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ABSTRACT

The vast majority of mass in the universe is comprised of an unknown form of matter – Dark
Matter. The NEWS-G collaboration are using a novel gaseous detector, the spherical propor-
tional counter, in a search for Dark Matter particles with masses down to sub-GeV. Having
set the first exclusion limit on the spin-independent DM-nucleon cross sections for a 0.5 GeV
DM particle in 2017, NEWS-G is now turning its focus to it’s new detector, SNOGLOBE.
The 140 cm-diameter spherical proportional counter was constructed and commissioned in
France and has now been shipped to SNOLAB, Canada, for a direct DM search.

For SNOGLOBE to achieve it’s physics potential, several developments are required, in-
cluding the understanding of the detector, the properties of gases, background suppression
techniques and the physics potential of future experiments. Developments in the spherical
proportional counter read-out technology are presented, which uses high-resistivity electrodes
to improve stability and energy resolution. The multi-anode sensor, ACHINOS, enables the
operation of larger detectors at higher pressures. A simulation framework for the spherical
proportional counter has also been developed, which is an important tool for understanding
how the detector operates. Another critical component to understanding the operation of
the detector when looking for low-energy nuclear recoils induced by DM interactions is the
ionisation quenching factor. Measurements of this in gases are scarce, and so a method to
calculate this from measurements of the W-value has been developed and applied to several
gases. The suppression of radioactive backgrounds is of paramount importance for future
NEWS-G spherical proportional counters, and all rare-event search experiments. A method
for producing highly radiopure copper is electroforming, which has been used to apply a layer
to SNOGLOBE’s inner surface and suppress experimental backgrounds. The application of
this technique to produce future NEWS-G detectors is discussed, along with their physics
potential.
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RÉSUMÉ

La collaboration NEWS-G mène des expériences qui recherchent des particules candidates
pour la matière noire jusqu’à des masses en dessous du GeV avec un détecteur gazeux le
compteur proportionnel sphérique. Le détecteur de nouvelle génération, SNOGLOBE, un
compteur proportionnel sphérique de 140 cm de diamètre, a été construit et des plans pour
des expériences futures sont en cours. Le travail présenté a permis de développer la com-
préhension du détecteur, les propriétés des gaz, les techniques de suppression de fond et
le potentiel physique des futures expériences. La compréhension du champ électrique du
détecteur est essentielle au fonctionnement du détecteur. Les calculs de la méthode des
éléments finis ont été utilisés pour guider le développement des capteurs de lecture, tout
comme un programme de simulation, dédié aux compteurs proportionnels sphériques, basé
sur Geant4 et Garfield ++. L’utilisation d’une électrode de correction secondaire à résistivité
élevée avec le capteur à anode unique a amélioré la stabilité opérationnelle et la résolution
d’énergie du détecteur en ajustant le champ électrique. L’utilisation d’une électrode centrale,
imprimée en 3D pour le capteur multi-anode ACHINOS et enrobée d’une couche de le car-
bone adamantin (DLC) a permis une percée dans la stabilité et la robustesse du détecteur.
ACHINOS offre un moyen de fonctionner avec des détecteurs de plus en plus grands et à
haute pression, ce qui est essentiel pour le fonctionnement du SNOGLOBE et des futures
recherches sphériques proportionnelles contre les événements rares. La fraction d’énergie
déposée en forme d’ionisation doit être bien comprise pour déduire l’énergie d’un noyau de
recul induit par la diffusion élastique de la matière noire. Une méthode a été développée
pour calculer cela à partir de mesures de précision de la valeur W dans les gaz, menées
depuis plusieurs décennies. Ceux-ci fournissent des estimations expérimentales du facteur de
‘quenching’ d’ionisation dans plusieurs gaz. Le facteur de quenching d’ionisation dans CH4

est d’une importance particulière pour la collaboration NEWS-G et est estimé à des énergies
de recul en dessous du keV. La construction de détecteurs de matière noire impose des con-
traintes extrêmement rigoureuses concernant la radio-pureté des matériaux utilisés. Dans le
cas de NEWS-G, le 222Rn incrusté dans le cuivre du détecteur, lors de sa fabrication, conduit
à une contamination de 210Pb, qui est la plus grande contribution au bruit de fond expéri-
mental. Une méthode de suppression de ce fond dans le cuivre est l’électroformage, qui a été
utilisé par des expériences pour produire des composants de détecteur suite à l’amélioration
significative de la radio-pureté. La technique a été rééchelonnée et une couche de cuivre
très pur a été déposée à la surface interne de SNOGLOBE, réduisant le fond en dessous de
1 keV par un facteur de 2,6. Il s’agit du plus grand électroformage souterrain jamais réalisé
et a démontré la faisabilité de la technique sur de grandes surfaces sphériques profondément
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souterraines. L’amélioration de la radio-pureté qui peut être obtenue avec l’électroformage a
motivé le développement de futurs compteurs proportionnels sphériques entièrement électro-
formés directement dans un laboratoire souterrain. L’installation ECUME de SNOLAB
produira un détecteur de 140 cm pour NEWS-G et entrera en service cette année. Lorsqu’il
est installé dans le blindage du SNOGLOBE, le détecteur entièrement électro-formé aug-
mentera la sensibilité matière noire de NEWS-G. Au-delà, DarkSPHERE est proposé comme
successeur dans la recherche directe de matière noire NEWS-G. Le détecteur électro-formé
entièrement souterrain de 3 m, installé dans un blindage de radioprotection amélioré com-
posé principalement d’eau, aurait le potentiel d’explorer l’espace de la section efficace pour
la production de la matière noir proche au plancher des neutrinos solaires, dans la gamme
de masse de matière noire inférieure à 1 GeV. Le potentiel physique d’un tel détecteur pour
détecter la matière noire par recul nucléaire induit a été étudié.
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Dedicated to Nan and Dampi.



There is nothing like looking, if you want to find something. You certainly usually find
something, if you look, but it is not always quite the something you were after.

J.R.R. Tolkien, The Hobbit, or There and Back Again
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1
Introduction

It is a remarkable fact that the precise nature of over 95% of the mass-energy of the universe

is unknown. Furthermore, the comparison of astrophysical observations and current under-

standing of how matter interacts gravitationally leads to the conclusion that around 84%

of the universe’s matter is composed of some form beyond that described by the Standard

Model (SM) of particle physics [8]. The nature of this Dark Matter (DM), so called because

of its apparent lack of interaction with light, has been an open question for several decades

and remains one of the greatest mysteries in modern physics.

Hints of what we now know to be DM began to be observed in the universe as early as

the 1930’s, with the evidence building over the decades. In 1985, Goodman and Witten [9],

building on the work of Drukier and Stodolsky [10], demonstrated the potential detectability

of DM for a terrestrial detector, with the first experiment to place a constraint on the DM

spin-independent scattering cross section doing so in 1986 in the Homestake Mine, USA [11].

The hunt for DM has sparked decades of searches, resulting in the development of novel

detector technologies, great advancements in low-radioactivity materials and assaying, and
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aided the development of underground laboratories, shielded from cosmic ray interference,

all over the globe. Despite this, no conclusive observation of DM has been made in the

laboratory, including searches at collider facilities, such as the Large Hadron Collider [12].

Direct DM searches looking for nuclear recoils induced by the elastic scattering of galactic

DM have mainly focussed on the mass region above approximately 10 GeV, looking for

Weakly Interacting Massive Particles (WIMPs) which arise naturally as a candidate from

theories addressing other questions in physics, such as supersymmetry. This has meant that,

while still having theoretical motivation, the DM-mass cross section parameter space below

10 GeV is relatively unexplored, and experiments are increasingly turning their focus to this

region. The NEWS-G experiments aim to explore this region with the gaseous detector, the

spherical proportional counter. The presented work contributed towards this goal.

Chapter 2 will discuss the observational evidence and motivation for particle DM as well

as how it may be detected in a laboratory. Chapter 3 will discuss the operation of gaseous

particle detectors. This will introduce the spherical proportional counter, its operational

principles and strengths in direct DM searches. In Chapter 4 developments made to the

instrumentation of the detector readout are discussed, with three main advancements; the

resistive secondary correction electrode, the ACHINOS multi-anode readout and the voltage

degrader. These developments improve the electric field homogeneity, stability, robustness

to sparks, and increase the electric field magnitude. A dedicated simulation framework for

spherical proportional counters is also presented, combining the strengths of Geant4 and

Garfield++. This has been used to better understand the detector operations and also to

guide the development of the detector.

In Chapter 5, the ionisation quenching factor is discussed and its implication for measuring

low energy nuclear recoils, vital for DM detection. A method for calculating it from previous

measurements of the average energy to produce an electron-ion pair in various gases is

2



presented.

Chapter 6 addresses the suppression of background contributions to the NEWS-G experi-

ment’s latest detector, SNOGLOBE, through the use of electrodeposition. The method’s

ability to produce highly pure copper is discussed as are its application to SNOGLOBE in

an underground laboratory and the results of the procedure. Chapter 7 explores the future

application of electroforming to produce full spherical cavities for detectors. Finally, these

future experiments are covered.
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2
Dark Matter

Only 4.9% of the energy density of the universe is made up of particles which have been

observed in the laboratory [8]. The remaining energy is shared between Dark Energy and

Dark Matter (DM) at 69.1% and 26%, respectively. The composition of the DM component

is completely unknown save for some of its properties from astronomical observations and

constraints, which imply the existence of a new fundamental particle, beyond the Standard

Model (SM) of particle physics. Despite decades of searching, the precise nature of DM

remains elusive, while constraints have been placed on its particle properties and abundance

in the current epoch. This chapter will discuss the observations which have provided growing

evidence for the presence of DM, what is known about its properties, and the efforts to

observe it.
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2.1 Evidence for Dark Matter

A wealth of astrophysical observations cannot be accounted for by the gravitational effect of

the observed luminous matter alone. This has led to the hypothesis that significantly more

mass is present in some non-luminous form - Dark Matter. All current evidence for DM is

based on its gravitational effect on visible matter.

The most widely adopted model for the formation of the universe is the ΛCDM model. Λ

refers to the cosmological constant associated with the acceleration of the universe’s expan-

sion driven by dark energy; CDM refers to Cold Dark Matter. The properties of DM will be

presented in Section 2.2.1. The model has been successful in explaining several phenomena,

which are discussed in further detail in the next section, including the abundance of light-

elements in the universe, the Cosmic Microwave Background (CMB) anisotropies, and the

formation large-scale structure. In defining the amount of different matter-energy compo-

nents in the Universe, it is conventional to work in terms of dimensionless ‘physical densities’

Ωh2, which are the products of a component’s density parameter Ω and the reduced Hubble

parameter h; the present-day Hubble parameter H0 divided by 100 km s−1 Mpc−1. The best

estimate of h is 0.677± 0.004 [8]. The density parameters are ratios of the observed density

ρ to the critical density ρc which is the total density required for the universe to be flat;

measurements indicate that the universe is flat, or very close to it, making the total density

parameter Ωtot ≈ 1 [8].

Two parameters of interest are the physical baryon density Ωbh
2 and the physical DM density

Ωχh
2. Current best estimates of Ωbh

2 and Ωχh
2 come from measurements of the CMB and

Baryon Acoustic Oscillations (BAO) as 0.0224±0.0001 and 0.1193±0.0009, respectively [8].

Therefore, DM comprises 26% of the universe’s matter-energy density and approximately

84% of the matter density.
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2.1.1 Motion of galaxies in clusters

In the early 1930s, it was noted that the constituent galaxies of the Coma Cluster (Abell 1656)

exhibited a wide range of apparent velocities, of order 1000 km s−1 [13, 14, 15]. Zwicky’s

then novel application of the Virial theorem to galactic clusters allowed the expected velocity

dispersion to be estimated based on the visible mass; the Virial theorem relates the time-

averaged kinetic energy T of a stable system of potential-bound particles to the total potential

energy V in the system by

2〈T〉 = −〈V〉 . (2.1)

It was found that the anticipated velocity dispersion was smaller than that measured for

the Coma cluster by more than an order of magnitude [14]. Improvements in the total mass

measurement of the cluster with the use of gravitational lensing (see Section 2.1.6) and in

the measurement of the luminous mass have been made since, and the conclusion remains

that a large fraction of non-interacting matter is required to reconcile the two [16].

2.1.2 Rotational velocities of galaxies

Under the assumption that the vast majority of a galaxy’s mass is contained in the central

bulge, which is then approximated as a spherical distribution of matter, the rotational ve-

locity vrot of a mass gravitationally-bound to the galaxy and situated at a radius r from its

centre can be written as

vrot(r) =

√
GM(r)

r
, (2.2)

where M(r) is the mass of the galaxy contained in the radius r and G is gravitational

constant. This implies that the velocity of matter in the galactic spiral arm is expected to fall

as 1/
√
r. Since around the 1940s, hints of unexpected behaviour in galactic rotation velocities
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had been observed [17, 18], however, the phenomenon gained significant interest in the 1970s

when Roberts et al., Bosma, Rubin et al., and others showed that the rotational velocity

remains approximately constant with radius, or falls much more slowly than anticipated [19,

20, 21, 22]. Figure 2.1 shows the observed rotational curve of a spiral galaxy and that the

observation may be reproduced through the addition of an extra mass component distributed

as a halo, with Mhalo(r) ∝ r, and that this must contain the majority of mass in the

galaxy. Such a distribution corresponds to a model of a gas of self-gravitating, non-interacting

particles, expected for DM.

Figure 2.1: Rotation curve for the spiral galaxy NGC2403 (data points and fit). The curve
can be reproduced by including a halo component to the mass of the galaxy in addition to
the contribution from visible matter (stars, and stars and gasses). Figure reproduced from
Ref. [23].

2.1.3 Baryon Acoustic Oscillations

Evidence for DM can also be found in the distribution of galaxies. Perturbations in the pri-

mordial plasma, generated by quantum fluctuations prior to inflation, caused over-densities.

These were seeds for gravitational collapse, however, this attractive force was opposed by

photon pressure. The opposing forces resulted in oscillations of the baryonic matter, analo-

gous to sound waves; the DM, unaffected by the photon pressure, remained at the original
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over-density. This effect is known as Baryonic Acoustic Oscillations (BAO). At the time

of recombination, the photons decoupled from matter and freely streamed away, leaving

baryonic matter in a shell around the centre of the original over-density. The fundamental

frequency of the BAO corresponds to the distance the baryon-photon plasma could travel

up to recombination. These over-density structures then went on to seed the formation of

galaxies. Therefore, it was anticipated that there would be some characteristic distance

between galaxies that would correspond to the radius of the baryonic shell, which at the

time of recombination was around 150 Mpc. The correlation function ξ(s) quantifies the

probability of finding another galaxy at a comoving distance s from a random galaxy. The

comoving distance is the proper distance between two objects at a given time divided by the

universe scale factor at that time. It is, therefore, an epoch-independent measurement of

the distance between two objects, assuming they move under Hubble recession. Due to the

dominant role of the DM over-density, this characteristic distance would appear as a small

peak in ξ(s). This was observed experimentally by the Sloan Digital Sky Survey (SDSS)

and 2dFGRS collaborations [24, 25], with the result of the former, shown in Fig. 2.1, clearly

showing a peak at around 150 Mpc. The amplitude of the peak and overall distribution is

consistent with the hypothesis that the matter density at recombination was dominated by

non-baryonic DM and that this DM was non-relativistic (cold).

2.1.4 The Cosmic Microwave Background

The Cosmic Microwave Background (CMB) provides a window into the mass composition

of the early universe. It was formed during ‘recombination’, when the universe had cooled

sufficiently for electrons and atomic nuclei to bind and form neutral atoms; this transitioned

the universe from being a hot, opaque plasma to being transparent to photons. The pho-

tons which decoupled from the newly-neutral matter have propagated ever since and their

distribution maps the ‘surface of last scattering’ - the matter distribution at recombination.
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Figure 2.2: Correlation function times the comoving distance squared as a function of the
comoving distance for data from the SSDS (solid squares). Overlaid are models with different
matter physical densities Ωmh

2: 0.12 in green (top); 0.13 in red (middle); and 0.14 in blue
(bottom with bump). The bottom, magenta line is a model with only DM and Ωmh

2 = 0.105,
and so shows no BAO peak. Figure reproduced from Ref. [24].

As the universe expanded, the photons’ wavelengths have increased and the CMB is now

a black body radiation with a temperature of 2.7255 ± 0.0006 K [26]. The CMB is almost

isotropic across the sky but contains small anisotropies. The origin of these fluctuations is

the compression and rarefaction of the oscillating plasma resulting in heating and cooling,

respectively. The CMB carries a ‘snapshot’ of these 1 part in 100,000 temperature fluc-

tuations at reionisation. The temperature power spectrum of the CMB as a function of

angular scale (multipole moment) is shown in Fig. 2.3, where the acoustic peaks are seen.

The spectrum is well fit by a model of the early universe where DM dominated. The Planck

results place the most stringent constraints on the parameters of the ΛCDM model, and

combined with results from BOA, estimate the physical DM density of the universe to be

Ωχh
2 = 0.1193± 0.0009 [8].
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Figure 2.3: Temperature power spectrum of CMB as a function of multipole moment. The
(blue) line shows the best-fit of the ΛCDM model, showing good agreement. Figure repro-
duced from Ref. [8].

2.1.5 Big Bang Nucleosynthesis

The production of light nuclei in the early universe was through a process known as Big

Bang Nucleosynthesis (BBN). The temperature of the early universe, between around 10

seconds and 20 minutes, was sufficiently high for nuclear fusion to occur, while being low

enough to allow deuterium (2H) nuclei to stably form. Protons p and neutrons n could then

fuse to form the light elements in the chain:

p+ n→2H + γ

p+2H→3He + γ

2H +2H→3He + n

3He +2H→4He + p

3H +2H→4He + n .

Small amounts of 7Li and 7Be were also produced, however, heavier element production was

suppressed by the lack of stable 5 and 8 nucleon isotopes. The majority of the primordial
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neutrons which did not decay were combined with protons to form 4He, which is at the

end of the chain due to its high binding energy. BBN ceased when the universe had cooled

sufficiently to prevent further fusion. However, some amount of 2H was left due to incomplete

chains, with the amount depending on the density of baryons at that time; a universe with

higher density would have more efficient conversion of 2H to 4He. Models which assume

that baryons made the total matter density predict a much lower quantity of 2H should

have survived the process than is observed in the universe. Thus, it is hypothesised that

the greater fraction of the total matter density at the BBN epoch must be in the form of

non-baryonic DM matter. BBN puts a constraint on the cosmological density parameter of

baryonic matter 0.021 ≤ Ωbh
2 ≤ 0.024 at the 95% confidence level (CL) [27].

2.1.6 Gravitational Lensing

The curvature of space-time induced by large astronomical objects, such as galactic clusters,

is capable of inducing observable deflections in light rays passing in their vicinity. This

provides a luminous-matter-independent method of measuring the total mass of a foreground

object through measuring the distortion of the light from a background source. The distortion

can result in an annular image, arcs or multiple images of the same source, associated

with strong gravitational lensing, or may be in the weak lensing regime where more subtle

distortions of multiple background sources are detectable statistically. The comparison of

the mass distribution inferred from gravitational lensing measurements to that inferred from

luminous matter highlights the presence of a dominant non-luminous mass component. A

clear example of this is the ‘Bullet cluster’ (1E 0657-56), shown in Fig2.4. The bullet cluster

is the remnant of the collision of two galactic clusters around 150 million years ago. The false

colouring shows the hot, luminous gas, showing the name-giving ‘bullet’ explosion pattern

from the collision. The contours (green) show the mass distribution from weak gravitational

lensing which shows that the majority of the mass from the two clusters is non-luminous
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and passed through the collision unimpeded. This suggests evidence that the majority of

the matter in these clusters is DM and constrains the self-interaction cross section [28].

Figure 2.4: The Bullet Cluster. Coloured images from the Chandra X-ray Observatory,
which map the luminous gas (the majority of baryonic matter in system) overlaid with the
mass contours from weak gravitational lensing (green), showing the spatial offset between
the luminous component and the majority of the mass in the clusters. Figure reproduced
from Ref. [29].

2.1.7 Large Scale Structure Formation

Numerical simulations based on the ΛCDM model have generally displayed good agreement

with observations of galactic clusters, super clusters and filaments which join galaxies - the

largest observed structures in the universe. An example of such a filament is that connecting

the binary clusters Abell 222 and 223 shown in Fig. 2.5 [30, 31].

It should be noted that there are challenges posed to the ΛCDM model, particularly on the

sub-galactic scale and also the fact that more dwarf galaxies are predicted than observed. It

has been posited that these galaxies may have ceased to exist for a variety of reasons, however,

the model predicts many of these to have been too large to be lost in such mechanisms, known

as the ‘too-big-to-fail’ problem. It is currently unclear if this problem is a symptom of

limitations in the model or the numerical calculations. The galactic DM halo density profile

13



Dark Matter

Figure 2.5: Mass density from weak lensing (blue) overlaid on a visible light image of the
Abell 222 and 223 clusters. Significance contours are also shown. Figure reproduced from
Ref. [31].

predicted by ΛCDM in certain galaxy types also faces challenges, as they are predicted to

show a ‘cusp’ (ρ ∝ rα, α ≤ −1) at low radii, whereas some observations suggest a ‘core’

like profile (α ∼ 0). However, the picture is not clear, with current observations of galaxies

demonstrating a wide range of α from cusp- to core-like.

2.2 Particle Dark Matter

2.2.1 Properties

From the presented observations there are restrictions set on any candidate particle to be a

viable, fundamental DM particle. Some are more strict than other or are model dependent,

but generally a candidate must be:

• Electrically Neutral, or weakly charged [32]
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• Unable to interact with photons

• Non-relativistic (‘cold’) at freeze-out

• Non-baryonic

• Stable on the scale of the age of the universe

The SM presents no viable candidate for this role making the DM mystery a clear case for

physics beyond the SM.

2.2.2 Dark Matter Candidates

New fundamental particles are the dominant explanation for the abundance of DM. Many

theoretical models introduce viable DM candidates when seeking to explain other physics

phenomenon.

Standard Model Neutrinos

Neutrinos are the only SM particle that could constitute a portion of the universe’s DM;

neutrinos only interact via the electroweak force, are very abundant in the early universe,

and are known to have a non-zero mass [33], and, thus, could behave as DM. However,

neutrinos are relativistic and similar considerations for their relic abundance as presented

for non-relativistic particles in Section 2.2.4 leads to a physical density parameter of

Ωνh
2 =

∑
mν

91 eV
. (2.3)

The summed neutrino mass would need to be approximately 9 eV for neutrinos to constitute

all of the DM, but measurements of the CMB have placed constraints on the summed mass
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of the three neutrino generations
∑
mν < 0.12 eV, which limits their contribution to DM

to around 1%. Their relativistic nature also excludes them being most of the DM due to

structure formation considerations.

