0.0001 0.0040 0.0049

Dilepton <0.001 0.018 0.020
Combination <0.0001 0.0039 0.0046

[0.3, 0.6] 0.00127 0.00011
Lepton + jets 0.0015 0.0032 0.0037

Dilepton 0.002 0.012 0.013
Combination 0.0016 0.0029 0.0034

[0.6, 0.8] 0.00283 0.00012
Lepton + jets 0.0026 0.0029 0.0036

Dilepton 0.003 0.009 0.011
Combination 0.0026 0.0027 0.0033

[0.8, 1.0] 0.00851 0.00010
Lepton + jets 0.0084 0.0027 0.0041

Dilepton 0.0081 0.0069 0.0083
Combination 0.0085 0.0025 0.0033

Table 8.1 Summary of the expected truth-level and expected unfolded Att̄
C values and un-

certainties (using NLO Powheg + Pythia8 MC) for the lepton + jets channel, the dilepton
channel and their combination. The uncertainties do not yet include the statistical fluctuations
in the response matrices and the bias uncertainties.
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8.4 Outlook

The results for the tt̄ charge asymmetries can be viewed in the context of Effective Field

Theories (EFTs) [109]. EFTs yield an extension to the SM by expanding the Lagrangian

around a new energy scale, L�2, which is beyond the reach of the LHC:

Leff = LSM +
1

L2 Â
i

CiOi +O

✓
1

L4

◆
, (8.1)

where Leff is the modified Lagrangian and LSM the SM Lagrangian. The Oi are dimension-6

operators that are invariant under SU(3) ⇥ SU(2) ⇥ SU(1) transformations and built from SM

fields. The Ci are dimensionless coupling factors (Wilson coefficients) that encode the effects

of BSM physics in low-energy observables and are regularly interpreted in the Warsaw basis

[191]. These will be zero if the SM is complete.

In hadron colliders, charge asymmetry is sensitive to four Wilson coefficients: C1
u , C2

u , C1
d

and C2
d [192, 193]. These are reduced to two coefficients by assuming the couplings to up-

and down-type quarks are equal: C1 =C1
u =C1

d and C2 =C2
u =C2

d , which is valid in BSM

models such as axigluon exchange [105]. The charge asymmetry is affected by the difference,

C� =C1 �C2, which can be rewritten in terms of the couplings and masses of new states.

For example, the axigluon state is related to C� by the following relation [194]:

C�

L2 = �4
g2

s
m2

A
, (8.2)

where gs is the strong QCD coupling (as = g2
s/4p) and mA is the axigluon mass.

The operators were applied using the MG5_aMC [135] generator and bounds placed on

the coefficients through the combined dilepton and lepton + jets Att̄
C expected results. Fig-
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Fig. 8.2 The expected 13 TeV Powheg + Pythia8 limits on the C�/L2 coefficient with the
dilepton and lepton + jets channel combination for the inclusive case and five mtt̄ bins. The
blue bars show the coefficient at order L�2 and the red bars with a correction at L�4. The
bottom two results are those extracted from 8 TeV LHC data [115] and 1.96 TeV Tevatron
data [111].

ure 8.2 shows the expected bounds on C�/L2 where the input data is the unfolded NLO

Powheg + Pythia8 SM spectrum, in which the C� value will be zero. The inclusive and

differential mtt̄ values are shown, where the limited number of data events at high mtt̄ is

offset by the higher tt̄ production through qq̄ annihilation, maintaining strong sensitivity. The

inclusive expectations show tighter limits can be set on C�/L2 than those determined from

the 8 TeV LHC and 1.96 TeV Tevatron data.

In conclusion, the individual dilepton and lepton + jets data results, calculated with the full

Run 2 ATLAS dataset at
p

s = 13 TeV, as well as the expected results in their combination,

show marked improvements in sensitivity to charge asymmetry and BSM models compared
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with previous results. The uncertainties are dominated by statistical uncertainties in the data.

These would be reduced if combined with the
p

s = 13 TeV data at CMS in the future. For

instance, at 8 TeV, the ATLAS lepton + jets inclusive Att̄
C result (0.0090 ± 0.0049 [118])

combined with the CMS lepton + jets Att̄
C (0.0033 ± 0.0042 [119]) gave a final result of

Att̄
C = 0.0055 ± 0.0034 [115]. This is a reduction of 31% in the total uncertainty with

respect to the ATLAS result and 19% with respect to the CMS result.

It is clear from this thesis how interesting the preliminary results are at 13 TeV thanks to the

excellent precision obtained. The FBU framework was of significant importance in reducing

the systematic uncertainties, combining channels and giving unbiased results in unfolding

the data. The final results (likely to be the world’s most precise upon release) will lead to a

deeper understanding of the top quark once the paper is released, even if they agree in most

part with the Standard Model.

Beyond Run 2, the collision energy in the LHC during Run 3 will be
p

s = 13 TeV but

may increase to 14 TeV. A dataset of 300 fb�1 is expected for each of ATLAS and CMS.

There will therefore be no or little dilution in the expected asymmetry and a large increase in

statistics. This should increase to 3000 fb�1 at an energy of
p

s = 14 TeV when the LHC is

upgraded to the High Luminosity LHC (HL-LHC) [195] with the possibility of probing even

finer differential bins.
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Appendix A

MC Samples

The tt̄ MC signal samples used in the dilepton and lepton + jets channels are summarised in

Table A.1. Alternative ATLFAST 2.0 (AFII) [153] simulation samples are also shown. The

MC background samples are shown in Tables A.2 and A.3. All three tables show the MC

generators, theoretical cross-sections and k-factors (scale factors which account for higher

order corrections to the Feynman diagrams) for each sample, which have unique dataset IDs

(DSIDs).
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Appendix B

Cut Flow Tables

Tables B.1 – B.6 show how the cuts in Section 6.6 affect the number of data and MC events

(signal and background) for each channel. The pre-selection field includes the requirements

of a primary vertex, two oppositely charged leptons with their pT and flavour requirements,

at least two jets with their pT requirements, and flags to identify fake and t lepton candidates.

The MC event numbers are scaled to the same luminosity as the data, and multiplied by the

process cross-sections, the k-factors and correctional reweighting factors.
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