New fundamental particles

Much of the effort over the past decades in the direct search for DM has focussed on Weakly

Interacting Massive Particles (WIMPs). They are motivated by the thermal production

mechanism described in Sec 2.2.4 and by gauge hierarchy problems in the SM that implies

new physics at the weak-mass scale [34]. They are particles with masses in the weak-scale,

O(10 GeV − TeV), which interact with SM particles via the weak-force. More broadly, the

term WIMP is sometimes used to include DM candidates that have weak-scale interactions

but not necessarily SM weak interactions, instead introducing a new fundamental force.

These are also called WIMPless DM [35]. WIMPs are also an attractive candidate due to

their detectability. The detection of WIMPs and WIMP-like particles will be discussed in

more detail in Section 2.2.6 and after.

WIMPs are introduced by several theories that attempt to explain other SM problems, for

example super-symmetric (SUSY) theories whose lightest particle, e.g. neutralinos, is a

prime candidate due to its stability [36]. Another theory that provides WIMP candidates

are Universal Extra Dimensions theories (UED) based on the work of Kaluza-Klein [37,

38]. Again, due to an introduced parity, the lightest particle is stable, and so a good DM

candidate. Other theories also introduce viable candidates, such as little Higgs theories [39,

40].

‘Hidden DM’ is another possibility. In such theories, DM has no SM gauge interaction and

a new fundamental force is introduced instead. While the correct relic density is achieved

through freeze-out for a weak-scale DM mass and weak interactions, this is just one possible
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combination, and a hidden sector allows for different choices in the annihilation cross section,

and so different mass values.

As mentioned previously, the relic abundance of WIMPs is thermally produced by freeze-out.

Another class of DM particles, which also benefit from the WIMP-thermal production, are

superWIMPs. These particles are produced by the decay of WIMPs following their freeze-

out. SuperWIMPs have much weaker interactions than the weak force, but can satisfy the

current-epoch relic abundance provided they have a similar mass to the WIMPs. Again,

such particles are provided by theoretic models, such as the gravitino of SUSY or lightest

particles in UED. [41]

Sterile neutrinos are another example DM candidate [42]. The fact that neutrinos have mass

but that only left-handed chirality neutrinos exist in the SM, and so should be massless,

is a sign of new physics. The introduction of a right-handed ‘sterile’ neutrino, with no SM

gauge interactions, enables neutrinos to aquire a mass while also presenting a potential DM

candidate.

The fact that the QCD interactions are found to strictly obey CP-symmetry, which is not

a requirement in the SM, is known as the CP problem. This motivated the introduction of

a new symmetry and its spontaneous breaking, which results in a new particle, the axion.

Axions can present viable DM candidates and, if they are DM, are constrained to be very

light [43].

The direct DM searches considered from this point will focus on WIMP and WIMP-like

candidates and their interactions with atomic nuclei in detectors. A more complete review

of the other candidates and their detection methods can be found in the literature, e.g.

Refs [34, 44]
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2.2.3 Alternatives to Particle Dark Matter

Composite Astrophysical DM

Massive Astrophysical Compact Halo Objects (MACHOs) are a generic class of astronomical

object which can constitute the DM in galactic halos. Examples are primordial black holes,

unassociated planets, and white and brown dwarfs. MACHOS are made up of ordinary

baryonic matter, but in systems where they were non-luminous. However, there is evidence

against these comprising the majority of DM [45].

Modified Gravity

Several alternatives exist to the DM hypothesis, the most notable being forms and extensions

of MOdified Newtonian Dynamics (MOND) [46]. MOND instead poses that the dynamics

of the universe, specifically of gravity, are modified at low-accelerations, such as those ex-

perience in the spiral arms of galaxies. While these models are able to describe several

phenomena, particularly on the sub-galactic scale, they do not account for all of the dis-

cussed observations. In particular, the observation of gravitational waves concurrent with

electromagnetic radiation from the same source excluded large swathes of MOND models,

although not all. MOND also requires there to be some ‘dark matter’ unobserved in the uni-

verse in order to explain observations but does not require that this matter be non-baryonic.

However, MOND is not excluded and ongoing developments of the theory and experimental

tests are being devised.
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2.2.4 Freeze-out and Relic Abundance

The thermal freeze-out mechanism and its relation to electro-weak scale masses and cross

sections is one of the motivations behind the search for WIMP DM. As has been mentioned,

the early universe was a hot plasma with particles being annihilated and created from inter-

actions in the plasma. A particle species remains in thermal equilibrium with the background

plasma so long as its rate of interactions with the plasma Γ remains greater than the ex-

pansion rate of the universe. The expansion rate of the universe is given by the Hubble

parameter H, which, for a flat universe such as ours, is given by the Friedmann equation,

H2 =

(
ȧ(t)

a(t)

)2

=
8πG

3
ρc , (2.4)

where a is the scale factor (defined as 1 in the present-day) and G is the gravitational

constant. When Γ < H the species is said to have decoupled from the plasma, or have

‘frozen out’, and will no longer be produced by the plasma efficiently.

Initially, the temperature was high-enough that DM was produced efficiently by the plasma,

T � mχ, and its annihilation and production were in equilibrium. The rate of annihilation

is given by

Γχ = 〈σannv〉neq , (2.5)

where σann and v are the DM annihilation cross section and velocity, together averaged over

the DM thermal distribution, and neq is the DM number density in equilibrium. For a

non-relativistic species such as DM, the number density in equilibrium may be computed

by integrating over the phase space distribution. It is conventional to work in terms of the

yield, which is the number density divided by the entropy density, Y = n/s, and so, the

19



Dark Matter

yield in equilibrium for a non-relativistic species is,

Yeq ∝
(mχ

T

)3/2

e−mχ/T . (2.6)

As the universe cooled to temperatures below mχ, DM production slowed because a reducing

number of particle-antiparticle collisions had sufficient energy to produce DM. Its annihila-

tions were still occurring, so the amount of DM gradually decreased. When the expansion of

the universe was greater than the annihilation rate, Γχ < H, the comoving number density of

DM was fixed; this is known as freeze-out. From this time, the DM density has just diluted

with the expansion of the universe, i.e. inversely proportional to the scale factor a cubed.

Thus, the change in the number density of DM particles with time is the sum of the dilution

due to expansion and the number annihilated and produced by other particle annihilations,

and can be written as a Boltzmann equation,

dn

dt
= −3Hn− 〈σannv〉

(
n2 − neq2

)
. (2.7)

From the Boltzmann equation, the yield at freeze-out can be computed, see e.g. Ref [47]

and references therein. From this, the yield at freeze-out can be written as [48]

Y0 ∼
mχ

Tf

1

mχMp〈σannv〉
. (2.8)

From Eq. 2.8 it can be seen that as the thermally-averaged annihilation cross section in-

creases, the yield at freeze-out decreases, implying that freeze-out occurred later in time.

The abundance of DM in the present-day is known as the ‘relic abundance’. The energy

density of dark matter ρχ can be written as the product of the number density nχ and mχ,

however, it is conventional to work in terms of the yield Y , defined as n divided by the
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entropy density s. Putting these together,

Ωχh
2 =

ρχ
ρcrit

h2 =
Y0s0mχ

ρcrit

h2 , (2.9)

≈ 2.8× 108Y0
mχ

GeV
(2.10)

where the subscript 0 indicated the present-day values. The values of s0 (∼ 2900 cm−3 [49]),

ρcrit and Ωχ are known quantities; assuming the yield did not change since freeze-out, the

yield at freeze-out can be calculated from this for a given mχ. For 1 GeV < mχ < 1 TeV,

a freeze-out temperature of Tf ∼ mχ/10 gives the observed yield. Using this in Eq. 2.8, a

thermally-averaged annihilation cross section of the order 10× 10−8 is required, which is the

order of a SM annihilation cross section ∼ G2
Fm

2
χ, where GF is the Fermi constant. This sur-

prising conclusion, coupled with well-motivated DM candidates of the correct mass proposed

by Super-Symmetric theories, has driven many direct searches for Weakly-Interacting Mas-

sive Particles (WIMPs) over the last few decades. The Lee-Weinberg limit [50] puts bounds

on the DM candidate mass that can interact via the weak interaction and still achieve the

correct relic density; lower masses would freeze-out earlier and so be more abundant than is

observed.

It should be noted that the presented mechanism of thermal production can be modified by

changing the assumptions made, and other production mechanisms for DM also lead to the

correct relic abundance. One example is the thermal freeze-out of a WIMP species followed

by its subsequent decay to another DM species, known as Super-WIMPs. If the mass of the

WIMP and Super-WIMP are similar, such models produce the correct relic abundance of

DM while allowing for lower interaction cross sections.
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2.2.5 Dark Matter Halo

Measurements of the rotational velocities of galaxies demonstrated the need for a halo com-

ponent to the galactic mass distribution. A description of the DM halo is required in order

to understand the signal expected in a direct DM search experiment. The DM halo is often

approximated to be an isothermal halo distribution, such as that described in Ref. [51] or a

simulation-driven model which is close to this, for example the NFW profile [52],

ρ(r) =
ρcritδc

r
rs

(
1 + r

rs

)2 , (2.11)

where rs is a characteristic radius and δc is the over-density characteristic density of the halo;

a dimensionless, galaxy specific term.

The halo is generally modelled as having isotropic velocities, referred to as the Standard Halo

Model (SHM) with a truncated Maxwellian velocity probability density function [53, 54],

f(vχ,vE) =
1

k
e
− (vχ+vE)2

v20 , for | vχ |< vesc , (2.12)

where, k =
(
πv2

0

)3/2
(

erf

(
vesc
v0

)
− 2√

π

vesc
v0

exp

(
−v

2
esc

v2
0

))

where vE is the Earth’s velocity (relative to the Galactic rest frame), vχ is the DM velocity,

vesc is the galactic escape velocity, v0 is the magnitude of the most probable velocity and erf

denotes the error function. The constant k normalises the velocity distribution such that
´ vesc

0
f(vχ,vE)d3v = 1.

For the Milky Way, vesc ∼ 550 km s−1 [55, 56, 57], with the variation between different

measurements being as much as 10%. Our solar system orbits the galactic centre and

moves through the DM halo at a speed of v0 ≈ 220 km s−1 [58, 59]. The velocities

usually assumed for the SHM in DM exclusion limit calculations are vesc = 544 km s−1
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and v0 = 220 km s−1 [60, 61]. Additionally, the local DM density ρχ is assumed to be

0.3 GeV cm−3. These nominal velocities were adopted for subsequent calculations, but it is

noted that recent measurements differ from these numbers.

The velocity of the Earth relative to the DM halo E made of the velocity component of the

solar system and the peculiar motion of the Earth around the Sun, which is time dependent

on time scales relevant for direct detection experiments. While not exactly sinusoidal, |E| is

well approximated by [54],

|vE| ≈ 232 + 15 sin(2πtorb) km s−1 , (2.13)

where torb is the time since 2nd March in years. More precise treatments of the Earth’s

velocity can be found, for example, in Ref. [62]. This explicit time dependence introduces an

annual modulation to the DM signal, which would be visible as a change in the expected count

rate in a given direction as the Earth orbits the Sun, with approximately a 3% modulation

expected. Observing this modulation is one powerful method of discriminating a potential

DM signal from experimental backgrounds.

The motion of the Sun relative to the DM halo also introduces a direction preference; for an

Earth-borne observer, the motion of DM particle will appear as a DM ‘wind’, with a strongly

peaked preferential direction from the Sun’s galactic orbit. Directional DM detectors aim

to look for this signal. It is another powerful distinguishing feature of a DM signal, as

experimental backgrounds are not expected to show such a dependence.

It should be noted that, while the prescription described above is common in data analysis,

recent measurements have highlighted an anisotropic component to the velocity distribution

in the Milky Way resulting from the merger of a dwarf galaxy approximately 1× 1010 years

ago [63]. Extensions to the SHM have been proposed to incorporate this feature, referred to

as the ‘Gaia Sausage’, and other substructure components, known as ‘streams’ [61, 64]. An
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example of the modified velocity distribution is shown in Fig. 2.6.

Figure 2.6: Velocity distribution from the SHM (dashed red) and from a modified model
including a component with fraction η from the Gaia Sausage (shaded blue). The lower
(blue) line shows the isolated Sausage component with η = 0.2. Figure reproduced from
Ref. [61].

2.2.6 Interaction Rates and Cross Sections

The interaction between a cold DM particle and a nucleus is non-relativistic, but depending

on the model, the interaction of a DM particle and a nucleus may be either spin-dependent

or spin-independent. The DM-nucleus differential cross section can be expressed as the sum

of the spin-dependent and spin-independent contributions [36, 47],

2mN
dσχN
d|q|2

=
dσχN
dER

=
mN

2µ2
χNv

2
( 0σSIF

2
SI(ER)︸ ︷︷ ︸

Spin-independent

+ 0σSDF
2
SD(ER)︸ ︷︷ ︸

Spin-dependent

) , (2.14)

where |q| is the momentum transfer, 0σ are the zero-momentum transfer cross section, µχN =

mNmχ
mN+mχ

is the reduced mass of the DM-nucleus system and F is the form factor which

encapsulates the momentum transfer and the coherence loss.
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Spin-Independent Interaction

As an example, consider the scalar interaction of a DM particle with a SM fermion, which

will result in a spin-independent interaction.The interaction Lagrangian will be of the form,

Lint = fiχ̄χq̄q , (2.15)

where χ, q are the DM and quark fields and fi is the spin-independent coupling strength to a

given quark flavour [65]. To obtain the DM-nucleus interaction cross section, the individual

quark coupling must be summed over, and effective coupling to protons fp and neutrons fn

can then be calculated. The differential cross section can then be written as [65, 36, 47],

dσχN
dER

=
2mN

πv2
[Zfp + (A− Z)fn]2 F (ER)2 , (2.16)

where A,Z are the atomic mass and atomic number of the target. The spin-independent

zero-momentum transfer cross section can be defined as

0σSI =
4µ2

χN

π
[Zfp + (A− Z)fn]2 . (2.17)

While model dependent, it is generally assumed that fp ≈ fn so that 0σSI ∝ A2. In order

to compare different experiments to each other and to theory predictions, the DM-nucleon

cross section σSI is used. From Eq. 2.15, it can be shown that

σSI =
4µ2

χnf
2
n

π
, (2.18)

where µ2
χn is the DM-nucleon reduced mass. This can be used to factorise out the target

material dependence,

0σSI = σSIA
2
µ2
χN

µ2
χn

. (2.19)
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The form factor F (|q|) accounts for the loss of coherence when the de Broglie wavelength

of the DM particle λχ = }/q is no longer large compared to the size of the nucleus. If the

radius of a nucleus is approximately A1/3 fm, the form factor becomes important when

}
q

=
}√

2MNER
=

}√
2AMuER

< A1/3fm (2.20)

=⇒ ER >
}2

2muA5/3
=

20

A5/3
MeV , (2.21)

where mu = 0.931 GeV is the atomic mass unit. For small-A nuclei, the form factor is

generally less important than in heavier targets.

F (|q|) is normalised such that F (|q| ≥ 0) ≤ 1, where equality holds for |q| = 0. In the

case of a plane-wave scattering, this corresponds to the Fourier transform of the scattering

site positions, which is approximated by the nuclear density function. For spin-independent

interactions, a commonly used form is [66, 67, 54],

F (|q|) =
3j1(|q|rn)

|q|rn
exp

(
−|q|

2s2

2

)
, (2.22)

where j1(|q|rn) =
sin |q|rn
(|q|rn)2 −

sin |q|rn
(|q|rn)

,

where j1(x) is a spherical Bessel function of the first kind, rn is the effective nuclear radius

and s is the skin thickness parameter. Lewin and Smith [54] recommend values, s = 0.9 fm

and r2
n = (1.23A1/3 − 60 fm)2 + 7

3
(π0.52 fm)2 − 5s2. The form factor for several common

targets is shown in Fig. 2.7.
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Figure 2.7: Form factor for several common target atoms as calculated with Eq. 2.22.

Spin-dependent Interaction

A spin-dependent interaction could be via an axial-vector coupling between a quark and a

fermionic DM particle, with an interaction Lagarangian of the form,

Lint = f ′i χ̄γ
µγ5χq̄γµγ5q , (2.23)

where γµ, γ5 are the standard Dirac γ-matrices and f ′i is the spin-dependent coupling strength

to a given quark flavour [65]. Similarly to the spin-independent case, the DM-nucleus cross

section is obtained by summing over the quarks and then the nucleons. Assuming a SM

weak interaction, the differential spin-dependent cross section can be written as [36],

dσχN
dER

=
16mN

πv2
G2
FΛ2J(J + 1)F ′

2
(ER) , (2.24)

where J is the total angular momentum of the nucleus and Λ is defined as

Λ = 1/J (ap 〈Sp〉+ an 〈Sn〉), with 〈Sp〉 (〈Sn〉) being the expectation value of the spin content
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of the protons (neutrons) in the nucleus. The coefficient ap (an) is a sum over quark flavour’s

couplings to DM and spin fractions in the proton ∆p
q (neutron ∆n

q ),

ap =
∑

q=u,d,s

f ′q√
2GF

∆p
q , (2.25)

an =
∑

q=u,d,s

f ′q√
2GF

∆n
q . (2.26)

The values of ∆p
q , ∆n

q , are determined experimentally [36].

The form factor, F ′2(q) = S(q)/S(0), in the spin dependent case is often parameterised as,

S(q) = a2
0S00(q) + a0a1S01(q) + a2

1S11(q) , (2.27)

where a0 = ap + an and a1 = ap − an are the isoscalar and isovector couplings, and the

individual components form factors Sij are experimentally determined [36, 47, 65].

Similarly to Eq. 2.17, one may define a zero-momentum transfer DM-nucleon interaction

cross section,

0σSD =
32G2

Fµ
2
χn

π
Λ2J(J + 1) . (2.28)

Instead of the A2 dependence extracted from the nuclear matrix elements in the spin-

independent case, the expectation value of the proton’s or neutron’s spin are found. There-

fore, the spin-dependent interaction is suppressed except for in odd-neutron or odd-proton

nuclei and does not benefit from the A2 enhancement. Isotopes with either an unpaired

proton, such as 1H, 19F or 127I, or neutron, such as 29Si, 73Ge or 129Xe, are used for probing

the spin-dependent DM-nucleon cross section.
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2.2.7 Event rate

Direct DM detection experiments aim to measure a signal from energy deposited by nuclear

or electron recoils induced by the elastic scattering of DM particles from the galactic DM

halo. For a DM particle with mass mχ scattering off a stationary target nucleus with mass

mN , the nucleus will recoil with an energy ER given by

ER =
1

2
mχv

2
χ︸ ︷︷ ︸

Eχ

4mχmN

(mN +mχ)2︸ ︷︷ ︸
r

(1 + cos θ)

2
, (2.29)

where θ is the angle of recoil relative to the incoming DM particle’s direction. Eχ is the DM

kinetic energy, and at the most probable velocity, v0, this is E0. The maximum recoil energy

maxER occurs when the collision is head on (cosθ = 1) and the target and DM particle have

the same mass. The term r encapsulates the kinematics of the collision and is maximal for

mχ = mN , highlighting the advantage of matching the target mass to mχ.

The differential rate of DM events dR/dER can be written as,

dR

dER
=

ρχ
mχ

NA

A

σ0

E0r

1

k

ˆ vvesc

vmin

1

v
f(v,vE)d3v , (2.30)

where NA = 6.022× 1023 mol−1 is Avogadro’s number. The differential rate is typically given

in units of events/kg/day/keV, known as differential rate units, dru. For a spin-independent

interaction, Fig. 2.8 shows the differential rate per unit cross section as a function of recoil

energy for 0.1, 1, 10, and 100 GeV DM particles interacting in various materials. For the

lowest DM masses considered, the advantage of low-mass nuclei targets is clear; while heavier

targets benefit from the A2 enhancement, the kinematic matching (r in Eq. 2.29) between

the DM and nuclei results in low recoil energies that are increasingly difficult to detect. For

higher mass DM candidates, the heavier nuclei have an advantage in terms of kinematic
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matching and also due to the A2 enhancement. However, the form factor partially offsets

the A2 enhancement for higher recoil energies.

In practice, an experiment will have an energy threshold which sets a minimum recoil energy

that can be detected. Additionally, not all of the energy deposited by the recoil nucleus

will be in a form that is observable to a given detector. For instance, in a detector that is

only measuring the ionisation caused by the recoiling nucleus, only the fraction of energy

dissipated that results in the formation of electron-ion pairs will be detected. This is known

as a quenching factor and is discussed further in Chapter 5. The rate of events that will

be observed by an experiment is then the integral of Eq. 2.30 over the experimental recoil

energy window. Fig. 2.9 shows the integrated rate in the DM-nucleon cross section versus

DM mass plane for 4 target atoms of interest to NEWS-G.

2.2.8 Coherent Neutrino-Nucleus Scattering

As experiments improve their sensitivity to ever lower cross sections, potential experimental

backgrounds from other rare processes must be considered. One such background is Coherent

Elastic Neutrino-Nucleus Scattering (CEνNS); a SM process, but only recently observed due

to its low cross section [68]. The resulting nuclear recoil is indistinguishable from that

produced by a DM interaction in most detectors and so the cross section below which the

signal from CEνNS is expected to be larger than that from DM is known as the ‘neutrino

floor’. The responsible neutrinos can be from several sources, but are primarily: atmospheric,

generated by cosmic rays interacting in the atmosphere; solar, produced by fusion reactions in

the sun; and supernovae, a diffuse supernovae neutrino background (DSNB) from supernovea

occurring through history. The energy spectrum of astrophysical neutrinos is shown in

Fig. 2.10(a). Solar neutrinos are the lowest energy, being less than 18.8 MeV [69]. As the
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Figure 2.8: Differential rate per unit cross section for 0.1, 1, 10, and 100 GeV DM particles
interacting with various target atoms. Note the x-axis range changes between plots but
covers 3 decades in each case.

maximum recoil energy maxER is given by,

maxER =
2E2

ν

mn + 2Eν
, (2.31)
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Figure 2.9: Integrated rate in the DM-nucleon cross section versus DM mass plane for (a)
hydrogen, (b) helium, (c) carbon, and (d) neon targets. A recoil energy window of 14 eV to
1 keV was used.

solar neutrinos are generally of most interest to direct DM experiments, where their recoil

energies can be less than O(1− 10 keV).
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(a) (b)

Figure 2.10: (a) Neutrino flux as a function of energy for neutrinos from astrophysical
sources relevant for direct DM detections. The first nine processes in the legend are so-
lar neutrino sources; the next three are DSNB for (dsnbflux_3) νe, (dsnbflux_3) νe, and
(dsnbflux_8) the other four flavours; and the final three are atmospheric neutrinos. (b) Event
rate in a germanium-based detector from these neutrino sources compared to the event rate
expected for a 6 GeV DM particle with σSI = 4.4× 10−45 cm2. Figures reproduced from
Ref. [70].

CEνNS is a weak neutral current process with differential cross section [71],

dσν,N
dER

=
G2
FmN

4π
Q2
ν,NF

2(ER)

(
1− mNER

2E2
ν

)
, (2.32)

where Qν,N = A − 2Z(1 − 2 sin2 θW ) is the weak hypercharge of a target with Z protons

and A − Z neutrons, θW is the weak mixing angle and Eν is the neutrino energy. For the

astrophysical neutrino sources considered, this cross section can be used to compute the rate

of events expected in a detector, with an example of this shown in Fig. 2.10(b) for a detector

using germanium.

The background brought by CEνNS will need to be circumvented in order for experiments to

have sensitivity to DM below the neutrino floor. The significant uncertainties in the neutrino

flux make background event rate subtraction challenging [69]. For solar neutrinos, which are

of most concern, one clear distinguishing feature would be the direction of the nuclear recoil;

solar neutrino-induced nuclear recoils would be preferentially directed away from the Sun,
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on the average. Therefore, a DM detector with directional information could distinguish

solar-origin recoils from nuclear recoils from the DM wind. This method, particularly in

the DM mass range below a few GeV, would provide an unambiguous method to search

below the neutrino floor. However, there are other possible methods for achieving this,

such as differences in annual modulation [72] or having sufficiently good energy resolution to

distinguish the DM and neutrino recoil spectra [73]. The detection of a significant number

of CEνNS events above the expected neutrino floor can also be a sign of new physics [74].

2.3 Landscape of Current Direct Detection Experiments

Apart from its gravitational effect, DM has not been observed. The detection of light DM

or WIMPs can be done through the three methods shown in Fig. 2.11: direct detection,

through interaction with a target in a laboratory; indirect detection, through its decay in

the universe; production, through its production at accelerators.

Direct Detection

Indirect DetectionCollider Searches

Figure 2.11: Pictorial representation of the DM detection modes.

Over the past few decades, several experiments have been dedicated to the search for DM

through its elastic scattering off nuclei in target material. A recoiling nucleus in a medium

transfers its energy to the medium through three processes; heating, scintillation, and ioni-
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sation, with each receiving some fraction of the total energy. A detector can use one or more

of the signals generated by these energy deposits to detect a nuclear recoil and to distinguish

it from possible sources of background. The different technologies used are summarised in

Fig. 2.12.

Ionisation

HeatScintillation
Noble Liquid
Detectors

Scintillation Crystals

Two Phase Liquid Noble

Ionisation Gas Detectors

Charge Sensitive
Bolometers

Bolometers

Scintillating Bolometers
Bubble Chambers

Germanium Detectors

Figure 2.12: Schematic of different detection methods for elastic scattering of DM with a
nucleus, and detector types that exploit them. Adapted from figure in Ref. [75].

The best constraints in the spin-independent DM-nucleon cross section as a function of

DM candidate mass are shown in Fig. 2.13. The world-leading experiments in terms of
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Figure 2.13: World-leading 90% CL upper limits on the spin spin-independent DM-nucleon
cross section as a function of DM candidate mass. Figure reproduced from Ref. [27].

sensitivity to DM particles with mass in the range of approximately 10 − 100 GeV utilise
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multi-tonne two-phase xenon Time Projections Chambers (TPC). The detectors comprise

a liquid xenon volume with a smaller gaseous xenon volume above. The interaction of a

particle in the liquid produces ionisation electrons and scintillation light. The scintillation

light is detected in photo-multiplier tubes (PMTs) above and below the two volumes volume,

giving a prompt signal. An electric field through the detector drifts the primary electrons

towards a xenon gas layer, where they are accelerated by the higher electric field, causing

secondary scintillation, which generates a second signal. The comparison of these two signals

allows background processes to be distinguished [76]. Three of the experiments utilising this

method are XENON-1T [77], LUX [78] and PandaX-II [79]. Similar two-phase experiments

are also conducted using argon, such as DarkSide-50 [80], however, xenon has the advantages

that there are no natural xenon radioisotopes.The current energy thresholds and the high

atomic mass of xenon and argon mean that these experiments are limited to searches above

approximately 10 GeV when looking at nuclear recoils with both detection modes. However,

the experiments can choose to use only the ionisation mode, allowing lower energy thresholds

at the cost of background suppression capabilities in order to probe lower mass candidates,

as was done by XENON1T [81].

Liquid noble-gas detectors can also be operated in single (liquid) phase, as done using xenon

by XMASS [82] and with argon by DEAP-3600 [83]. These use pulse shape analysis of the

detected scintillation photons to distinguish backgrounds, rather than comparison of light

and ionisation signals.

The use of inorganic scintillating crystals to detect scintillation light has been explored

by DAMA/NaI [84] and subsequently the DAMA/LIBRA [85], using thallium-doped sodium

iodine (NaI(Tl)) scintillators installed in Laboratori Nazionali del Gran Sasso (LNGS), Italy.

The results show an annual modulation, consistent with that expected for DM interactions

in the crystal, over a period of approximately 20 annual cycles. Although the mass and

cross section of these results have been excluded by other experiments in the case of DM-
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induced nuclear recoils, they are yet to be explained. Recent results from the COSINE-

100 [86] and ANAIS-112 [87] collaborations, who are also using NaI(Tl) scintillators with 1.7

years (97.7 kg years) and 1.5 years (157.6 kg years) data taking, respectively, found results

compatible with both the DAMA/LIBRA result and the null hypothesis at the 68.3% CL,

but both expect to obtain a more stringent coverage of the DAMA/LIBRA region within

5 years. The SABRE collaboration [88] aims to use more radiopure NaI(Tl) to investigate

the DAMA/LIBRA result using detectors located in the northern and southern hemisphere

laboratories to remove possible seasonal or laboratory-specific variations.

The heat produced by an interaction may be detected using a bubble chamber, as was done

by PICASSO [89], COUPP [90] and PICO [91]. These detectors use small pockets of super-

heated chlorofluorocarbons (C3F8, C4F10, etc.) or trifluoroiodomethane (CF3I) suspended

in a gel. Heat produced in an interaction causes the pocket to undergo a phase transition

to a gas, releasing an acoustic shock-wave that is detected in by a piezoelectric detector.

These experiments have the ability to tune sensitivity to DM by changing their operating

conditions, and are particularly sensitive to spin-dependent interactions through the unpaired

proton in 19F.

Bolometers are sensitive to particle interactions through electric resistance variations caused

by the energy deposited as heat. For DM detection applications these can be constructed

from scintillating materials to also gain a second signal, such as that used by CRESST [92].

A calcium tungstate scintillation crystal is cooled to millikelvin temperatures allowing it to

act as a bolometer. Again, comparison of the two signals provides background suppression.

The low threshold of the bolometer and the different element nuclei available in the crystal

give the detector sensitivity over a wide range of masses, down to the sub-GeV c−2 region.

Bolometers can also be constructed from a semi-conducting material, such as germanium or

silicon, to allow the ionisation signal to be measured. CDMSlite [93], SuperCDMS [94] and
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Edelweiss-III [95] use this technology, and can achieve sub-GeV c−2 sensitivity despite the

higher mass target nuclei, due to low energy thresholds.

The final approach is to only detect the ionisation signal, which is most often done using

germanium or silicon semiconductors, cooled to liquid nitrogen temperatures to reduce the

electronic noise and so the energy threshold. This method is used by the CoGeNt [96],

and CDEX-10 [97] experiments using germanium, and DAMIC [98, 99] employ a similar

method using silicon CCDs. However, the ionisation signal may also be measured in gaseous

using a TPCs such as is done by DRIFT [100] with two Multi-Wire Proportional Chambers

(MWPC) and by MIMAC [101] using layers of MicroMegas. Both of these experiments are

direction-sensitive through the use of TPCs and low-pressure gases. Another method to

detect the ionisation signal is the spherical proportional counter, which is utilised by the

NEWS-G collaboration, described in Section 3.4.

It should also be noted that many of these experiments explore other DM interaction pos-

sibilities, in particular, to explore lower-mass DM candidates. For instance, DAMIC looked

for DM-electron interactions [99]. Several collaborations are exploring the potential signals

induced by the inelastic DM-nucleon interaction, resulting in bremstrahlung photon emis-

sion [102], and the as-yet unobserved Migdal effect [103], both of which enhancing sensitivity

to light-DM candidates. Considering these processes, XENON1T [104] and LUX [105] has

set exclusion limits on light DM.
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This chapter will introduce the spherical proportional counter; a novel gaseous detector.

First, the interactions of particles with matter are discussed to provide context to the topic

of gaseous detector, which is covered after. Following the description of the general principles

of gaseous detectors and how a signal is generated, we arrive at the spherical proportional

counter. The detector, its operational principles, and its strengths in rare-event searches

are discussed. The final sections explain how the spherical proportional counter is used by

the NEWS-G collaboration in a direct search for DM, and how the detector can be used for

other rare-event searches.

39



The Spherical Proportional Counter

3.1 Particle Interactions in Matter

3.1.1 Charged Particles

A charged particle traversing a medium can interact directly with the orbital electron of

atoms via inelastic Coulomb collisions. In the interaction, it may impart enough energy

to the electrons to excite or ionise the atom, leaving an electron-ion pair. In the case of

a charged particle heavier than an electron - referred to as a heavy charged particle - the

fractional energy loss is small in each collision; however, the particle interacts simultaneously

with many electrons, leading to it continually slowing down. The linear stopping power S

of the particle is defined as the differential energy loss per unit length

S = −dE

dx
. (3.1)

The mean differential energy loss per unit distance, −〈dE/dx〉, for a heavy charged particle

Coulomb scattering on electrons is given by the Bethe formula [106],

−
〈

dE

dx

〉
= 4π

z2e4

mec2

1

β2
NAρ

Z

A

(
ln

[
2mec

2β2γ2

I

]
− β2C

Z
− δ

2

)
, (3.2)

where

e = electron charge,

z = charge of incoming particle in units of e,

me = electron mass,

c = speed of light in vacuum,

β =
v

c
, v = incoming particle velocity,
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NA = Avogadro’s Number,

ρ = Material Density,

Z, A = Atomic number and mass of absorber material atoms,

γ =
1√

1− β2
,

I = mean excitation and ionisation energy,
C

Z
= Shell correction, and

δ = density correction factor.

Fig. 3.1 shows the mean differential energy loss as a function of βγ for several materials.

For increasing velocity, the mean energy loss varies as 1/β5/3 until it reaches a minimum at

βγ ≈ 3. Particles with βγ ≈ 3 are known as Minimum Ionising Particles (MIPs). Above the

minimum, −〈dE/dx〉 begins to increase, known as the relativistic rise. The value of I is a

measured property of the material [107]. The term proportional to δ is a correction which

accounts for the observation that the relativistic rise does not continue indefinitely. This is

due to the dielectric polarisation of the surrounding atoms, known as the density effect, and

becomes important for high energy relativistic particles [108]. The term C/Z is known as the

shell correction, and corrects for when the velocity of incoming particle is of the same order

or less than the atomic electron orbital velocity [109]. This becomes increasingly important

for decreasing particle energy. Other corrections can also be applied to improve the accuracy

of the model [110].

While Eq. 3.2 describes the mean stopping power, the process is random, and so there is a

distribution of energy loss, known as straggling. For moderately thick materials, the energy

loss distribution can be described by a Landau-Vavilov distribution [111, 112], meaning the

most probable energy loss is below the average. An initially monoenergetic beam of particles

having passed through some thickness of material will have a distribution of energies, and
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Figure 3.1: Mean differential energy loss in liquid hydrogen, helium gas and solid carbon,
aluminium, iron, tin and lead. Figure reproduced from Ref. [27].

this energy straggling is a function of the depth in the medium.

Charged particles may also lose energy by elastic scattering interactions with the nuclei of

the material, resulting in deflections of the incident particle. Other energy loss mechanisms

become important for lighter charged particles or increasing kinetic energy, such as brehm-

strahlung, transition radiation and Cherenkov radiation, however, these are not discussed

further here [27].

In the case that the atom is ionised by the passage of the charged particle, the ejected

electrons can have significant kinetic energy (O(keV)), and are capable of inducing further

ionisation. These δ rays can have a maximum energy of Tmax given by the maximum energy

transfer in a collision,

Tmax =
2meβγ

1 + 2γme
M

+
(
me
M

)2 , (3.3)

where M is the incoming particle mass. For a given energy transfer T the distribution of
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these electrons is given by

d2N

dTdx
= 2π

z2e4

mec2
NAρ

Z

A

1

β2

f(T )

T 2
, (3.4)

for the case where I � T . The factor f(T ) is spin dependent, but is approximately unity

when T � Tmax. The angle θ at which the δ electrons are emitted is given by

cos θ =
Te
pe

pmax

Tmax

, (3.5)

where Te and pe are the electron energy and momentum respectively, and pmax is the mo-

mentum of an electron with energy Tmax.

3.1.2 Electrons

The interactions of electrons in a medium differ from those of heavier charged particles

in several ways. Electrons Coulomb scattering off of atomic electrons are able to transfer

a greater fraction of energy per collision than heavier ions. The incident electrons may

also interact with the atomic nucleus and be scattered through large angles. These effects

result in large deflections in the electron’s trajectory. Electrons may also lose energy through

bremsstrahlung at lower kinetic energies than heavier particles, radiating photons while being

deflected.

The mean stopping power for electrons for excitation and ionisation of atoms in the medium

is given by [113]

−
〈

dE

dx

〉
=2π

e4

mec2

1

β2
NAρ

Z

A
(3.6)

×

(
ln

[
mec

2β2γ2E

2I2

]
+ (1− β2)− 2γ − 1

γ2
ln(2) +

1

8

(
γ − 1

γ

)2

− δ

)
, (3.7)
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where E is the kinetic energy of the electron E = mec
2(γ − 1). The form of −〈dE/dx〉 for

positrons is different because they undergo Bhabha scattering, which includes both s- and t-

channel interactions, whereas electrons undergo Møller scattering, which is t- and u-channel

scattering.

The ratio of the mean energy lost though radiative processes −〈dE/dx〉rad, such as brem-

strahlung, to the collisional losses is approximately [114]

〈
dE

dx

〉
rad

/

〈
dE

dx

〉
=

ZE

1600mec2
. (3.8)

3.1.3 Photons

For photon energies typically detected in gaseous detectors, only three of the photon’s pos-

sible interaction modes are of significant importance; Compton scattering, photoelectric

absorption and pair production. Other interactions, such as photonuclear interactions, can

also occur but are generally not of interest in proportional counters, so are not discussed

further. The total photon-atom interaction cross section for carbon and lead is shown in

Fig. 3.2, including the contributions from the various interaction modes.

The linear attenuation coefficient µ is defined as the probability per unit length that a photon

is removed from a beam, combining all the above effects. A beam of photons with initial

intensity I0 has an intensity I(x) after traversing a thickness dx of material, given by

I(x) = I0 exp

(
−
ˆ
µ(x)dx

)
. (3.9)

The reciprocal of µ is the mean-free-path λ. Conventionally, the mass attenuation coefficient
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Figure 3.2: Photon interaction cross sections in carbon and lead as a function of energy.
The open circles show the total cross section while the other processes are labelled: σp.e.

photoabsorption; σRayleigh Coherent (Rayleigh) scattering; σCompton Incoherent (Compton)
scattering; κnuc Pair production in nuclear field; κe Pair production in electron field; and
σg.d.r Photonuclear interactions. Figure reproduced from Ref. [27].

is defined µρ which is the ratio of µ and the density of the medium ρ:

µρ =
µ

ρ
. (3.10)

The mass attenuation coefficient is related to the total photon interaction cross section per
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atom σtot by

µρ = σtot
NA

mr

, (3.11)

where mr is the atomic mass of the target atom in grams per mole. µρ is independent

of the medium’s physical state, and for a compound or mixture is the sum of individual

component’s µρ weighted by their relative masses in the mixture.

Photoelectric absorption

A photon interacting with an atom can undergo photoelectric absorption, which is the dom-

inant interaction at low energy. In this process, which is shown in Fig. 3.3, the photon loses

its entire energy Eγ to the atom, causing an electron to be ejected with kinetic energy Ee

given by

Ee = Eγ − Eb, (3.12)

where Eb is the electron binding energy. The atom is then left ionised and either absorbs a

free electron from the medium to be neutralised or electrons from weaker-bound shells will

occupy the vacancy, causing the emission of either a characteristic X ray or Auger electrons.

It is possible that the X ray can escape the medium, resulting in a total energy less than

Eγ being deposited in the medium. This can result in an escape peak being observed in a

particle detector - a second peak in the measured energy spectrum at a characteristic energy

below the full energy peak.

The photoelectric absorption cross section σp.e is strongly dependent on the atomic number

Z of the target atom, as can be seen in Fig. 3.2, and increases with decreasing energy;

σp.e. ∝
Zn

E3.5
γ

, (3.13)

where n is between 4 and 5, varying with energy [115]. The sharp discontinuities visible
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Figure 3.3: Sketch of photoelectric absorption.

in σp.e arise when the photon energy reaches the binding energy of an electron shell; above

this point, known as an absorption edge, the photon has sufficient energy to undergo the

photoelectric interaction where an electron in that shell is ejected. The highest energy

absorption edge will be that corresponding K shell electron binding energy.

Compton Scattering

A photon can interact with an electron in the medium, scattering through an angle θ and

transferring a portion of its energy to the electron as depicted in Fig. 3.4. The energy given

to the electron is

Ee = Eγ

(
1− 1

1 + Eγ
mec2

(1− cos θ)

)
, (3.14)

where mez is the mass of the electron. As this interaction occurs with the electrons, the cross

section is proportional to Z. The Klein-Nishina formula predicts the angular distribution for

the scattering, which tends to forward scattering as photon energy is increased [116, 117].
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Figure 3.4: Sketch of a Compton scatting interaction, showing the photon scattered through
an angle θ, ejecting an electron from the atom.

Pair Production

A photon with energy twice the mass of an electron (2me = 1.022 MeV) may undergo

pair production. The photon converts into an electron and a positron, which share the

remaining energy of the photon after subtracting the mass of the particles. This process must

occur in the vicinity of an atomic nucleus or an electron in order to conserve momentum;

the latter having a higher threshold energy and the name ‘Triplet production’ due to the

additional electron which is ejected. Typically, the positron rapidly loses its kinetic energy

and annihilates with an electron in the medium. The two 511 keV photons produced may

then go on to interact or escape the medium. The process is shown in Fig. 3.5.

3.1.4 Neutrons

Neutrons have no electrical charge, so are unable to interact electromagnetically. However,

they may interact with the atomic nucleus in a variety of ways depending on their energy.

Neutrons will scatter in a medium multiple times and, unless they are absorbed, they will

eventually reach thermal kinetic energies of approximately 25 meV.
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Figure 3.5: Sketch of pair production in the vicinity of an atomic nucleus, followed by the
subsequent annihilation of the produced positron.

Neutrons with energies of around 1 MeV and greater are known as fast neutrons. An example

source of fast neutrons is the spontaneous fission of a nucleus, such as californium-252. Fast

neutrons interacting with a nucleus may undergo reactions such as (n, α) and (n, p), and

usually result in neutron-deficient nuclei that decay via beta plus decay or electron capture.

Fast neutrons of sufficiently high energy can undergo inelastic scattering, exciting the nucleus

and resulting in the emission of gamma rays when it deexcites. The neutron can lose a

significant fraction of its energy in this interaction. Neutrons can also lose a significant,

although smaller, fraction of their energy by elastically scattering on a nucleus, which it

may do many times gradually reducing its kinetic energy in a process known as moderation.

Similarly to Eq. 2.29, the greatest energy transfers occur when the nucleus’ mass is similar

to that of the neutron. For instance, the neutron may lose all of its kinetic energy in a single

collision with a hydrogen nucleus. Thus, the lightest nuclei are best suited for moderators.

In both elastic and inelastic scattering, the recoil nucleus may go on to deposit its kinetic

energy in the material.

As the neutron kinetic energy is reduced by moderation, some nuclear interactions become

energetically prohibited until eventually only interactions with a positive Q-value (exothermic

reactions) may take place. These are neutron capture processes, and the most probable is
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generally radiative capture (n,γ), although, others are possible. The cross section for neutron

capture is proportional to the inverse of the neutron velocity, however, peaks in the cross

section are observed at certain neutron energies when the sum of the neutron binding energy

and its kinetic energy equal to the energy of an excited state in the nucleus.

3.2 Gaseous Detectors

3.2.1 Gas Ionisation

Particles interacting with the gas in a detector can produce electron ion pairs through the

interactions described previously. These processes can be grouped into direct and indirect

processes. The interacting particle may directly ionise the gas through interactions with the

gas molecules. In this case, the mean-free-path of the initial particle λ is equal to 1/(neσ),

where ne is the electron number density and σ is the interaction cross section. As the

interactions in a path length L are random and independent, and have mean number L/λ,

the simplest model for the primary number of generated electron-ion pairs Np would be a

Poisson distribution,

P (L/λ |Np) =
(L/λ)Np

Np!
e−L/λ . (3.15)

Electron-ion pairs may also be produced by the interacting particle indirectly, referred to

as secondary ionisation. One method of this is additional ionisation induced by δ-electrons.

Another method is the excitation of atoms in the gas. The excited atom may deexcite,

emitting photons that can cause ionisation, or it can interact with another atom in the gas

and cause further ionisation. An example of the latter case is the Penning effect [118], where
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an excited atom in the gas A∗ interacts with a second atom B, leaving the latter ionised,

A∗ + B→ A + B+ + e− . (3.16)

This process can only occur when the excited energy of A∗ is greater than the ionisation

energy of B. Penning ionisation can also occur if the excited atom interacts with a second

excited atom and its ionisation is less than twice the excitation energy. This is the case with

noble gases [119], and the process is represented by,

A∗ + A∗ → A + A+ + e− . (3.17)

An alternative process is associative ionisation, where an ionic dimer is formed instead,

A∗ + A∗ → A+
2 + e− , (3.18)

A∗ + A→ A∗2 → A+
2 + e− . (3.19)

The total number of electron-ion pair produced NT is sum of those produced directly and

indirectly.

There are also energy loss mechanisms that do not lead to ionisation in the detector, such

as the excitation of vibrational or rotational degrees of freedom of a molecule. The portion

of energy deposited by the interacting particle that goes into these processes is not seen by

a detector looking only at ionisation. The average energy required to produce an electron-

ion pair is quantified by the W-value W which is related to the average total number of

electron-ion pairs NT by

W =
∆E

NT

, (3.20)

where ∆E is the energy deposited by the interacting particle. Values of W are shown for

various gases in Table 3.1.
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Table 3.1: First ionisation energy [120] andW for α particles (E ∼ 5−6 MeV) and electrons
(E ∼ O(100 keV) [109] in various gases. The total number NT and number of primary
electron-ion pairs NP produced per centimetre for a MIP traversing the gas at 1 atmosphere
pressure are also shown. Compiled from data in Ref. [107].

Gas First Ionisation
Energy [eV]

W [eV] Np

[cm−1]
NT

[cm−1]α e

H2 15.4 36.4 36.5 5.2 9.2
N2 15.6 36.4 34.8 ∼10 56
Ar 15.8 26.3 26.4 29.4 94
CH4 12.6 29.1 27.3 ∼34 91
CO2 13.8 34.2 33.0 16 56
C4H10 10.5 26.0 23.4 ∼46 195

It should be noted that W depends on the interacting particle species and its kinetic energy,

as well as the gas, which will be discussed further in Chapter 5.

3.2.2 Fluctuations in Primary Ionisation

In the simplest case where the formation of each primary electron-ion pair is considered a

Poisson process, as in Eq. 3.15, the variance on the number of electron-ion pairs is,

σ2
N = N . (3.21)

However, the fluctuation in N is experimentally observed to be less than this. Fano intro-

duced an empirical factor to account for this [113];

σ2
N = FN . (3.22)

In the case that the Fano factor F is unity, then the variance of Poisson statistics is recovered.
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3.2.3 Drift of Electrons and Ions

For a particle of mass m and charge q moving in an electric and magnetic fields, E and B,

with velocity v, the equation of motion is given by the Lorentz force,

m
dv

dt
= qE + q(v ×B)− kv . (3.23)

The magnetic field is neglected in what follows, but a more complete treatment may be

found in several sources, e.g. Ref. [119]. The last term in Eq. 3.23 describes the collisions

of the charged particle with the gas as a frictional force, where the quantity m/k = τ has

dimensions of time. This model of a frictional force holds if we consider times much greater

than the average time between collision, so that the solution is a steady state; dv/dt = 0.

In this case,

v =
q

m
τE = µE , (3.24)

where

µ =
q

m
τ , (3.25)

is defined as the mobility. The characteristic time τ is the mean time between collisions.

It should be noted that the drift velocity varies with the ratio E/P , known as the reduced

electric field, where P is the gas pressure. This means that µ scales with pressure, i.e.

µ(P ) = µ(P0)P0/P .

Electrons

The low mass of electrons me relative to the gas molecules means that they scatter isotrop-

ically at each collision. Between collisions, the electron will drift under the influence of

the electric field and acquire a velocity v in addition to its instantaneous and randomly
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directed velocity it had after scattering vc. At the next interaction, the electrons will again

isotropically scatter loosing all preferential direction given by the last scattering, as well

as the additional energy gained between the last two collisions, on average. Therefore, the

mean additional velocity it gains between collisions is observed as the drift velocity of the

electrons. Fig. 3.6 shows the electron drift velocity in various gases. In very low magni-

tude electric fields, the drift velocity can be calculated using Eq. 3.24 with a constant µ.

However, at reduced-electric fields generally used in particle detectors, more complex be-

haviour is observed in v, where it can be seen to plateau, or even fall, as the reduced electric

field is increased. This is due to the underlying microscopic behaviour of the electron in-

teractions, such as the minimum in the scattering cross section known as the Ramsauer

minimum [119, 115].

Figure 3.6: Electron drift velocity as a function of electric field magnitude in pure gases at
20◦C and 1 atm. Figure reproduced from Ref. [121].

The drift velocity can be heuristically related to the underlying microscopic processes. The
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mean time between collision may be written as a collision rate Re per electron, which is the

product of the number density of gas molecules n, the interaction cross section σ and the

electron’s velocity vc;

Re =
1

τ
= nσvc . (3.26)

In practise, the gas pressure p is a more convenient variable than the number density, and

they are related by the ideal gas law

p = nkBT , (3.27)

with kB and T being the Boltzmann constant and temperature, respectively.

The velocity vc can be found by considering the total kinetic energy of the electron, which

will have a contribution from the acceleration in the electric field between collisions εE and

a contribution from the thermal energy 3
2
kBT . The latter comes from the application of

equipartition theorem to the electron, which has three degrees of freedom. For reference,

for T = 273.15 K, 3
2
kBT ≈ 0.035 eV. The velocity can then be related to the two energy

contributions by
1

2
mev

2
c = εE +

3

2
kBT . (3.28)

In order to compute εE, consider the number of collisions ξ for the electron drifting over a

distance d; ξ = d/(vτ). Considering that the electron loses an average fractional energy f

at each collision, the total energy loss over d is ξf . In the same distance, the electron has

gained an energy eEd from the electric field E, assuming E does not significantly change

over d. Therefore, the net energy gained by the electron is given by

εE =
eEd

ξf
. (3.29)

In typical detector operating conditions, drifting electrons generally have εE � 3
2
kBT , so
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Eqs. 3.26, 3.28 and 3.29 can be combined with Eq. 3.24 to write the drift velocity as

v2 =
eE

menσ

√
f

2
. (3.30)

Both σ and λ are functions of the energy of the drifting electron and so the magnitude of

the electric field.

In gas mixtures with i components, each with number densities ni, the cross section and

fractional energy loss per collision can be calculated as

σ =
1

n

∑
niσi (3.31)

fσ =
1

n

∑
niσifi , (3.32)

where the total number density is the sum over all components n =
∑
ni.

3.2.4 Ions

For ions drifting in a gas, the energy lost at each collision is much greater than in the case

of electrons and their direction is not randomised. Following a collision, the velocity of the

ion will have a randomised components vr and a component in the drift direction vd. Up

until the next collision, an average time of τ later, the ion of mass mi will gain an additional

velocity vf = qEτ/mi from its acceleration in the electric field. The drift velocity v is the

sum of vf and vd. As vd is the velocity remaining in the drift direction after a collision, it will

be proportional to vf with constant of proportionality g related to the fractional momentum
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loss in the collision. Thus,

v = vf (1 + g) = vfg
′

=
qEτ

mi

g′ . (3.33)

As the ion and gas molecule have similar mass, the velocity in Eq, 3.26 becomes the relative

velocity between the ion and gas molecule vrel. In typical pressures and electric fields, the

thermal energy dominates for the ions, so vrel can be written as the average difference of the

random ion vi and gas molecule vg velocities,

v2
rel = v2

i + v2
g (3.34)

= 3kBT

(
1

mi

+
1

mg

)
, (3.35)

where equipartition theorem has been applied to get Eq. 3.35 and mg is the mass of the

gas molecule. The factor
(

1
mi

+ 1
mg

)
is the reduced mass of the ion-gas molecule system.

Combining Eq. 3.26, Eq. 3.33, and Eq. 3.35, the ion drift velocity can be written as,

v = g′
(

1

mi

+
1

mg

)1/2(
1

3kBT

)1/2
qE

Nσ
. (3.36)

Unlike in the electron case, the drift velocity is proportional to E, meaning the mobility is

independent of E. In practise, µ is found to be a constant over a wide range of operating

pressures and electric fields, as shown in Fig. 3.7. Table 3.2 has the mobility for various ions

in common gases.

In a gas composed of components i with individual number densities ni, the drift velocity of
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Figure 3.7: Drift velocity as a function of reduced electric field for several ions in their own
gas. Figure reproduced from Ref. [121].

Table 3.2: Measured ion mobility for several ions in different gases. Compiled from data in
Ref. [119].

Gas Ion Mobility
[cm2 V−1 s−1]

He He+ 10.40
Ne Ne+ 4.14
Ar Ar+ 1.53
Ar [CH4]+ 1.87
Ar [C4H10]+ 1.56
CH4 [CH4]+ 2.26
C4H10 [C4H10]+ 0.61

one ion species can be determined using Blanc’s law:

1

v
=

1

n

∑ ni
vi
, (3.37)

where vi is the drift velocity of the ion in pure gas i with number density n.
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3.2.5 Diffusion of Electrons and Ions

In the absence of an electric field, electrons and ions generated by ionisation will collide with

gas molecules and quickly lose their energy. As each particle has three degrees of freedom,

by equipartition theorem, their average energy will be 3
2
kBT . They will assume a thermal

energy distribution given by the Maxwell-Boltzmann distribution,

f(E) =
2

√
π
√
E

(
1

kBT

)3/2

exp

(
− E

kBT

)
, (3.38)

where E is the energy of the particle. After some time t, the distribution of the charges in

one dimension x will be given by,

dN

dx
=

(
N0√
4πDt

)
exp

(
−x2

4Dt

)
, (3.39)

where D is the diffusion coefficient. In one dimension, the standard deviation of the particles

from the centre is

σx =
√

2Dt . (3.40)

When the energy of the diffusing particles is dominated by thermal energy 3
2
kBT , the diffusion

is related to the mobility through the Nernst-Townsend formula,

D

µ
=
kBT

q
, (3.41)

where q is the particles charge. Substituting Eq. 3.41 into Eq. 3.42, the standard deviation

of particles drifting a distance x can be related to the electric field magnitude E,

σx =

√
2Dx

µE
=

√
2xkBT

µqE
. (3.42)
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In practise, the diffusion along the drift direction - the longitudinal diffusion - is different

from that perpendicular to the drift - the transverse diffusion [119]. In the case of ions in high

electric fields, their similar mass to the gas molecules means they do not scatter isotropically,

and so retain some component of velocity in the drift direction. This causes the longitudinal

diffusion to be higher than the transverse. In the case of electrons, it has been shown that

their energy is higher at the leading edge of the diffusion cloud, which results in a change in

µ over the cloud. The net result is a reduction in the longitudinal diffusion.

3.2.6 Electron Loss Mechanisms

It is important that the generated electrons remain free for long enough to generate a mea-

surable signal. One method that these electrons may be removed is when they combine with

a positive ion to form a neutral molecule may, known as electron recombination. The rate

of electron recombination Rrc depends on the local number density of electrons ne and ions

n+ and is related by the recombination coefficient αrc;

Rrc =
dne
dt

=
dn+

dt
= −αrcnen+ . (3.43)

Columnar recombination occurs along the ionisation trail left by a charged particle traversing

the gas, and so is dependent on the density of the initial ionisation. For instance, this is more

prolific in the case of alpha particles, which are more densely ionising compared to electrons.

Volume recombination on the other hand occurs due to high numbers of free electrons and

ions throughout the gas volume due to a high rate of charged particles interacting in the gas.

Electrons may also be lost through attachment to molecules in the gas forming negative ions.

Electronegative molecules, such as halogen-containing molecules and oxygen, are primarily

responsible for this process. The rate electrons collisions with electronegative molecules is
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given by the product of the contamination fraction of electronegative gas κ and the total

interaction rate Re, given by Eq. 3.26. If the probability of such an interaction resulting in

electron attachment is h, then for electrons with drift velocity v, the probability of electron

attachment per unit length is,

η =
v

hκRe

. (3.44)

It should be noted that h is a function of the electron energy, and so electric field magnitude,

and so η is a function of the electric field through h, v and R. If there are initially n0 electrons

at a point x1, then after a distance x2 − x1 there will be n electrons remaining, given by

n = n0 exp

(
−
ˆ x2

x1

η(x)dx

)
. (3.45)

It is therefore critical to control contamination the of oxygen and water in the gas to prevent

significant loss of signal. Fig. 3.8 shows the attachment coefficient for various contamination

of O2 in gas as calculated using Magboltz [122, 123].
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Figure 3.8: Attachment coefficient as a function of electric field strength in 1.1 bar Ar:CH4

gas for various amounts of contamination with O2 as calculated using Magboltz.
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3.2.7 Charge Multiplication

In sufficiently high electric fields, the energy gained by an electron between collisions can

be sufficient to induce further ionisation. The first Townsend coefficient α represents the

number of electron ion pairs generated per unit length. Starting with one free electron, after

a distance α−1, statistically, an electron ion pair will have been produced; two electrons are

then drifting. After another α−1, each electron has produced an electron ion pair, and this

process continues with each new electron generation. Due to the O(103) higher drift velocity

of the electrons, the electrons quickly move away from the ions leaving an ‘avalanche’ of

electrons proceeding at the front with the slower ions forming a tail. The Townsend avalanche

continues over a distance dx, leading to an increase in the number of electrons n of

dn = nα(x)dx. (3.46)

The avalanche multiplication factor, or gain, M is defined as the ratio n/n0, where n0 is

the number of initial electrons. M is calculated by integrating Eq. 3.47 over the avalanche

distance between x1 and x2,

n = n0 exp

(ˆ x2

x1

α(x)dx

)
M = exp

(ˆ x2

x1

α(x)dx

)
. (3.47)

α is a function of both the gas pressure and electric field, and at fixed reduced electric field

scales proportionally to the change in pressure, and is shown in Fig. 3.9. An analytical form

for α would allow the calculation of the gain in a given gas. Several parameterisations for α
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Figure 3.9: First Townsend coefficient computed using Magboltz in pure neon, nitrogen,
argon, pure methane and several common mixtures of the argon and methane.

exist [124], however, a common one is [125, 126, 127, 128],

α = pA exp
(
−B p

E

)
, (3.48)

where A, B are constants related to the mean free path of the electron, the electron’s

instantaneous velocity and drift velocity, and to the average energy gained by the electron in

the field, respectively [128]. Values for these constants can be found in Table 3.3 for several

gases.

The gain cannot be increased indefinitely because of secondary processes which are detailed

in Section 3.2.8. This physical limit on the gain is found to be approximately M < 108 or
´ x2
x1
α(x)dx < 20, known as the Raether limit.

While Eq. 3.47 defines the mean gain, the avalanche process is subject to statistical fluctu-

ations resulting in deviations from this. Under the assumption that the probability for an

electron to ionise is independent of its history, the probability for the avalanche of a single
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Table 3.3: Values of A, and B for Eq. 3.48 in several gases. σr is the relative standard
deviation of the experimental data from the parameterisation over the ranges specified.
From compilation in Ref. [128]

Gas E/P range α/P range A B σr
[V cm−1 mbar−1] [cm−1 mbar−1] [cm−1 mbar−1] [V cm−1 mbar−1] [%]

Ar ≤ 40 ≤ 0.5 2.011 54.7 2.5
40-140 0.5-2.9 6.055 101.3 4.9

N2 ≤ 110 ≤ 0.8 4.482 196.5 1.8
110-700 0.76-7.1 10.777 290.0 3.2

CH4 ≤ 25 ≤ 0.01 26.315 193.5 6.0
25-150 0.01-2.5 7.866 173.8 1.0

C4H10 ≤ 100 ≤ 1 19.579 300.1 1.0
Ar:CH4

(98%:2%) 20-50 0.4-1.7 4.458 50.9 6.0
Ar:CH4

(90%:10%) 26-50 0.6-1.5 4.551 55.8 4.0

electron to produce n electrons, P (n) , is given by the Furry distribution [119],

P (n) =
1

M
exp

(
− n

M

)
. (3.49)

For high values of M and high reduced electric fields, P (n) is better described by the Polya

distribution,

P (n) =
1

M

(1 + θ)1+θ

Γ (1 + θ)

( n
M

)θ
exp

(
−(1 + θ)

n

M

)
, (3.50)

which has variance

σ2 =
M2

1 + θ
. (3.51)

Γ is the gamma function, Γ(y) =
´∞

0
xy−1 exp(−x)dx. The parameter θ defines the shape of

the distribution, where the Furry distribution is recovered when θ = 0. As θ is increased,

the distribution tends to a Normal distribution. The Polya distribution is shown for various

values of n in Fig. 3.10. If the avalanches of individual electrons are considered independent,

then for n0 electrons undergoing avalanches P (n) is given by the convolution of n0 Polya
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distributions,

P (n|n0) =
1

M

(
(1 + θ)1+θ

Γ(1 + θ)

)n0 ( n
M

)n0(θ+1)−1

exp
(
−(1 + θ)

n

M

)
×

n0−1∏
i=1

Γ(i+ iθ)Γ(1 + θ)

Γ((i+ iθ) · (1 + θ))
. (3.52)
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Figure 3.10: Polya distribution for various values of n for M = 100. A Gaussian distribution
with mean µ = 100 and standard deviation σ given by Eqn. 3.51 is included for comparison
to the θ = 5 Polya distribution.

3.2.8 Modes of Gaseous Detector Operation

A gaseous detector can be operated in one or more of several modes depending on the applied

voltage at the collection electrode. These are summarised in Fig. 3.11 which shows the charge

collected as a function of the applied voltage for two interactions in the gas depositing

different amounts of initial energy (E1 > E2). For the lowest voltages, the electric field is

insufficient to drift all of the initial charges before they are lost by recombination. As such,

the collected charge is less than the initial number of electron ion pairs generated. As the
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voltage is increased, the charge collection become more efficient, overcoming recombination,

until the total initial charge is collected. This region of ion saturation is the operational

condition of an ionisation chamber.
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Figure 3.11: Modes of detector operation for gaseous detectors. The collected charge is
plotted as a function of voltage for two different energies deposited in the gas (E1 > E2).
The labels regions are: (1) recombination before total charge collection; (2) ionisation mode;
(3) proportional mode; (4) region of limited proportionality; (4) Geiger-Müller mode; (5)
discharge region.

Increasing the voltage further, the electric field becomes sufficiently large for avalanche mul-

tiplication to occur, resulting in an increase in the collected charge to increase. Over a range

of voltages, the multiplication remains linear and the recorded charge will be proportional to

the initial number of electron ion pairs. This is the region in which the proportional counters

operate. Non-linear effects can affect this operational mode. Two effects mainly contribute to

this loss of linearity: accumulation of positive ions near the anode and secondary avalanches

caused by photoemission in the avalanches and by neutralising ions at the cathode. While

the electrons generated in the avalanche are quickly collected at the anode, the O(10−3))

slower drift velocity of the ions means they can take from milliseconds to seconds to reach

the cathode. In high avalanche gains, the positive ions in the vicinity of the anode can

reduce the magnitude of the electric field around the anode, reducing the avalanche gain of
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a subsequent avalanche. This is known as the space-charge effect and becomes an increasing

problem as the voltage is increased.

The second process originates from the fact that ionised and excited atoms are formed during

the avalanche. For noble gas atoms, the return to the ground state is possible only through

photon emission. If these photons have an energy above the ionisation energy of another gas

component or the cathode material they can cause the extraction of more electrons. If these

photons interact and cause the liberation of an electron at a distance further from the anode

than the start of the avalanche then a second, independent avalanche will be generated by

this electron. Additionally, the ions generated by the avalanche will drift toward the cathode.

Upon reaching it they will be neutralised by extracting an electron from the cathode. In order

to balance the energy, this also results in either the emission of a photon or the secondary

emission of an electron from the cathode; both having the potential to generate a second,

independent avalanche. As the voltage, and so gain, is increased, there comes a point where

these processes can result in the continuous discharge of the detector, resulting in a limit to

the operational gain of a proportional counter.

However, in polyatomic molecules the behaviour is different. The additional rotational and

vibrational degrees of freedom introduced allow for non-radiative excited states. The dis-

sipation of this energy is done through either elastic collisions or dissociation. Thus, the

interaction of a photon from the avalanche with such a gas molecule reduces the probability

of secondary electron emission. Similarly, an ionised polyatomic molecule being neutralised

at the cathode is more likely to recombine with other ionised molecules to form more com-

plicated molecules or even polymerise, than to undergo secondary emission. This property

is possessed by most hydrocarbons, alcohol vapours and many organic compounds.

There is an efficient charge exchange in collisions of gaseous molecule that results in only the

ion species with the lowest ionisation energy remaining. Noble gases typically have a higher
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ionisation energy than polyatomic molecules, and so, in a gas mixture containing both gases,

noble gas ions are quickly neutralised by transferring their charge to the polyatomic molecule.

Thus, the introduction of a small amount of quencher gas is typical for proportional counters

in order to suppress secondary avalanches.

As the voltage is increased further, the non-linear effects begin to prevail and result in a

region of limited proportionality. At still higher voltages, these processes become completely

dominant. The photoemission propagates avalanches which cease only when enough posi-

tive ions have been generated to reduce the electric field below the threshold for subsequent

avalanches. At this point the signal generated is no longer proportional to the initial ioni-

sation but is instead a constant due to its self-limiting nature. This is the mode in which

Geiger-Müller detectors operate. At voltages beyond this, there is a complete breakdown of

the gas which cause sparks.

3.2.9 Signal Formation

The movement of charges in the detector induces a current in the electrode which may then

be read out. Fig 3.12 shows a particle of electric charge q moving in the vicinity of a set of

electrodes, each at voltage Vi, the charge induced on each will be Qi(t), dependent on the

particle’s velocity v = dr/dt. The instantaneous current I induced on electrode i may be

calculated using the Shockley-Ramo theorem,

Ii = −qwEi · v
wVi

, (3.53)

where wEi, known as the weighting field, is the electric field at the position of the charge in

the case that electrode i is at a voltage wVi and all other electrodes are grounded and the

charge is not present.
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Figure 3.12: A charge q moving in the vicinity of a set of electrodes and inducing a current
Ii on each of them that may be computed using Shockley-Ramo theorem.

3.3 The Spherical Proportional Counter

The spherical proportional counter [129, 130] is a gaseous detector comprising a grounded,

metallic, spherical shell that acts as a cathode and a high-voltage central anode structure,

as shown in Fig 3.13. The anode radius is chosen to be O(mm) to give a high electric field

at its surface, and so provide gain. Particles interacting in the gas may cause ionisation

either directly, through recoils induced by collisions with nuclei or electrons, or through

secondary reaction products. Electrons generated by ionisation drift under the influence of

the electric field toward the anode. Within approximately 1 mm of the anode the electric field

is large enough that the electrons have sufficient energy to induce further ionisation, causing

a Townsend avalanche. While the electrons produced by the avalanche almost immediately

reach the anode, the ions may take seconds to drift to the cathode, generating a measurable

current in the anode.

Approximating the detector as two concentric spheres, the anode and cathode, with radii ra

and rc, respectively, the electric field is purely radial r̂. In this case, the electric field E(r)
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Figure 3.13: A schematic of the spherical proportional counter and the generation of an
avalanche from a primary electron. Figure reproduced from Ref. [3].

may be calculated through the use of Gauss’ law,

‹
S

E · dS =
Q

ε
, (3.54)

where ε is the permittivity of the material between the spheres and Q is the charge enclosed

within the surface S. Performing the integration for a spherical surface and rearranging,

E(r) =
Q

4πε

r̂

r2
. (3.55)

Using the relation

E = −∇V (3.56)

and the boundary conditions that the anode is at voltage V0 (V (ra) = V0) and the cathode

is grounded, V (rc) = 0 V, the potential difference between the anode and cathode may be
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written as,

V (ra)− V (rb) = V0 = −
ˆ ra

rc

E(r) · dr

V0 =
Q

4πε

1

r

∣∣∣∣rc
ra

=
Q

4πε

rc − ra
rarc

. (3.57)

Substituting Eq. 3.57 into Eq. 3.55,

E(r) =
V0

r2

rarc
rc − ra

r̂ . (3.58)

For a spherical proportional counter that has rc = 15 cm, ra = 1 mm and V0 = 2000 V, the

electric field magnitude at a radius of 1.1 mm (1 cm) is 1.7 kV cm−1 (20.1 V cm−1).

As it is usually the case that rc � ra, a useful approximation of the field is given by the

Taylor expansion of E(r) at ra/rc = 0,

E(r) ≈ V0

r2
rar̂ , (3.59)

which is independent of rc.

3.3.1 Gas Gain

The parameterisation of the first Townsend coefficient given by Eq. 3.48 has previously [131]

been used to write an analytical expression for the gas gain in a MicroMegas detector [132].

Using Eq. 3.58, the first Townsend coefficient and gas gain in a spherical proportional counter
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can be written as

α(r) = AP exp

(
−BP r

2

V

rc − ra
rarc

)
, (3.60)

M = exp

ˆ ra

rx

αdr , (3.61)

where rx is the radius at which the electron undergoing amplification was produced. Defining

∆r = rarc
rc−ra and performing the integral, the gain can be written as

lnM =
AP
√
π

2
√

BP
V∆r

{
erf

(√
BP

V∆r

rx

)
− erf

(√
BP

V∆r

ra

)}
, (3.62)

where erf is the error function, erf(x) = 2√
π

´ x
0

exp (−z2) dz.

3.3.2 Signal Formation

Current Induced in Anode

The ions produced in the avalanche will drift towards the cathode, inducing a current in the

anode. As their mobility is well approximated by a constant over a wide range of electric field

magnitudes, the velocity of the drifting ions can be approximated by Eq. 3.24. Rearranging

Eq. 3.24 and substituting in Eq. 3.58, the mobility can be written as

µ =
r2

V

(
rarc
rc − ra

)−1

v , (3.63)

where the ion’s instantaneous velocity v is radial v = dr/dt. Defining δ = µV rarc(rc − ra)

and rearranging,

δdt = r2dr . (3.64)
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Assuming that all ions in the avalanche are produced at t = 0 and at the anode surface ra,

the current induced as a function of time can be calculated. In a time t the ions have drifted

to a radius r, so integrating Eq. 3.64,

ˆ t

0

δdt =

ˆ r

ra

r2dr

t =
(r3 − r3

a)

3δ
. (3.65)

When r = rc, t is the total drift time of the ion. For a spherical proportional counter that

has rc = 15 cm, ra = 1 mm and V0 = 2000 V, and using an ion mobility of 1.53 cm2 V−1 s−1

(corresponding to Ar+ in Ar, Table 3.2), the total ion drift time is 3.6 s.

By rearranging Eq. 3.65, the ion’s radius as a function of time can be computed,

r =
(
3δt+ r3

a

) 1
3 . (3.66)

Applying Shockley-Ramo theorem (Eq. 3.53), and substituting in Eq. 3.58,

I = − q

V0

v(t)
V0

r2

rarc
rc − ra

, (3.67)

where q is the charge of all the ions. Using Eq. 3.24 to substitute for the ion instantaneous

velocity v(t) and simplifying,

I = −qE(r)µ
1

r2

rarc
rc − ra

= −qV0µ
1

r4

(
rarc
rc − ra

)2

= −qαδ 1

r4

rarc
rc − ra

. (3.68)
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Combining this result with Eq. 3.66,

I(t) = −qαδ 1

(3δt+ r3
a)

4
3

rarc
rc − ra

. (3.69)

Read-out Electronics

ADC
Bias

Detector

Pre-amplifierFilter

Figure 3.14: Simplified schematic of the readout electronics used with the spherical propor-
tional counter.

In order to calculate the signal that would be measured from the induced current in Eq. 3.69,

knowledge of the read-out electronics is required. The simplified read-out electronics for a

typical spherical proportional counter are shown schematically in Fig. 3.14. A Direct Current

(DC) bias voltage is applied to the detector by a power supply, typically the ISEG NHR 22

60r, chosen for its low ripple noise of 3 mV [133]. This is applied through a low-pass filter

with cut-off frequency ω0 = 1/(R1C1), which is defined at the frequency at which the input

is attenuated by 3 dB. The voltage is supplied to the detector through the bias resistance

resistance R2. The signal coming from the detector is decoupled from the bias voltage by

C2 and passed through the preamplifier. Generally, a charge-sensitive pre-amplifier is used,

which, while practically more complex, is functionally similar to the operational amplifier

integrator circuit shown in the dashed box in Fig. 3.14. A more complete, albeit still simpli-

fied, pre-amplifier design may be found in Ref [134]. The preamplifier integrates the current
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from the detector and gives a voltage output,

V ′out(t) = − 1

Cf

ˆ
I(t)dt+ const. . (3.70)

This integration time is typicallyO(1−100 ns). Integrating from the start of the avalanche to

the time when the ions reach the cathode, the total output voltage is V ′out = q
Cf

. Additionally,

the preamplifier has some gain which is applied to the signal. The resistor Rf provides a DC

feedback across the operational amplifier and discharges Cf with a time constant τ = RfCF .

This is significantly greater than the rising time, which can then be neglected, and so the

preamplifier response can be parameterised by

R = A exp

(
−t− t0

τ

)
, (3.71)

where A represents the gain of the preamplifier in volts per unit charge. Values for τ ,

preamplifier gain and noise for typical preamplifier used with the spherical proportional

counter are shown in Table 3.4.

The voltage output from the preamplifier is then passed to an Analogue-to-Digital Converter

(ADC) which provides a digital signal to the acquisition software based on the amplitude of

the voltage. Two ADCs used with the spherical proportional counter are the “CALI” and the

Redpitaya STEMlab 125-14. The “CALI” digitiser was manufactured by CEA Saclay [135],

with a dynamic range of ±1.25 V over a 16 bit resolution and maximum sampling frequency

of 5 MHz. The Redpitaya [136] has a dynamic range of ±1 V over 14 bit and a sampling

frequency of 40 MHz.

75



The Spherical Proportional Counter

Table 3.4: Comparison of preamplifiers typically used with the spherical proportional
counter.

Preamplifier Gain [V pC−1] τ [µs] Noise [electrons]
Cdet = 0 Cdet = 100 pF

CREMAT CR-110-R2 [134] 1.4 140 200 -
ORTEC/AMTEK 142AH [137] 1.01 500 490 1000
Canberra 2006 [138] 0.3 or 1.5 50 < 350 < 460

Signal Induced

The signal induced S from t = 0 to t is given by the convolution of the current induced and

the preamplifier response,

S(t) =

ˆ t

0

R(t− x)I(x)dx (3.72)

= −qαδA rarc
rc − ra

ˆ t

0

exp

(
−t− x

τ

)(
3δx+ r3

a

)− 4
3 dx . (3.73)

A Monte Carlo integration of this for a single ion signal (q = +1e) is shown in Fig. 3.15.

The drop in amplitude observed when a finite τ is used compared to an infinite τ is known

as ballistic deficit.

It has previously been shown [140] that Eq. 3.73 can be approximated by a sum of two

exponentials;

S(t) = −k
(
e−t/τf − e−t(1/τf−1/τr)

)
, (3.74)

where k is a scaling constant and τf , τr are effective falling and rising time constants of

the signal, respectively. This parameterisation has been fit to the signal in Fig. 3.15 for

comparison.

In the case of an interaction in the detector generating N electrons, diffusion will cause a

spread in their spread in arrival time to the anode. The diffusion of the charges is given by
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Figure 3.15: Signal generated by a charge of q = +1e in a �30 cm spherical proportional
counter with a �2 mm anode at 2000 V. An ion mobility of 1.535 cm2 V−1 s−1 (corresponding
to Ar+ in Ar [139]) was used along with the preamplifier time constant τ and gain for the
CREMAT CR-110-R2. The parameterisation of the signal given by Eq. 3.74 was fit to the
signal, yielding k = 0.161 µV, τf = 180.2 µs and τr = 5.1 µs. The signal in the case of
τ →∞ is given for comparison.

Eq. 3.39, and so the total signal will be the sum over the N electrons for a convolution of

Eq. 3.73 with Eq.3.39.

An example digitised output pulse, recorded with a “CALI” digitiser at a rate of 1 MHz

operated with a CREMAT CR-110-R2 preamplifier, is shown in figure 3.16. A preamplifier

output of 1 Analogue-to-Digital Units (ADU), corresponds to a charge of approximately

0.027 fC at the preamplifier input.

Key signal pulse parameters which are used in analysis are: the base line, defined as the

ADU value of the pre-trigger of the pulse; the amplitude, defined as the peak amplitude

of the pulse above the baseline; the rise time, defined as the time between 10% and 90%

amplitude on the rising edge of the pulse; and the integral, defined as the integral under the

pulse, with the base line subtracted.
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Figure 3.16: Digitised output pulse recorded in a 2 ms window, with the pulse peak positioned
at 25% of the window width.

3.3.3 Advantages in Rare Event Searches

The spherical geometry of the detector offers several advantages compared to other gaseous

detectors, especially for large-volume, and so large active mass, detectors. Compared to

cylindrical and parallel plate detectors of the same size, a spherical detector has the lowest

capacitance and so the lowest electronic noise. From Eq. 3.57 and the definition of capaci-

tance Q = CV , the capacitance C of the detector is,

C = 4πε
rarc
rc − ra

. (3.75)

Considering the same example spherical proportional counter as in Section 3.3, the capac-

itance is less than 1 pF. By again performing a Taylor expansion with the condition that

rc � ra, the capacitance is approximated by,

C ≈ 4πεra , (3.76)
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which is independent of rc, meaning large detector can be constructed with no commensurate

increase in capacitance. Thus, the detector has low electronic noise, allowing it to operate

with a single electron level threshold [141, 142].

One of the main sources of background in rare event searches is nuclear disintegration in the

material of the detector. A sphere naturally has the smallest surface area to volume ratio

for any geometry, suppressing this contribution. Additionally, the relatively simple design

reduces the number of materials in contact with the gas; the cathode and rod supporting

the anode being the main mass components, which can be made from high-purity copper.

The use of electrodeposition to suppress this background contribution, along with the fu-

ture prospects for using electroforming for spherical proportional counters is addressed in

Chapter 6.

The detector can be operated with a variety of different gases, which brings two main benefits.

Firstly, this allows a larger range of candidate DM masses to be explored by changing the

mass of the target gas. In particular, light nuclei, such as hydrogen, helium and neon, can

be used to kinematically match light DM candidates. Gases with odd-nuclei isotopes like

hydrogen and carbon, which has approximately a 1% natural abundance of 13C, can provide

sensitivity to spin-dependent interactions. Secondly, the ability to vary gas composition,

pressure and anode voltage to change the avalanche multiplication gain can provide an

additional handle in assessing background contributions.

In its simplest form the detector can operate with a single-channel readout, greatly sim-

plifying readout electronics while still having background rejection capability. However, a

multi-anode sensor system has been designed and is currently being developed [143, 4] that

would potentially provide information about the direction of the incoming particle. This will

be discussed further in Section 4.3.

Despite only using one channel in its simplest form, background rejection may be achieved in
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the spherical proportional counter through the use of pulse-shape analysis. The radial electric

field falls as 1/r2. Primary electrons generated at larger radii are expected to undergo more

diffusion as they drift to the anode (σd(r) ∼ (r/rc)
3 [144]) and so will arrive at the anode over

a longer period of time. This translates to larger pulse rise time. This allows events occurring

near the inner surface of the detector to be discriminated. Similarly, track like events may

be distinguished from point-like events, which are expected for DM-induced nuclear recoils,

based on the characteristics of the generated pulse. As example, Fig. 3.17 shows the pulse
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Figure 3.17: Pulse amplitude versus rise time for signals recorded by a 15 cm diameter
spherical proportional counter filled with He:Ar:CH4 (51.7%:46%:2.3%) at 1.3 bar and the
3 mm diameter anode at 2400 V. The labelled population correspond to: (1) 5.9 keV X ray
interactions in the gas volume, (2) interactions of the X ray near the cathode surface and
(3) cosmic muons. The escape peak is also visible at approximately 4000 ADU.

amplitude versus rise time for signals recorded by a 15 cm diameter spherical proportional

counter filled with He:Ar:CH4 (51.7%:46%:2.3%) at 1.3 bar and the 3 mm diameter anode

at 2400 V. An 55Fe source was placed inside the detector, which decays via electron capture

to 55Mn, emitting a 5.9 keV X ray [145]. These photons are most likely to interact by

photoelectric absorption and have a mean free path of 7.2 cmin this gas [146]. Thus, they

will interact at a variety of radii with approximately 98% having interacted in the first 15 cm.
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The population labelled (1) are these photons - they have approximately the same amplitude

because the vast majority of the generated electrons are collected, however, have a range of

rise times because of the radius at which they interacted; a larger rise time indicates a photon

that interacted at a larger radius. Population (2) shows those photons that interacted near

the cathode surface, which have resulted in some of the electrons colliding with the cathode

and being lost.These electrons travel a significantly shorted distance than the photons, and

so also interact near the cathode. Therefore, rise time discrimination can be used to select

against interactions occurring near the cathode, which is the dominant source of background

for current generation rare event searches with spherical proportional counters. Population

(3) are cosmic muons. As these are minimum ionising particles, they will leave a track of

ionisation in the detector, which results in a large deviation in electron arrival times to the

anode, and so, a significantly larger rise time than point-like events near the cathode. This

allows track-like energy deposits to also be selected against using rise time selections.

3.4 NEWS-G

The New Experiments With Spheres - Gas (NEWS-G) collaboration utilises the spherical

proportional counter to probe the 0.1 − 10 GeV DM mass range [141, 142, 147, 144]. The

NEWS-G Collaboration operates SEDINE, a 60 cm diameter detector made from Aurubis

NOSV copper, shown in Fig. 3.18(a). The detector is installed in the Laboratoire Souterrain

de Modane inside a shield comprising 8 cm cooper, 15 cm lead and 30 cm polyethylene, as

shown in Fig. 3.18(b).

The detector was operated in sealed mode with the Ne:CH4 (99.3% : 0.7%) gas mixture at

3.1 bar pressure for 42.7 days, with a total exposure of 9.7 kg days. The Region Of Interest

(ROI) was optimised for 8 candidate DM masses from 0.5 GeV to 16 GeV using a Boosted

Decision Tree. Using standard DM halo assumptions, and considering all events in the ROI of
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(a) (b)

Figure 3.18: (a) �60 cm spherical proportional counter, SEDINE, and (b) shielding of
8 cm copper, 15 cm lead and 30 cm polyethylene. Figures reproduced from Ref. [144] and
Ref. [135], respectively.

each candidate mass as signal, the results shown in Figure 3.19 were obtained with Poisson

statistics. A spin-independent DM-nucleon scattering cross section of 4.4× 10−37 cm2 is

excluded at 90% confidence level (CL) for DMmass of 0.5 GeV [144] - the strongest constraint

on that mass of DM candidate at the time.

Figure 3.19: Spin-independent DM-nucleon interaction cross section as a function of DM
mass, showing the result from SEDINE exclusion limit (solid red). Figure reproduced from
Ref. [144].

The next stage of the direct DM search by NEWS-G is a �140 cm spherical proportional
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counter, SNOGLOBE, shown in Fig. 3.20(a). The detector is made out of higher purity

4N (99.99% pure) oxygen free copper (OFCu) and housed in a compact shielding, shown

in Fig. 3.20(b). Following a commissioning phase in Laboratoire Souterrain de Modane

(LSM), the detector was installed in SNOLAB, Canada. SNOLAB offers a 6000 m water

equivalent overburden, and a cosmic muon flux of approximately 0.25 m−2 day−1 , as well

as being a Class2000 clean room. The increase in detector volume, use of compact shielding

and use of light-nuclei gas targets are expected to increase the detector’s sensitivity to light

DM candidates, as shown in Fig. 3.21. The suppression of background contributions from

the copper sphere though the use of ultra-pure copper electroplating [1] is the subject of

Chapter 6, and future spherical proportional counters utilising this technology are discussed

in Chapter 7.

(a) (b)

Figure 3.20: (a) �140 cm spherical proportional counter, SNOGLOBE, during the commis-
sioning phase in LSM and (b) its shielding of 3 cm archaeological lead, 22 cm low radioactivity
lead and 40 cm high-density polyethylene (HDPE), reproduced from Ref. [1].
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Figure 3.21: Projected 90% CL upper limit on the spin-independent DM-nucleon interaction
cross section as a function of DM mass projected for SNOGLOBE. The neutrino floor is
shown for helium [74]. Experimental exclusion limit measurements for SEDINE [144], and
other direct DM experiments, DarkSide-50 [148], CRESST-III [149], CDMSlite [93] and
Xenon-1T [104], are given for comparison.

3.5 Other Applications of the Spherical Proportional Counter

A number of other applications make use of the advantages of the spherical proportional

counter, including supernovae detection [150] and neutrino coherent scattering measure-

ments [130]. Two further uses are detailed below.

3.5.1 Neutron Spectroscopy

Neutron measurements are important for industrial application, but also for assessing exper-

imental backgrounds for rare-event searches in underground laboratories. Current technolo-
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gies for neutron spectroscopy have several limitations, such using expensive gases, toxic gases,

or having poor γ-neutron discrimination capabilities [151]. An alternative is a nitrogen-based

detector, which takes advantage of the exothermic and endothermic reactions, 14N(n, p)14C

and 14N(n, α)11B, respectively. While the exothermic reaction provides sensitivity to ther-

mal neutrons, the endothermic reaction is sensitive to fast neutrons directly, without need

of moderation. The latter enables fast neutron spectroscopy.

A nitrogen-filled spherical proportional counter could be used as a neutron detector. Initial

measurements were made challenging by the ‘wall effect’, induced by the reaction products

having a stopping range longer than the size of the detector and so not depositing all of their

energy in the gas [152]. This is determined by the detector operating pressure, which was

previously limited the high-voltages required to operate a nitrogen detector in proportional

mode. Developments in detector read-out instrumentation, discussed in the next chapter,

have opened the possibility of higher-pressure operation. Studies are ongoing to use these

with a nitrogen-based detector [6], with measurements taking place at the University of

Birmingham and Boulby Underground Laboratory, UK [153]. An initial calibration was

made with a triple-α source, containing 239Pu, 241Am, and 244Cm, which mainly emit α

particles with energies 5.2 MeV, 5.5 MeV and 5.8 MeV, respectively. The measurement was

performed with a spherical proportional counter at the University of Birmingham, shown in

Fig. 3.22(a), with the results of the calibration, using 1 bar of N2, shown in Fig. 3.22(b).

Measurements are ongoing to operate at pressures of up to 2 bar and to collect data using a

neutron source.

3.5.2 Neutrinoless Double Beta Decay Searches

Another application of the spherical proportional counter is the search for neutrinoless double

beta decay (0νββ) that is being conducted by the R2D2 collaboration [154, 155], which
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Figure 3.22: (a) A �30 cm spherical proportional counter at the University of Birmingham
Gaseous Detector Laboratory. Photograph taken by Rhys Owen. (b) Pulse amplitude versus
risetime for alpha particles from a triple-α source inside a detector operated with 1 bar N2.

intends to use high-pressure xenon gas to look for 0νββ from 136Xe decays. The experimental

signature of 0νββ is a peak in the energy spectrum of the two electrons from the decay located

at the reaction Q-value. To discern such a peak from the continuous energy spectrum from

ordinary double beta decay, where a portion of energy is carried away by the two neutrinos, an

energy resolution goal of 1% Full-Width-at-Half-Maximum (FWHM) at the reaction Q-value

of 2.458 MeV has been set. Research is ongoing into developing the necessary capabilities

of the detector for this application, where first steps have been made in studying the energy

resolution [5].
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This chapter details the developments to the spherical proportional counter read-out instru-

mentation. This comes in two forms; the simpler single-anode sensor and the multi-anode

sensor, ACHINOS. Additionally, an electrode designed to improve the electric field homo-

geneity in both cases is presented. These developments were assisted by finite element

calculations and also by a dedicated simulation framework for spherical proportional coun-

ters, which is also discussed. This work is presented in detail in Ref. [3, 4], of which I am

a main author and heavily contributed to the preparation of the manuscript. As a result,

texts and figures from Ref. [3, 4] are included here. The discussed simulation framework is

presented in detail in Ref. [2].
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4.1 Detector Simulation

4.1.1 Finite Element Method Calculations

FEM is a numerical method used to solve partial differential equations over some space.

This allows problems such as, heat transfer, fluid flow and electrostatics, for example, over

complicated geometries to be solved. In the case of an electrostatic analysis, the electric

potential across the volume of the detector is the quantity of interest. From Maxwell’s

equations in differential form, the electric displacement field D is related to the charge

density ρ by,

∇ ·D = ρ , (4.1)

where D is related to the electric field by the permittivity ε, D = εE. Using Eq. 4.2 with

Eq. 3.56, the governing equation for the electric potential V can be written as,

−∇ · (ε∇V ) = ρ . (4.2)

For this work, ANSYS Mechanical APDL FEM software was used. This software provides

a means of creating a geometry, including the material properties, meshing the volume with

the selected predefined or user-defined element type, solving the problem and presenting the

results. In order to be directly compatible with Garfield++, which is used in the simulation

framework discussed in the next section, the PLANE121 and PLANE123 elements were selected

for 2D and 3D models, respectively. PLANE121 was used with triangular-shaped elements,

using six nodes, and with the ‘axisymmetric’ option on, meaning the calculated solution

assumes symmetry about one axis parallel to the grounded rod. This element was used

when modelling the single anode sensors. The PLANE123 element, with 10 nodes, was used
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when modelling the multi-anode sensor, where the axial symmetry is broken.

4.1.2 Simulation framework

Various different software packages exist for simulating a detector. Geant4 [156, 157] provides

a toolkit for simulating the passage of particles through matter. Garfield++ [158, 159]

provides a toolkit for simulating gaseous detectors, including interfaces to Magboltz [122,

123] for the modelling of electron transport parameters and other properties of gases and

HEED [160] which simulates particle interactions. Garfield++ can be provided with an

electric field map of the detector, which can either be analytical or calculated using FEM. It

has previously been shown [161] that these various toolkits can be combined, and this has

been used to construct a predictive framework for the simulation of spherical proportional

counters [2, 162].

The simulation framework is based in Geant4 and interfaces with Garfield++. Geant4

handles the detector material simulation, as well as generating, tracking and interacting

initial particles. Electrons with an energy below 2 keV are passed to Geant4 via a custom

physics model where HEED calculates any subsequent ionisation. At this point, Magboltz-

generated electron transport parameters are used to drift electrons towards the anode and

simulate their diffusion in the electron field, using the Garfield++ drift line model. The

Magboltz gas properties are also used to compute the avalanche multiplication. For this, a

custom Monte Carlo model combining the Townsend α and attachment η coefficients, was

used to compute the average avalanche gain G as

Ḡ = exp

{ˆ
[α(r)− η(r)] dr

}
, (4.3)

where the integral is evaluated over the path of the electron. Fluctuations to the average
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gain are then applied from a Polya distribution. In order to compute the parameters of

the Monte Carlo model, Garfield++’s microscopic drift line model was used, which follows

the multiplication of each electron at individual atom collisions. The avalanche multiplica-

tion of each electron is used to generate a single multiply-charged ‘electron’ and ‘ion’, with

charges −e(G+ 1) and eG, respectively. This reduces the computation cost of drifting each

individual avalanche charge without appreciable loss to signal information. These multiply-

charged electrons and ions are then passed to a custom Geant4 end of event action which

uses Garfield++ to drift the charges and compute the current induced on the anode using

the Shockley-Ramo theorem. The effect of the electronics chain, including timing digitisa-

tion and preamplifier shaping, are then applied to the signal. The simulation framework

provides a means of studying detector response which facilitates sensor development, event

reconstruction. The framework has been used to understand and interpret experimental

results [4, 5].

4.2 Single Anode Read-Out System

4.2.1 Distortion to electric field in realistic case

For the ideal case of a floating anode, the electric field in the spherical proportional counter is

given by Eq. 3.58. However, in practise the anode is connected to the external electronics by

a high-voltage wire, typically a �150 µm copper wire insulated by a 200 µm thick insulating

layer. This wire distorts the electric field in the volume, resulting in an inhomogeneous re-

sponse for interactions occurring at different locations in the detector. This can impact both

the background suppression and fiducialisation capability, as well as the energy resolution

of the detector. Fig. 4.1(a) shows an FEM calculation of the electric field in the ideal case,

while Fig. 4.1(b) shows the distortion to the field after the wire is included.
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4.2.2 Electric field configuration

(a) (b)

(c) (d)

Figure 4.1: Electric field equipotential lines calculated using FEM software for a 15 cm
radius spherical proportional counter with a 1 mm radius anode at 2000 V (a) for the ideal
case comprising just the anode at high voltage, (b) including the anode wire to supply the
high voltage, (c) including the grounded metallic rod surrounding the anode wire, and (d)
including a second correction electrode placed 3 mm from the anode and set to 250 V. field
due to the wire causes asymmetries in the detector response for primary electrons arriving
from different regions of the detector. The grounded rod and the second electrode work to
reproduce more closely the field configuration of the ideal case.

The inhomogeneous electric field in the avalanche region results in gain variations for elec-

trons arriving to different regions of the anode, significantly increasing the energy resolution.

An inhomogeneous electric field at larger radii causes zenith angle-dependent rise time varia-
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tions, reducing the ability to distinguish interactions occurring near the cathode or track-like

events. In order to support the anode, a 4 mm (6 mm) internal (external) diameter grounded

support rod is used, with the resulting electric field shown in Fig. 4.1(c). This acts as a cor-

rection electrode, to shield the volume from the influence of the wire [129]. In the absence

of the rod, a large fraction of electrons generated in the case would be collected on the wire.
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Figure 4.2: FEM calculation of the electric field as a function of the zenith angle calculated
at a radius of 2 mm in an spherical proportional counter of radius 15 cm with a 1 mm radius
anode set at 2000 V. (a) The comparison of the electric field for the case of a grounded
rod surrounding the wire to the anode and the case where a second electrode consisting of
20 mm of glass at 250 V located 3 mm from the anode is included. the latter showing a
more uniform electric field, which translates to a better energy resolution and more uniform
detector response for primary electrons generated in different regions of the gas volume. (b)
The electric field for a second electrode consisting of 20 mm of glass located 3 mm from
the anode for various applied voltages on the second correction electrode. A voltage of
approximately 250 V provides the most homogeneous field for this geometry.

In order to restore the homogeneity of the electric field near the anode, a second correction

electrode can be introduced a few millimetres from the anode surface. The electric field

configuration for the ideal geometry, the addition of the wire and the addition of the grounded

rod were studies using FEM and are presented in Fig. 4.1. A second correction electrode
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comprising a �1 mm to 2 mm cylinder was added to the anode support structure, placed a

few millimetres from the anode and the effect on the electric field is shown in Fig. 4.1(d).

The introduction of the second correction electrode provides higher electric field homogeneity

and, thus, a more uniform response for large zenith angles, as demonstrated in Fig. 4.2(a).

The electric field around the anode can be fine-tuned by varying the voltage on the surface of

the second correction electrode. This is particularly important for the hemisphere containing

the grounded rod where the distortion to the electric field is greatest. Fig. 4.2(b) shows the

electric field near the anode as a function of azimuth for several voltages applied to the second

correction electrode, which shows that for this configuration a voltage of approximately 250 V

provides the most homogeneous field as a function of azimuth.

FEM Study of Second Correction Electrode Geometry

Anode

Anode Wire

Glass Electrode Wire

Copper Rod

Plastic Alignment Piece

Glass Electrode

Silver Epoxy Contact,
Coated in Araldite

Insulating Alignment
Tip

Conductive Glue
Inner Coating

Figure 4.3: Schematic of the sensor support structure with a second correction electrode.

The anode support structure with a second correction electrode is shown in Fig. 4.3. The
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distance between the anode and second correction electrode d, the length of the second

correction electrode l and the voltage applied to it V2 were highlighted as parameters which

could be tuned to shape the electric field near the anode. In order to study this, a model

with using �15 cm sphere with a �2 mm anode at 2000 V was implemented in ANSYS,

unless otherwise stated. As starting parameters, l, V2 and d were set at 5 mm, 200 V, and

4 mm, respectively.

(a) (b)

Figure 4.4: Example ANSYS model:(a) close-up of the module in ANSYS and (b) the pro-
duced mesh.

An example of the model and produced mesh in ANSYS is shown in Fig. 4.4. Fig. 4.5(a)

shows the electric field magnitude at a radius of 2 mm for various second correction electrode

voltages while l and d were fixed. It can be seen that for this configuration a voltage

of approximately −50 V provides the most homogeneous electric field in azimuthal angle.

For fixed V2 and l, Fig. 4.5(c) shows the effect on the electric field magnitude when d is

varied. To show the effect of changing the anode radius, in Fig. 4.5(d) it has been changed

to 1.5 mm, and the field evaluated at 2.5 mm to maintain the 1 mm distance from the

anode. The value of d that yields the most homogeneous field in both cases is approximately

3.5 V. In Fig. 4.5(b) the value of l was varied, showing just a shift in absolute electric field

magnitude, but no perceptible change in homogeneity. With this information, comparing

Fig. 4.5(b) and 4.2(b) indicates that the difference in the value of V2 which gives the most

homogeneous electric field is primarily due to the change in d.
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Figure 4.5: Electric field magnitude at 2 mm radius calculated using FEM software for a
15 cm radius spherical proportional counter with a �2 mm anode at 2000 V (a), (c) and
(b) for varying V2, d and l, respectively while the other parameters are fixed at V2 = 200 V,
d = 4 mm and l = 5 mm. (d) shows the electric field magnitude at 2.5 mm in the case of a
�3 mm anode for various values of d, keeping all other parameters the same as (c).
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Capacitance

From Eq. 3.75, the capacitance of a detector with a 15 cm radius and a 1 mm radius anode

is 0.11 pF. However, the introduction of the wire, grounded rod, and second correction

electrode alter the capacitance from this ideal value. Using the CMATRIX command in ANSYS,

for a module with a 20 mm of second correction electrode located 3 mm from the anode,

along with the grounded rod and wire, the capacitance was calculated to be 4.5 pF between

the anode combined with the wire and all other components. The main component of this is

the capacitance between the anode plus wire and the rod, which accounts for 2.8 pF, and is

mainly due to the wire inside the rod. This can be seen by considering the capacitance per

unit length L of a wire of radius r1 inside a cylindrical conductor of radius r2 (i.e. a coaxial

cable) is given by

Cwire =
2πε0L

ln
(
r2
r1

) . (4.4)

For a length of 12.5 cm this corresponds to a capacitance of 2.6 pF, and so accounts for most

of the 2.8 pF. Therefore, the capacitance of the realistic detector will scale approximately

proportional to the cathode radius.

4.2.3 The resistive correction electrode

The correction electrode provides a simple but effective solution to the inhomogeneity of

the electric field. However, to obtain the greatest control over the electric field it must be

positioned only a few millimetres from the surface of the anode, supported by the grounded

rod. The close proximity and difference in voltage of the second correction electrode and

anode increases the probability of a discharge.

Following initial conceptual designs using FEM software, several prototypes were constructed.
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Testing of these prototypes has demonstrated that it is impractical to implement such a cor-

rection electrode using metallic or any conductive materials due to the increased sparking

rate and intensity. A solution explored was the coating of the conductive material in an in-

sulating layer, usually consisting of a layer of glue, Araldite R©, or PLO plastic. However, the

introduction of insulating materials close to the anode induces charging-up of the electrode

and results in time-dependent gain variations, with time constants depending on geometry

and operational conditions.

An alternative was found in the use of resistive materials as electrodes, which has been

shown to reduce the spark rate and intensity in many detector designs, especially small gap

micro-pattern detectors [163, 164, 165]. Furthermore, using resistive materials for electrodes

is an effective technique to achieve higher gain operation and increased operational stability.

The resistivity in these materials, is high enough to quench sparks and allow normal detector

operation in the occasion of a spark, while it is adequately low to prevent charging-up and,

thus, time-dependent gain variations.

A series of resistive materials has been tested. Following the experience of resistive bulk

Micromegas, initial tests involved polymer paste with resistivity in the 103−106 Ω cm range.

The construction of cylindrical electrodes at high precision when using paste was found to

be challenging, while the obtained resistivity was inadequate for the desired effects.

Glass as a resistive material has been used to construct electrodes for various detectors

including large surface Resistive Plate Chambers [166, 167, 168, 169]. The glass electrode

we used was in the form of a cylindrical tube with an 1.85(1.2) mm external (internal)

diameter. The glass type was lime-soda glass, a common material used in a large number of

applications.
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Resistivity of the glass electrode

The volume resistivity, ρ, of the glass tube was measured based on a method described in

Ref. [170]. The measurement method is presented in Fig. 4.6. The glass tube was sealed at

one end with an insulating glue (Araldite) and heated to 200◦C for a day to remove humidity

from the surface. The tube was left to return to room temperature and was filled with an

electrolyte of a salt water solution to a level L, shown in Fig. 4.6. It was then immersed up

to this level in a container filled with the same electrolyte. The electric circuit is closed and

a voltage applied using two copper wires, one immersed into the container and one in the

tube. Electrons must cross the volume of glass to be collected by the electrode inside the

To HV

Salt Water

Figure 4.6: Setup of resistivity measurement. The glass tube is filled with and immersed in
the solution to depth L. A voltage is applied across the glass allowing measurement of the
current through its volume.

tube and measured. The current I was measured as a function of the applied voltage V , up

to 1 kV. A linear response is observed, as shown in Fig. 4.7. The resistivity of the glass tube

is calculated from the average of measurements using,

ρ =
2πLR

ln
(
b
a

) , (4.5)
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Figure 4.7: Current measured flowing through the glass versus applied voltage. From an
average of these measurements, the resistivity of the glass tube was calculated as
ρ = (5.1± 1.4)1010 Ω cm.

where R = V/I is the resistance between the outer and inner surface of the tube, L = 2.2 cm,

a = 0.12 cm (b = 0.185 cm) is the internal (external) diameter of the tube. The resistivity

obtained is ρ = (5.1 ± 1.4)1010 Ω cm. The uncertainty on the measured resistivity arises

mainly from the limited accuracy of the electric current measurement in the voltage range

between 0 V and 150 V.

4.2.4 Development and performance of the resistive glass elec-

trode prototypes

The rod with the glass electrode structure is presented in Fig. 4.8(b) and Fig. 4.8(a). The

internal surface of the glass tube is covered with a layer of conductive glue and electric

potential can be applied through a thin wire. This conductive layer facilitates the application

of the electric potential on the glass electrode and shields from the influence of the wire’s

electric field. The external part of the layer is covered with insulating glue, with a resistivity
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(b)

Figure 4.8: Sensor support structure with a cylindrical glass correction electrode, (a) pho-
tograph and 4.8(b) schematic.

greater than 1014 Ω cm, to avoid sparks between the conductive layer and the rod. The wire

of the anode passes through the glass tube and is aligned by a short insulating tip. The

bottom part of the glass tube with the conductive layer and the insulating cover is placed in

an insulating support base, made of PLO, constructed with high precision using 3D-printing.

Finally, the support base is inserted into the rod.

The constructed module is presented in Fig. 4.8(a). It incorporates 2 mm diameter anode

made of stainless steel. The anode is connected to the high voltage power supply with a thin

wire, 150 µm in diameter, surrounded by a 200 µm thick insulating material. The glass tube

has a length of 20 mm and the distance between the ending edge of the tube and the surface

of the anode is 3 mm. The module is at the centre of a spherical, stainless steel vessel of

15 cm radius and is supported by a copper rod with a 4 mm (6 mm) inner (outer) diameter.

The connection interface between the rod and the detector’s spherical vessel ensures that

both be grounded. The spherical vessel is 3 mm thick and is built to sustain pressure up to

10 bar.

The module was tested for sparking in an argon atmosphere. This test involved enclosing

the module in a transparent container that is flushed with argon, applying a high voltage to

the anodes, and observing the path of any discharges, as shown in Fig. 4.9(b).The secondary

100



4.2. SINGLE ANODE READ-OUT SYSTEM

(a) (b)

Figure 4.9: (a) �30 cm stainless steel spherical proportional counter used for tests in CEA
Saclay. (b) the chamber used for testing modules for sparks.

electrode was grounded and the anode voltage gradually increased to 7000 V, without any

sparks being observed.

In the following, tests of the performance of the �30 cm spherical proportional counter,

shown in Fig. 4.9(a), are presented. The counter was prepared by initially evacuating the

spherical shell using a turbomolecular pump, to a pressure of 5.37× 10−5 mbar L.

Voltage application on the glass electrode

A test was carried out to study the response of the module to a change in the voltage of the

second correction electrode. The detector was filled with a gas of He:Ar:CH4 (87%:10%:3%)

at a pressure of 1 bar, with the anode voltage set to 1640 V. The high voltage applied on

the glass electrode was varied to check that it is properly applied on the electrode surface.

The voltage variations resulted in simultaneous gas gain variations. An example is displayed

in Fig. 4.10 which shows the measured pulse amplitude as a function of time. Initially, the

second correction electrode voltage was 100V, but was changed to 200 V after 8000 s, where

the detector responded immediately with a gain drop. The detector operated without a

visible time dependence to the gain after this change, indicating the voltage application was

immediate.
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Figure 4.10: Amplitude versus time in a module with a second correction electrode. Initially,
the second correction electrode voltage was at 100 V but was increased to 200 V at 8000 s.

Homogeneous response

To experimentally test the homogeneity of electric field achieved by the module, an 55Fe

source was placed inside the detector. The location of this collimated source could be changed

during detector operation. 55Fe decays through electron capture to 55Mn emitting 5.9 keV

X rays.

The detector was filled with 1 bar of He:Ar:CH4 (92%:5%:3%) with the anode and second

correction electrode voltages set at 1450 V and 200 V, respectively. Data were collected with

the source located at 90◦ and 180◦ to the grounded rod and their amplitude distribution is

shown in Fig. 4.11. At 180◦ any distortions to the electric field caused by the wire and

grounded rod should be minimised. However, at 90◦ the X rays interact in a detector

region potentially influenced by electric field distortions [147]. Such distortions could result

in primary electrons arriving at the anode closer to the wire, leading to a worse energy

resolution due to spatial gain variations. However, Fig. 4.11 demonstrate similar response
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Figure 4.11: The overlaid amplitude distributions for the recorded pulses, for 5.9 keV X rays
from an 55Fe source located inside the detector placed at a zenith angle of 90◦ (red) and 180◦

(black), relative to the grounded rod.

in both cases. Thus, electric field distortions are corrected for by the second correction

electrode.

Operational stability

The main goal was to be able to operate the detector in a gas pressure up to 2 bar and

to avoid sparks when voltages over 2000 V were applied. To test the detector stability of

operation, a gas of 2 bar of He:Ar:CH4 (87%:10%:3%) was introduced into the detector

through an Oxysorb R© filter to remove oxygen and water traces from the gas. A voltage

of 2350 V was applied to the anode with 0 V applied on the second correction electrode.

The 6.4 keV X ray fluorescence of the 55Fe K-line, induced by cosmic muons, was used to

monitor the change in gain over time. Data were collected for 12 days and the pulse height

recorded versus time is shown in Fig. 4.26. A gradual decrease of the pulse height is observed

which is caused by the introduction of contaminants due to the imperfect vacuum tightness
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of the detector. However, the detector was stable throughout the entire period, with no

spark-induced gain variations.
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Figure 4.12: Pulse height as a function of time recorded using a module with a second
correction electrode at 0 V, with an anode voltage of 2350 V in a detector filled with 2 bar of
He:Ar:CH4 (87%:10%:3%). The decrease in pulse height over time is due to contaminants,
such as oxygen, leaking into the detector. Detector operation is stable and no discharges are
observed.

4.2.5 Conclusions

The presented read-out module for the spherical proportional counter, incorporating the sec-

ond correction electrode, has addressed two challenges in the detector operation. Firstly, the

tuning of the electric field near the anode has reduced distortions to the electric field induced

by the necessary supporting structures and wire, and so improved the energy resolution of

the detector. Secondly, the use of high-resistivity materials has reduced the probability of

sparking and so improved the detector’s operational stability. The second point is of criti-

cal importance to the direct DM search, as the detector needs to be able to operate stably

over long periods of time during physics data collection stages. This design of module has
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been used by the NEWS-G collaboration in SEDINE and SNOGLOBE. These advancements

are also of great interest to other applications of the detector and are generally adopted in

spherical proportional counters. In particular, 0νββ searches with the detector, proposed

by the R2D2 collaboration [155], have set a goal of achieving 1% FWHM energy resolution

at 2.458 MeV. Initial tests in 1 bar of Ar:CH4 (98%:2%) have yielded an energy resolu-

tion (FWHM) of 1.2% at 5.3 MeV [5]. Further optimisation of the module used for these

measurements, following the methods discussed above, are envisaged to improve this result

further.

4.3 Multi-Anode Read-Out System

For large detectors, or detectors operating in high pressure, the small ratio of electric field

strength to gas pressure (E/P ) increases the probability of electron attachment and recom-

bination. For a fixed P in the single anode configuration, increasing E/P can be achieved

by either increasing the anode voltage or the anode size, both of these options lead to an in-

creased discharge probability. From Eq. 3.58, for a �1 mm anode at 2000 V inside a �15 cm

spherical proportional counter, the electric field magnitude at r = 15 cm is 0.9 V cm−1. If

the same module was installed inside a �65 cm detector, the electric field magnitude at the

cathode is E = 0.05 V cm−1. In order to achieve the same electric field at the cathode surface

and anode surface would require a �4.3 mm anode at 8700 V. The coupled avalanche and

drift fields limit the practical electric fields which can be achieved with the module.

ACHINOS, a sensor structure composed of several anodes at a radius rs from the centre,

shown in Fig 4.13, has been proposed to overcome this challenge [143]. The anodes are

maintained in position by means of a central support structure. This structure needs to be

constructed using resistive materials for the same reasons as outlined in Section. 4.2.3. The

gain and drift fields are decoupled with ACHINOS. The avalanche gain is determined by the
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Grounded Rod

Central Electrode

Anode
Wire to Anode

Figure 4.13: Schematic of the multi-anode read-out structure, ACHINOS.

anode radius ra and voltage V , while the electric field at large radii is the collective electric

field of all the anodes, determined by V , rc, and the number of anodes.

4.3.1 Anode Positions
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Figure 4.14: The five platonic solids.

In order to keep the electric field at the surface of each anode the same, the distance between

each anode and its nearest neighbours should be the same. This can be realised by placing

the anodes at the vertices of one of the five Platonic solid, shown in Fig. 4.14. The ACHINOS

modules presented are primarily based on the icosahedron, which has origin-centred cartesian
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vertex locations

(x, y, z) =(0,±1,±φ) ,

(±1,±φ, 0) ,

(±φ, 0,±1) ,

where φ is the golden ratio, φ = 1+
√

5
2

. In practice, the grounded rod which supports the

module occupies one of the vertices of the icosahedron meaning that the ACHINOS has 11

anodes.

While keeping the anodes equally spaced from their nearest neighbours ensures the same

electric field magnitude at each, if a different voltage can be applied to each anode then this

is not a strict constraint. Differences in field magnitude due to some anodes being closer

to neighbours than others could be compensated for by an appropriate change in voltage.

This allows shapes with more vertices to be used. One such shape which was studied is the

truncated-icosahedron, which has 60 vertices. This will be discussed further in Section 4.3.5.

4.3.2 ACHINOS with “resistive glue” coating

The ACHINOS central electrode is manufactured with a resistive material in order to reduce

sparking rate and intensity. Initial designs of ACHINOS utilised a spherical Bakelite central

electrode that was machined in order to support the anodes [143]. In an effort to construction,

the use of 3D printed central structures were explored. 3D printing provides a convenient

means to produce a high-precision structure, however, currently 3D printing with insulators

and conductors is more widely available. Thus, an appropriate coating needs to be applied

to the insulator. Initially, Araldite adhesive mixed with copper powder was explored, with

main benefits being the relatively low radioactivity of Araldite 2011 [171] and the possibility
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Figure 4.15: ACHINOS using an Araldite-copper layer on the 3-D-printed structure to form
the central electrode.

to control the resistivity of the coating by changing the relative amounts of Araldite and

copper. It was found that mixtures containing 20% to 50% w/w copper powder provided

the desired detector stability. An example is shown in figure 4.15. Despite promising results,

the coating layer was found to be susceptible to damage from discharges. Specifically, a

single discharge could destroy the central electrode coating, by creating a conductive path

through the layer to the grounded rod. This behaviour was also observed repeatedly when

the module was installed in a spark-test chamber, similar to that presented in Fig. 4.9(b).

4.3.3 ACHINOS using DLC coating

DLC is a form of amorphous carbon containing both the diamond and the graphite crystalline

phase. Thanks to its excellent surface resistivity, in addition to structural, chemical and

thermal stability, DLC coating [172] offers a novel method for producing high quality resistive

materials for gaseous detectors [173, 174].

The central structure was constructed using 3D printing with different substrates, including

resin, nylon, and glass, as shown in figure 4.16(a). DLC was deposited using magnetron

sputtering. Several batches of DLC-coated structures were produced, with a range of coating
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thickness between 360 nm and 720 nm. The measured resistance between two anti-diametric

points on the surface, ranged from 0.3 to 10 GΩ. The DLC-coated resin 3D printed structure

was mounted on a copper rod and electrically connected to it using a conductive Araldite

copper mixture, as shown in Fig. 4.16(b).

(a) (b)

Figure 4.16: (a) Three different support materials (resin, nylon, glass) covered with a DLC
layer. Figure reproduced from Ref. [4]. (b) An 11-anode ACHINOS constructed using a
DLC-coated support structure.

4.3.4 Experimental performance of DLC ACHINOS

The ACHINOS structure with 11-anodes, each 1 mm in diameter, shown in figure 4.16(b)

was installed in a 30 cm diameter spherical proportional counter that operated in sealed

mode, shown in Fig. 4.9(a). An 55Fe source was installed inside the detector, the position of

which could be adjusted without opening the detector. The experimental set-up is shown in

figure 4.17. The central electrode was, typically, grounded through the rod, but alternative

configurations were also tested. Signals are read out by a CREMAT CR-110-R2 charge

sensitive preamplifier. The preamplifier output is passed to a “CALI” digitiser.
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Figure 4.17: Schematic of the experimental set-up, with the position of the 55Fe source
relative to the ACHINOS.

Gain

The detector was filled with 500 mbar of Ar :CH4 (98% : 2%) and data were collected for

a range of anode voltages at various pressures, and the amplitude of the 5.9 keV peak was

recorded. These measurements, performed with the central electrode electrically floating,

are presented in Fig. 4.18, where the detector is shown to operate in proportional mode

over a wide pressure range. Furthermore, it is demonstrated that large gas gains (avalanche

electron multiplication factor) of up to 104 can be achieved with this detector configuration.

Anode response uniformity

To check the uniformity of the sensor response, data were taken with the 55Fe source at

various longitudinal positions, while at a fixed latitude of approximately 12◦ below the

equator, as shown schematically in figure 4.17. The detector was operated with 1000 mbar

of Ar :CH4 (98% : 2%) and an anode voltage of 2200 V. The amplitude and local energy
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Figure 4.18: Measured amplitude versus the voltage applied to the anode for several pressures
of Ar :CH4 (98% : 2%) in a spherical proportional counter using an ACHINOS.

resolution were estimated using the 5.9 keV peak and an example spectrum is shown in

figure 4.19. A gaussian fit of this yielded an amplitude of (11090± 10) ADU, corresponding

to a gas gain of 8.3× 103, and a local energy resolution σ of (7.4±0.1)%. The same procedure

was repeated for the other measurements, with the results shown in figure 4.20(a) for the

amplitude and figure 4.20(b) for the local energy resolution, which varies between 7.1% and

9.2%.

The maximum (minimum) amplitude at approximately 320◦ (210◦) corresponds to a gas gain

of 8.8× 103 (5.7× 103). To understand the origin of the amplitude modulation as a function

of the azimuthal angle observed in Fig. 4.20(a) the dedicated simulation framework described

in Sec. 4.1.2 was used. In the simulation, 50000 5.9 keV photons were generated near the

cathode surface and directed within a 45◦ cone towards the detector centre. A similar analysis

to those applied to the data was implemented. The open circles in Fig. 4.20(a) correspond

to the simulation results which reproduce the modulation observed in the data.

To understand the origin of the effect, the 11-anodes of the ACHINOS were split in two
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Figure 4.19: Energy spectrum from an 55Fe source measured using a spherical proportional
counter filled with 1000 mbar of Ar :CH4 (98% : 2%) and using an ACHINOS. The primary
peak has an energy resolution (σ) of (7.4± 0.1)%. The second peak, to the left of the main
one, is the argon escape peak.

0 50 100 150 200 250 300 350
Azimuthal Angle [deg.]

8

9

10

11

12

13

 A
D

U
]

3
A

m
pl

itu
de

 [1
0

Data

Simulation

(a)

0 50 100 150 200 250 300 350
Azimuthal Angle [deg.]

7

7.5

8

8.5

9

9.5

 [%
]

σ
Lo

ca
l E

ne
rg

y 
R

es
ol

ut
io

n,
 

(b)

Figure 4.20: Measured and simulated amplitude (a) and measured local energy resolution σ
(b) of the 5.9 keV X-ray in a spherical proportional counter with an ACHINOS as a function
of azimuthal angle. The detector was operated filled with 1000 mbar of Ar :CH4 (98% : 2%).
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groups. The first group comprises the five co-planar anodes near the support rod, while the

second group comprises the five co-planar anodes far from the support rod and the anode

furthest away from the support rod. These two groups will be referred to as “Near Anodes”

and “Far Anodes” respectively. In figure 4.21(a) the amplitudes recorded by reading out each

set separately is presented. It is observed that the amplitudes are modulating in antiphase.

The modulation in the data can then be explained as follows; as the source is moved around

the sphere, the produced primary electrons are drifting towards different anodes, alternating

between the Near and the Far anodes.
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Figure 4.21: (a) Simulated amplitude recorded by the Near and Far anodes as a function of
azimuthal angle. The difference in relative maximum amplitude between the two is due to
a higher electric field magnitude for the Near anodes, which is caused by their proximity to
the rod. (b) The amplitude recorded by the Near and Far anodes in the case where 30 V
more is applied to the Far anodes.

The relative difference in maximum amplitude between the Near and Far anodes is due to

the gain difference between the two sides. The Near anodes exhibit an increased electric

field due to the proximity to the grounded support rod, which results in deviations from

the spherical symmetry. This effect can be readily corrected for by separately adjusting
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the applied voltage to the Near and Far anodes. In Fig. 4.21(b) the simulation is repeated

with the voltage applied to the Far anodes increased by 30 V. In this case the azimuthal

dependence of the amplitude is minimised, and could be eliminated by further tuning of the

Far anode’s voltage.

A potential source of additional response non-uniformity may arise from construction differ-

ences of the individual anodes. This effect is not included in the simulation, however, it can

be estimated from the experimental data. The difference in amplitude within the two sets of

co-planar anodes are typically within 10%. This is shown in Fig. 4.20(a), where a single out-

lier is also observed in each of the sets. These differences are attributed to variations in the

anode radii, the smoothness of the anode surface, and the distance to the central electrode.

These non-uniformities can be corrected for either with an anode-by-anode calibration, when

each anode is read-out individually, or by applying a different voltage to each anode in order

to achieve the same gain.

Near-Far Voltage Correction

It was hypothesised that for a given ACHINOS geometry, the ratio of the Near and Far

anode voltages would be constant, regardless of absolute voltage applied to the anodes. In

order to study this, ANSYS was used to produce electric field maps for various ratios of

Near to Far anode voltages, for three ACHINOS with different absolute anode voltages of

1500 V, 2250 V, and 3000 V. The ACHINOS model used anodes with �1.7 mm anodes

at rs = 13.5 mm inside a �15 cm detector. The field maps produced were used in the

simulation framework to repeat the experiment described in the previous section and 20000

5.9 keV photons were generated in each case, with the results shown in Fig. 4.22. The

amplitude as a function of azimuthal angle again shows a sinusoidal-like behaviour. The

distribution was fit with a function of the form y = A sin(bx + φ) + c and the amplitude
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Figure 4.22: Simulated amplitude recorded by an ACHINOS for 5.9 keV photons were gen-
erated near the cathode surface and directed within a 45◦ cone towards the detector centre.
Rows correspond to different voltages applied to the Near anodes; columns correspond to
successively higher voltages on the Far anode. The distributions were fit with a sinusoidal
function, and the amplitude A is shown for each.

A of the function, shown in each panel of Fig. 4.22, was used to assess the homogeneity.

The value of A for each set was plotted against the percentage increase in Far voltage and

a linear fit performed to obtain the value where A = 0, as can be seen in Fig. 4.23. It can

be seen that for the explored cases, the most homogenous response is found when the Far

anodes have approximately 2% higher voltage applied to them.

Cross Talk

The capability to read-out the Near and Far anodes separately has been implemented exper-

imentally. However, initial tests showed that when a signal was detected on either the Near
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Figure 4.23: Amplitude A of sinusoidal function from fits in Fig. 4.22 as a function of
the percentage increase in voltage applied to the Far anodes for three voltages applied to
the Near anodes. A linear fit was applied to each data set and the increase in Far voltage
required for A = 0 (red dotted line), which is considered to have the most homogeneous
field, is given.

or the Far channel, it was often accompanied by a much smaller amplitude negative signal

or a positive signal on the other channel. In order to understand this, weighting field were

produced in ANSYS for the Near and Far anodes and were incorporated into the simulation

framework. Examples of a signal exhibiting the same behaviour as observed in the experi-

ment can be seen in Fig. 4.24. In the case where both channels have a positive signal, it was

found that the electrons produced by the incident interaction, which is a 5.9 keV photon in

the simulation, were being collected at both the Near and Far anodes.

In the case where a negative signal was observed, which corresponds to a positive current

due to sign change introduced by the preamplifier, it was found that all of the electrons were

collected to the side showing the positive signal. This is understood through the Shockly-

Ramo theorem (Eq. 3.12). In Fig. 4.25 the electric field around the Far anodes is shown in

both panels, with the weighting fields of the Far (Near) anodes overlaid in the left (right)

panel. It can be seen that, while the weighting field of the Far and the electric field are
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Figure 4.24: Signals induced by the interaction of a 5.9 keV photon in the gas on the Far
((a) and (c)) and Near ((b) and (d)) anodes. The pulses in each row correspond to the
same event; in the top row all of the electrons generated by the interaction arrived to the
Near anodes, while in the bottom row the 24% of the electrons arrived to the Far. The
negative signal observed in (a) is explained by the Shockley-Ramo theorem (see text). Note
the figures in the top row how different y-axis scales.
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Figure 4.25: Electric field and weighting fields of the Near and Far anodes in the vicinity of
the Far anodes.

mostly parallel, the Near weighting field is generally not aligned with the electric field at the

surface of the anodes and is anti-parallel in places. Ions drifting away from the Far anodes

will follow the electric field lines - neglecting diffusion - and so, by Shockly-Ramo theorem,

the scalar product of the weighting field and velocity will be positive, resulting in a negative

current and so a positive signal. However, for the signal generated at the Near anodes, the

product of the field and velocity vectors will be negative, resulting in a negative signal.

Stability

The detector operated stably filled with 1000 mbar of Ar :CH4 (98% : 2%) and the anode

voltage set to 2200 V. The amplitude of the 55Fe peak was monitored and no significant gain

variations were observed over approximately 15 hours, as shown in figure 4.26. The gradual

decrease in gain over time is attributed to the introduction of contaminants coming from

outgassing and leaks in the vacuum system, a behaviour that has been observed in earlier

studies.
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Figure 4.26: Amplitude versus time for a spherical proportional counter filled with
1000 mbar of Ar :CH4 (98% : 2%) and using an ACHINOS. The red points superimposed
on the histogram show the mean amplitude in time slices. The slight decrease in amplitude
with time is attributed to impurities leaking into the detector.

In further tests, the sensor was operated without issues for a period of 30 days despite an

observed average of approximately one discharge per day. Furthermore, no damage was

observed following intentionally induced discharges in a spark-test chamber.

4.3.5 Future developments

Improvements in the manufacturing provide a path to improve the ACHINOS construction,

including the production of assembly tools for anode alignment and attachment of wires. As

an example, an assembly tool constructed is shown in Fig. 4.27(a), along with the spacers

used to align the anodes with during assembly, shown in Fig. 4.27(b).

To further improve the ACHINOS performance, the gain variation among different anodes

needs to be reduced. A possible source of this variation arises from irregularities in the shape

of the individual anodes. Methods to characterise and identify defective anodes before their
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(a) (b)

Figure 4.27: (a) Assembly tool used for simultaneously bonding several wires and anodes.
(b) An ACHINOS being constructed using custom-made spacers to position and align the
anodes.

incorporation into a module, such as using a digital microscope to inspect the surface, would

improve the construction.

To further increase the usefulness of ACHINOS as gas pressures are increased, anodes with

smaller radii of order 100 µm, will be required. This would facilitate achievement of higher

gain by increasing the electric field near the anode surface, without further increase of the

anode voltage. An important challenge towards smaller anode radii is the bonding to the

read-out wire, which needs to be performed in a manner that minimises exposed contacts

which may lead to discharges. Several methods for achieving this are being explored. Firstly,

the use of fast-setting conductive adhesives reduce the time that the wire and anode must

be maintained in contact and well aligned. The use of precision tools for the construction

can provide this alignment. A second alternative is the use of a wire-bonding technique to

attach the wire.

Furthermore, the number and configuration of anodes in the ACHINOS may be optimised

for each specific application, depending on the size and pressure of the vessel. These de-

velopments are being guided by FEM calculations and the dedicated simulation framework
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previously discussed. In Fig. 4.28(a), the electric field magnitude as a function of radius is

shown for a single-anode module, an 11-anode ACHINOS and an ‘Infinite anodes ACHINOS’

approximation, where the field is calculated analytically with Eq. 3.58 under the approxi-

mation that there is an infinite number of anodes all located at rs, i.e. ra → rs. This

presents the highest electric field achievable at large radii with a given rs. While the 11-

anode ACHINOS provides an improvement in electric field magnitude over the single-anode

module, it is significantly lower than the infinite anode limit and only provides a 0.04 V cm−1

electric field at the cathode surface. A prototype 60-anode ACHINOS has designed, shown

in Fig. 4.28(b), with the anodes placed at the vertices of a truncated icosahedron, to increase

the electric field at larger radii as shown in Fig. 4.28(a). This holds particular relevance for

the proposed future spherical proportional counter for a direct DM search, DarkSPHERE,

which will be discussed further in Chapter 7.
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Figure 4.28: (a) Electric field magnitude as a function of radius for a �3 m spherical pro-
portional counter for various read-out modules, each using �1 mm anodes and an ACHINOS
radius rs (distance between each anode and the centre) of 10 cm. ‘Infinite anodes ACHINOS’
refers to the approximation where there are an infinite number of anodes all located at rs.
(a) The ANSYS model of the prototype 60-anode ACHINOS.
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Another significant advancement would be the individual read-out and biasing of each anode.

This would allow for the correction of differences in gain between individual anodes and

anode-by-anode calibration. Additionally, reading out each anode individually would provide

information about the part of the detector which an interaction took place in. In the case

of tracks of ionisation, the sharing of ionisation electrons between different anodes would

provide information about the particle’s trajectory through the detector. Coupled with the

interaction radius inferred from pulse rise-time [140], this information could allow the three-

dimensional reconstruction of the ionisation track. The increased number of anodes of the

60-anode prototype may also provide increased position resolution. Investigation into the

feasibility of this are already ongoing, and would be of particular importance to direct DM

searches. As discussed in Chapter 2, the motion of the Sun about the galactic centre means

that the DM-induced nuclear recoil spectrum is expected to be peaked in the direction of

the Sun’s motion. Observing directionality in a DM candidate signal provides a powerful

signature for DM and also a strong background discrimination tool. Directionality also

provides a tool for discriminating CEνNS interactions, which are primarily induced by solar

neutrinos in the energy range of interest to NEWS-G. Selection against events with tracks

originating from the Sun allows sensitivity to DM below the ‘neutrino floor’ - the DM-nucleon

cross section at which the number of events in a given target medium is expected to be less

than the number of CEνNS interactions, for a given DM candidate mass.

4.4 Segmented Rod Correction Electrodes

While the second correction electrode restores the homogeneity of the electric field near the

anode and the ACHINOS address the challenge of the coupled drift and avalanche fields,

the electric field homogeneity at larger radii remains distorted by the grounded rod, which

can be seen in Fig. 4.30. This results in a larger drift time for electrons generated near the
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Anode

Correction Electrode

Segment 1

Segment 2

Segment 3

Figure 4.29: Schematic of the segmented rod correction electrode.

rod, thus more diffusion, and a commensurate increase in the pulse rise time. In the ideal

detector, the electric potential difference V between a point at radius r and the grounded

cathode can be derived by substituting Eq. 3.58 into the integral from of Eq. 3.56

V (r)− V (rc) = V (r) = −
ˆ r

rc

E(r) · dr

V (r) = V0
ra

rc − ra

(rc
r
− 1
)
. (4.6)

In order to restore the ideal 1/r voltage dependence, a voltage could be applied to the

grounded rod. A method to approximately achieve this, and can be practically implemented

experimentally, is to divide the rod into several segments and apply a voltage to each. The

tested configuration is shown schematically in Fig. 4.29. The rod is divided into three

segments; the two nearest the anode have voltages V1 and V2, respectively, applied to them

while the third is grounded by its contact with the cathode sphere.

This configuration was studied using FEM calculations for a single anode sensor module

with an anode voltage of 2000 V. After accounting for the anode of 1.5 mm radius, a 4 mm

separation between the anode and the second correction electrode, which itself is 10 mm
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Table 4.1: Summary of configurations tested for segmented rod.
Segment Lengths Central Segment Average Segment
l1, l2 [mm] Voltages V1, V2 [V] Voltages V1, V2 [V]

90, 26 21.60, 2.93 28.70, 3.01
26, 90 57.36, 12.82 57.36, 12.82
40.5, 40.5 43.25, 13.94 47.54, 14.55
58, 58 33.43, 6.15 39.06, 6.73

long, and the 2 mm plastic alignment piece used to hold it in place, the first segment starts

at a radius of 17.5 mm. The segments are separated by 0.5 mm long plastic pieces, leaving

131.5 cm for total length of the segments. The lengths l1, l3, and l3, respectively, of each

segment and the voltages V1 and V2 were variables to be adjusted in the FEM calculation.

Four configurations for the segment lengths and two voltage configurations for each were

considered and are summarised in Tab 4.1. The ‘central’ voltage is the potential difference

at the centre of the segment given by Eq. 4.6 and the ‘average voltage‘ corresponds to the

average voltage over the segment length which extends radially from r2 to r1 (i.e. r2 < r1),

¯V1,2 =
V0

r2 − r1

ra
rb − ra

(
rb ln

(
r2

r1

)
+ r1 − r2

)
. (4.7)

The influence of the segmented rod was first investigated near the anode and was found

not to impair the homogeneity brought by the second correction electrode. The impact of

each configuration on the homogeneity of the electric field at the outside of the detector is

plotted in Fig. 4.30 for the central and average voltage schemes. All tested configurations

offer a similar improvement in electric field magnitude and homogeneity. Experimental tests

to verify this are planned for the future. Additionally, further improvements to homogeneity

may be possible through the use of more segments, which could be achieved by applying

a covering material to the rod with conductive strips on it. A resistive layer could then

be applied to give a voltage gradient along the strips. The use of DLC-coated materials to

achieve this are being explored.
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Figure 4.30: Electric field magnitude as function of polar angle at a radius of 145 mm in a
�30 cm spherical proportional counter for different configurations of segments for the rod in
the case where (a) average voltages are applied to the segments and (b) the central voltage
is applied to the segment.
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5
Ionisation by Nuclear Recoils

As mentioned in Chapter 3, recoiling nuclei induced by an elastic DM interaction can deposit

their energy in a medium in a variety of ways. A detector typically is only sensitive to a

part of this energy deposition, the rest being dissipated by ‘invisible’ means. For ionisation,

this is quantified by the ionisation quenching factor, and it is a vital ingredient for NEWS-G

DM searches. This chapter discusses the various definitions of the quenching factor, how it

is calculated from theory and simulation packages, how it is measured in other media, and

the few measurements in gases. A method for calculating it from previous, well-established

measurements of the W-value is then presented for several gases down to keV and even sub-

keV recoil energies. This work is presented in detail in Ref. [7], of which I am a main author

and heavily contributed to the preparation of the manuscript. As a result, texts and figures

from Ref. [7] are included here.
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5.1 Ionisation Quenching Factor

Low energy nuclear recoils, such as those produced by a DM interaction, dissipate energy

in a medium through electronic energy losses – inelastic Coulomb interactions with atomic

electrons – and nuclear energy losses – elastic scattering in the screened electric field of

the nuclei. While electronic energy losses dominate for fast ions, nuclear energy losses are

increasingly important with decreasing ion kinetic energy ER, and become dominant when

the ion velocity is smaller than the electron orbital velocity [175]. The produced secondary

recoil atoms and electrons may also undergo scattering, further transferring energy to other

particles.

The partition of the total deposited energy is shared between different processes, which

may be visible or not to a given detector, is parameterised by the quenching factor. In the

literature, multiple definitions of the ionisation quenching factor may be found depending

on the application:

qf1 : the fraction of the ion kinetic energy that is dissipated in a medium in the form of

ionisation electrons and excitation of atomic and quasi-molecular states – the definition

of Lindhard et al. [176];

qf2 : the ratio of the “visible” energy (i.e. charge) in an ionisation detector to recoil kinetic

energy; and

qf3 : the conversion factor between the kinetic energy of an electron and that of an ion that

result to the same visible energy in the ionisation detector.

The “visible” refers to energy dissipated in a detectable form for the specific detection system,

i.e. ionisation for detectors measuring charge. In each case, the ionisation quenching factor

is a function of energy.
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In order to measure the ionisation quenching factor in a material, the amount of ionisation

induced by an ion species has to be measured as a function of its kinetic energy and compared

to the corresponding ionisation by electrons of the same initial energy. This is the second

definition and the ionisation quenching factor then takes the form,

qf2 = Ed/ER , (5.1)

where Ed is the amount of electronic energy losses “visible” to a detector [177, 178]. Each of

the definitions will be discussed in more detail in the following.

In direct DM searches, the quenching factor is used to infer the initial energy of a recoil-

ing nucleus from the energy it deposited in the detector, and so is of critical importance.

However, due to the fact that ions with precisely known kinetic energy are required, along

with the capability to measure small energy deposits, measurements for low-energy recoils

in gases are sparse. Methods for calculating the quenching factor will be discussed, followed

by techniques used to measure it, by other DM experiments and also in gases, and finally

how it may be calculated from W measurements in the literature.

5.2 Calculations of Quenching Factor

5.2.1 Lindhard Theory

Lindhard et al. pioneered the estimation of electronic and nuclear stopping powers for ions,

and introduced the concept of ionisation quenching factor, qf [176]. The energy deposited

is considered to be portioned, independently, between atomic motion Ek and electronic

excitation Eex, and calculated each by integrating the electronic and nuclear stopping powers

until the ion has dissipated all of its energy. The maximum available energy for ionisation
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and scintillation is Eex, with Lindhard et al. defining the quenching factor as the ratio of

energy given to the electronic excitation over the ion’s initial kinetic energy, Eex/ER. This

is the first definition, qf1 , given in Section 5.1.

A common parameterisation of the energy dependence of this model’s quenching factor, for

the case of a homogenous, monatomic target medium with the same atom being the incident

one, is [54, 179, 180],

qf1 =
kg(ε)

1 + kg(ε)
, (5.2)

where ε = 11.5 ER
1 keV

Z−7/3 and k = 0.133Z2/3A−1/2, with Z and A the atomic number and

atomic mass of the target medium’s atoms. The function g(ε) has been fit from the original

graphical representation, yielding [54],

g(ε) = 3ε0.15 + 0.7ε0.6 + ε . (5.3)

The quantity k is related to the electronic stopping power, and is usually left as a free

parameter when the Lindhard model is used to fit experimental data.

Lindhard et al. caution that assumptions of the model may not be valid for energies below

ε < 0.01, corresponding to O(1− 10 keV) for most ions [181]. The theory does not account

for the interaction of secondary ions, which can induce further electronic energy losses [182].

Approximations to extend this parametrisation to different incident nuclei recoiling in a

target or even a compound have been explored in the literature [182].

5.2.2 SRIM

SRIM [183] (Stopping and Range of Ions in Matter) is a computational tool primarily used

for the estimation of ion ranges in matter. It is based on fits of experimental measurements of
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the nuclear and electronic stopping powers. TRIM (TRansport of Ions in Matter), a module

of SRIM, is a Monte Carlo tool often used to estimate the ionisation quenching factor in

materials as it provides estimates for the portions of ion kinetic energy dissipated in electronic

and nuclear energy losses, including contributions of secondary recoils. This aligns with the

first definition of the quenching factor, qf1 . In Fig. 5.1, TRIM simulations of the spatial

profile of energy dissipation for light and heavy ions in a medium are shown. Heavier ions,

like Ar+ shown in Fig. 5.1(a), are subject to a higher rate of elastic scattering compared

to lighter ions, such as protons shown in Fig. 5.1(b), of the same kinetic energy. TRIM

estimates of the ionisation quenching factor of heavy ions in their own gas are presented in

Fig. 5.2.

(a) (b)

Figure 5.1: Tracks of (a) 10 keV Ar+ and (b) 10 keV protons in Ar gas simulated using
SRIM. Figures reproduced from Ref. [7].
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Figure 5.2: Quenching factor for ions in their own gas estimated using TRIM.

5.3 Measurements of Quenching Factor

5.3.1 Gas

To measure the quenching factor, recoil nuclei with precisely known kinetic energy are re-

quired, along with the capability to measure small energy deposits. As a result, although the

ionisation quenching factor is critical for the modelling of the detector response to nuclear

recoils — and, thus, for the sensitivity to discover DM — relevant measurements are scarce

for low energy ions in gases.

Measurements have been performed by Santos et al. [184] and Tampon et al. [185], in-

vestigating the quenching of He+ in He/C4H8 gas mixtures using an ion source and pro-

tons in C4H10/CHF3 gas mixtures using a table-top low energy ion-electron accelerator,

COMIMAC [186]. The measurements were performed with a Micromegas proportional

counter [187]. The ionisation quenching factor was estimated as the ratio of the energy

measured in the detector for ions to their initial total kinetic energy.
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Measurements have also been performed with COMIMAC using a spherical proportional

counter. The set-up for these measurements in presented in Fig. 5.3. The COMIMAC

facility uses a COmpact MIcrowave Coaxial (COMIC) source, which is a compact Electron

Cyclotron Resonance (ECR) source [188]. Low-pressure gas, O(10−2 mbar), inside the device

is ionised to form a plasma. Electrons or ions are then extracted by an electric potential

from a plasma in the accelerator and are passed through a �1 µm hole in a 13 µm plate

which separates the low-pressure of the accelerator and the gas in the detector, which in this

case was a 30 cm diameter spherical proportional counter. The electron beam extracted is

pure, as they are the only negative ion species present in the plasma. However, the ion beam

will contain any positive ion species in the plasma. A Wien filter [189] is used to select the

desired species based on their mass, using orthogonal magnetic and electric field that are

also orthogonal to the beam direction.

COMIMAC

Detector

1 m Hole in 13 m Plate

Faraday Cup

Wien Filter and
Focussing Electrodes

Figure 5.3: Set-up of the COMIMAC facility with a spherical proportional counter. The
Faraday cup may be lowered into the path of the beam to monitor the beam current. The
Wien filter uses orthogonal electric and magnetic fields to divert all but the desired ion
species from the beam.

Several measurement campaigns were conducted, using He:CH4 (95% : 5%), He:CH4 (98% :

2%) and CH4. The methodology in each campaign was similar, with just the gas under

investigation and the read-out sensor changing between them, with the last campaign using

an ACHINOS sensor.

In order to measure the quenching factor, the detector was first calibrated with electrons
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of various energies. As an example, the rise time versus amplitude observed for a 6 keV

electrons in He:CH4 (95% : 5%) at 1 bar are shown in Fig. 5.4(a). Following a selection

on the rise time and the pulse width to remove cosmic muons, the amplitude was fit with

a Gaussian distribution to obtain the position of the peak, which is shown for the 6 keV

electrons in Fig. 5.4(b).
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Figure 5.4: (a) Pulse rise time versus amplitude and (b) amplitude distribution for a 6 keV
electrons in He:CH4 (95% : 5%) at 1 bar, after rise time and pulse width selections are
applied. The mean of the electron peak is at (7.48± 0.01)103 ADU.

The ions were treated in a similar way, with an example amplitude distribution for 6 keV

ions in He:CH4 (95% : 5%) at 1 bar shown in Fig. 5.5(a). Using the electron amplitudes at

each energy, the detector could be calibrated, and the ion amplitudes compared to this to

calculate the ionisation quenching factor, in line with definition qf2 . A comparison of the

electron and ion amplitudes recorded is shown in Fig. 5.5(b). The two points at 6 keV were

obtained at the beginning and end the data taking.

Fig. 5.5(b) shows an unexpected non-linear trend in the electron calibration line.. The spher-

ical proportional counter has previously been shown to exhibit a linear energy dependence
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Figure 5.5: (a) Amplitude distribution for 6 keV 4He+ ions in He:CH4 (95% : 5%) at 1 bar
with selections applied on the rise time and width to remove cosmic muon background, and
fit with a Gaussian distribution. The mean of the peak is at (4.55 ± 0.01)103 ADU. (b)
Comparison of the electron and ion amplitudes as a function of particle energy.

with amplitude in this energy region [141]. Potential sources of this discrepancy are energy

loss from scattering in the detector-accelerator interface and incomplete charge collection of

the ionisation electrons created by the incident electrons. The latter may be caused by ioni-

sation electrons being produced close to the interface and generating enough charge density

to cause significant recombination or electron loss to the cathode. This space-charge effect

would be more pronounced for lower energy particles. A 10 keV electron will have a range of

approximately 1.4 cm in 1 bar of helium, and will decrease significantly below this at lower

energies [190]. However, ions of the same energy have a range of only 1.5 mm [183].

The space charge effect would also be greater with a higher rate of initial particles from the

source resulting in a lower recorded pulse amplitude. To reduce this effect, an ACHINOS sen-

sor was installed, which increases the electric field at larger radii and so reduces the buildup

of electrons near the interface. To investigate if the rate has an effect on the amplitude, the
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rate of 6 keV electrons from the source was varied during data taking. The detector was

operated with 200 mbar of CH4, and the recorded amplitude as a function of time is shown

in Fig. 5.6(a). The data was divided into 24 equal time slices and the amplitude in each

slice was fit with a Gaussian distribution to determine the mean. The mean amplitude and

the rate in each time slice are presented in Fig. 5.6(b) and show a rate dependence of the

amplitude. However, the change to the amplitude for an increase in rate from 100 Hz to

200 Hz is of the order of 1%, whereas most data was taken with a rate less than 100 Hz so

other factors are likely contributing to the departure from linearity.

Analysis of data from the various measurement campaigns is ongoing to identify any potential

systematic effect in order to assess the ionisation quenching factor.
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Figure 5.6: (a) Amplitude recorded for 6 keV electrons versus time with 200 mbar of CH4.
Points indicate the mean of a Gaussian fit to the amplitude in time slices during the data
taking. The second accumulation at higher amplitude which grows in population after around
2 minutes is pile-up caused by the increasing rate. (b) The mean of a Gaussian fit to the
amplitude (solid black) and the rate (open red) in slices of time during the data taking. The
decrease in recorded rate after 3 minutes is due to the increase in dead time.
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5.3. MEASUREMENTS OF QUENCHING FACTOR

5.3.2 Other Materials

The quenching factor is of great importance to all experiments observing from low-energy

nuclear recoils. Typically, it is measured using a source of neutrons that interact in the

material to induce nuclear recoils with an energy given by Eq. 2.29, with the DM mass

and kinetic energy replaced by that of the neutron. Due to the angular dependence of

the scattering, the neutron interactions induce a spectrum of recoil energies, complicating

the quenching factor estimation. Several methods are employed to overcome this. In one

method, beams of neutrons are directed onto the detector using the sample material of

interest, where they may induce a nuclear recoil, emerge having scattered through some

angle and be measured in a backing detector [180]. The coincident interaction in the sample

material and known location of the backing detector allows the angle to be calculated, and

so the recoil energy to be inferred. The signal induced by the recoil can then be compared

to that produced by electrons and the quenching factor computed. A second method is to

compare the measured nuclear recoil spectrums induced by a neutron beam and compare this

to simulations of the unquenched recoil distribution [191, 179]. A model of the quenching

factor is then applied to the simulated data and fit to the measured data. It is helpful

to use neutron sources with distinct energy features or mono-energetic beams in order to

minimise degeneracies when fitting to the simulated spectrum. Typical sources used for this

are 241Am-Be, 252Cf and ‘photoneutron’ sources, such as 88Y-Be or 124Sb-Be, which provide

near-monoenergetic neutrons with energies 152 keV and 23 keV, respectively, from (γ, n)

reactions [192, 191, 193].
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5.4 Quenching Factor from W-value Measurements

5.4.1 The W-value

The W-value, W , defined in Eq. 3.20, is the average energy required to produce an electron-

ion pair and includes any ionisation produced by secondary particles e.g. δ-electrons, bremsstrahlung

photons, or electron and nuclear recoils [194].

TheW-value contains all the required information for converting the kinetic energy dissipated

by ionising radiation in a medium to electric charge, and vice versa. The magnitude of the

W-value is the outcome of the competition between ionising and non-ionising processes, such

as excitation of atomic electrons and molecular degrees of freedom, dissociation processes

(neutral fragmentation) in molecular gases, and production of neutral atomic recoils. As a

result, the W-value also depends on the interacting particle species and, in general, tends to

a constant value for increasing energy.

5.4.2 Energy dependence of W-value

Electrons

The W-value can be understood by examining how the energy deposited by an interacting

particle is shared between different processes, such as that described in Ref. [195] for pure

gases. The dissipated energy is apportioned between: 1. production of electron-ion pairs;

and 2. production of discrete excited states or neutral dissociation fragments; 3. production

of sub-excitation electrons, with kinetic energy below the lowest electronic excitation energy

of the medium, namely, ionisation, excitation and heat. This can be summarised by the
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5.4. QUENCHING FACTOR FROM W-VALUE MEASUREMENTS

relation,

E = NT ĒT +NexĒex +NT ε , (5.4)

where Ēi is the mean energy transfer per electron-ion pair, Nex is the mean number of excited

states produced, Ēex is the mean energy transfer per excited state, and ε is the mean kinetic

energy carried by sub-excitation electrons. From the definition of the W-value in Eq. 3.20,

dividing Eq. 5.4 by NT obtains the W-value,

W = Ēi +
Nex

NT

Ēex + ε . (5.5)

It is conventional to express Eq. 5.5 in terms of the first ionisation energy I of the gas,

W

I
=
Ēi
I

+
Nex

Ni

Ēex
I

+
ε

I
. (5.6)

Since every term on the right-hand side of Eq. 5.6 depends on the energy of the ionising

particle, the W-value also exhibits an energy dependence, which becomes weaker for E � I.

Overall, high energy ionising particles have a W/I ratio of 1.7–1.8 in noble gases and 2.1–2.5

in molecular gases [195].

The energy dependence of the electron W-value as a function of kinetic energy is, typically,

described as [196]

W (E) =
Wa

1− U/E
, (5.7)

where Wa is the asymptotic W-value for E � I and U is a constant close to the average

energy of sub-excitation electrons. This relation is in agreement with measurements in a

number of gases including nitrogen, methane, and propane, down to low energies [197, 198,

199], although some measurements suggest a stronger dependence [200].
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Ions

The energy dependence of the W-value for charged hadrons, such as protons, α-particles,

mesons, and heavy ions is more complicated as it involves a larger number of reactions

compared to electrons. In addition to secondary electron generation occurring during the

energy loss process, electron capture and loss cycles are taking place. Moreover, collisions of

ions with atoms and molecules result in energy transfers that can lead to further ionisation

when ion velocities become comparable with electron orbital velocities. When ions carry

electrons, as expected for slow ions, collisions with atoms and molecules give a number

of products, including energetic ions and molecular fragments, that may result in further

ionisation. No complete theoretical description of the energy dependence of the W-value is

available, however, the cross sections for the individual process are being investigated [175].

The energy balance formulation for electrons can be extended for ions by adding the contri-

bution of neutral recoils created during the cascade [176].

E = NiĒi +NexĒex +Niε+NnrĒnr , (5.8)

where Nnr is the number of neutral recoils produced and Enr is their average kinetic energy.

Dividing by Ni gives,

Wion = Ēi +
Nex

Ni

Ēex + ε+
Nnr

Ni

Ēnr . (5.9)

The NiĒi and NexĒex terms include ionisation and excitation, respectively, induced by the

secondary ions in addition to that induced by the secondary electrons.

It is worth noting that the ratio Nex
Ni

is of particular importance to dual-phase liquid noble

gas direct DM detectors, as it is found that this ratio differs for electron and nuclear recoils

in the medium, and so is used for background discrimination.
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5.4. QUENCHING FACTOR FROM W-VALUE MEASUREMENTS

5.4.3 Measurements of the W-Value

Measurements ofW have been the topic of intense investigations for over a century [194, 201],

with improved experimental methods and increased precision over time. The experimental

set-up for these measurements is similar between different authors, and, generally, involves a

particle gun with precisely known energy – for instance, defined by the extraction potential –

fired into an ionisation chamber. In order to measure the W-value, the energy deposited by an

incident particle and the amount of ionisation it induces must be measured. This was done in

slightly different ways between the authors, however, two main methods were used. The first

uses an electrode at the gun-detector interface to measure the beam current while collecting

the ions generated in the gas with a proportional counter. During the measurement, the

pressure in the detector is gradually increased. For low pressures, the incident particles can

completely traverse the detector and so do not dissipate all of their energy in the detector,

resulting in a gradually increasing ionisation current measurement as the pressure increases.

At some pressure, the particle track is completely contained in the detector, however, the gas

pressure at the gun-detector interface results in scattering of the incident particle into the

interface and so not deposit its total energy in the gas. This latter effect is proportional to

the gas pressure, and so an extrapolation of the ionisation current measurement as a function

of pressure to that at zero pressure is used to remove these effects. The ionisation current

and the beam current can then be compared to determine the average amount of ionisation

produced per incident particle. A second method is to operate the detector with a fixed

pressure (O(10 mbar) in both ionisation and proportional modes for set periods of time.

The operation in ionisation mode is used to measure the amount of ionisation in the given

time, while the proportional mode is used to measure the total energy deposited in the time,

which is the product of the number of particles entering the volume and their known energy.

Comparing these two measurements, the average number of ionisations per particle can be

calculated, and so the W-value. Other effects that may introduce uncertainties into the
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measurement, such as particle energy uncertainties, gas contaminations etc., are particular

to the exact experimental set-up used, and are discussed by the individual authors.

5.4.4 Relation of the W-value and the ionisation quenching factor

The W-values for different ionising radiations encapsulates all necessary information to es-

timate differences in the amount of induced ionisation. The quenching factor parametrises

these differences. In Section 5.1, three definitions of the quenching factor were outlined. The

first quenching factor definition is experimentally accessible only in the case where a detector

is able to measure the total amount of energy deposited in electronic energy losses by an ion

as a fraction of its total kinetic energy. The two other definitions can be measured with a

detector relying on ionisation.

For a particle of energy E depositing all of its energy the detector will record a signal S

proportional to the number of ionisation electrons generated NT , related to W by Eq. 3.20.

The constant of proportionality G includes the response of the read-out electronics and

any electron multiplication. The detector can be calibrated with electrons of known kinetic

energy in order to relate the signal recorded with the corresponding energy deposited in

the detector, S → E. In the case of incident electrons, where N e
T ionisation electrons are

generated, the corresponding signal for a given energy deposited will be Se = G · N e
T =

G · E/We(E). For incident ions of the same kinetic energy, N i
T ionisation electrons will be

generated, with corresponding signal Si = G · N i
T = G · E/Wion. Through the calibration,

the ion signal would be interpreted as an electron equivalent energy Eee = N i
T ·We(E). Eee

is the energy visible to the detector, thus, from Eq. 5.1 the quenching factor can be written

as:
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5.5. QUENCHING FACTOR ESTIMATION

qf (E) =
Eee
E

=
N i
i ·We(E)

E
=
We(E)

Wi(E)
(5.10)

When the kinetic energy is over a few keV, far away from the energy region where the W-

value for electrons is energy dependent, the quenching factor can be derived from the ratio of

the asymptotic W-value for electrons Wa over the W-value for ions Wi in the same medium.

This is the case in the second definition, and is equivalent to Eq. 5.10 when We → Wa.

The third definition of the quenching factor refers to the case where We remains energy

dependent, and so accounts for the effective quenching of electrons at energies below a few

keV.

From these definitions, the quenching factor can be inferred from precise, dedicated mea-

surements of W in gases.

5.5 Quenching factor estimation

The estimation of the quenching factor, using Eq. 5.10, for different ions species relies on

measurements of the W-values for ions and electrons; the latter being used to obtain Wa for

electrons from Eq. 5.7. W-value measurements were selected based on two community re-

ports produced by ICRU (1971) and IAEA (1995) international commissions, which surveyed

multiple studies of W-values [194, 201]. The gases studied are H2, CH4, N2, Ar, CO2, C3H8

and W-values for electrons, protons, α-particles, and constituent ions are included. These

gases are frequently used as counting gases and quenchers in proportional counters [113], and

as components of tissue-equivalent gases, used to emulate energy deposition in the human

body. Furthermore, some of these are of particular interest as targets for rare event searches

with gaseous detectors, such as CH4, N2, and Ar.
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5.5.1 Electron and ion W-value measurements
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Figure 5.7: W-values versus electron kinetic energy for the gases studied. Data from
Ref. [198] were used for H2, Ar and C3H8. For CH4, data from Refs [198] and [197] are
combined. The data from Refs [198] and [202] were combined for N2. Only the data from
Ref. [203] was used for CO2. The asymptotic W-value (Wa) for each gas was estimated from
a fit of Eq. 5.7 to the data.

The electron measurements by Combecher et al. [198], Waibel and Grosswelt [197, 203, 202]

are presented in Fig. 5.7, and demonstrate the discussed energy dependence of the W-value.

CO2 data from [198] were not used due to their discrepancy with other published measure-

ments and calculations [201]. The data for each gas is fit with Eq. 5.7 using Wa and U as

free parameters to estimate the asymptotic W-value for electrons in each gas. Only mea-

surements for electron kinetic energies substantially larger than the first ionisation threshold

are included in the fit. The measurement uncertainties are dominated by systematic effects,

which are assumed to be fully correlated across the considered energy range. These results
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5.5. QUENCHING FACTOR ESTIMATION

Table 5.1: W-values for electrons in various gases. The asymptotic W-values are derived
from the fits shown in Fig. 5.7.

Gas W [eV]
ICRU Asymptotic

H2 36.5±0.7 38.0±0.8
CH4 27.3±0.6 27.90±0.01
N2 34.8±0.7 34.91±0.17
Ar 26.4±0.5 28.5±0.6
CO2 33.0±0.7 33.02±0.12
C3H8 24.0±0.5 26.4±0.5

are summarised in Table 5.1. The resulting asymptotic W-values appear higher than those

suggested by ICRU for high energy electrons [194], which are also shown in Table 5.1. The

recommended ICRU values are an arithmetic average of measurements published by a num-

ber of authors before 1971, using different energies and methodologies, and the assigned

uncertainties were chosen to embrace most of the available results. The results presented

here are based on the later measurements recommended by the IAEA report [201]. The dif-

ference between the derived asymptotic W-value and the corresponding ICRU recommended

value is assigned as a systematic uncertainty in the subsequent quenching factor estimate.

The W-values for protons and heavier ions were taken from various sources. Chemtob et

al. [204] and Phipps et al. [205] were used for the W-values of protons, H+
2 , H

+
3 , He+ and Ar+

in Ar gas; Huber et al [206], Boring et al. [207], Nguyen et al [208], Waibel et al. [209] for

protons, H+
3 , He+, N+ and N+

2 in N2 gas; Huber et al. [206], Nguyen et al [208] and Waibel et

al. [209] for protons, H+
2 , He+, C+ and O+ in CO2 gas; Huber et al. [206], Nguyen et al [208]

and Waibel et al. [209] for protons, H+
2 , He+, and C+ in CH4 gas; Willems et al. [210], and

Posny et al [211] for protons, He+ and C+ in C3H8 gas; Grosswelt et al [212] for protons in

H2 gas. The W-value for electrons and ions in the gases studied are shown in Fig. 5.8. In the

case of molecular ions, the energy is given per atom. In the case of proton and H2 curves,

it is observed that they practically coincide. This is explained by the molecules in the ion

beam dissociating in the initial collisions with the gas constituents [206].
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Figure 5.8: W-value versus the kinetic electrons and of ions for gases used in the studies.
The asymptotic value estimated by the fit in Fig. 5.7 is displayed by the dashed line with
its statistical uncertainty given as a band.

In Fig. 5.9 the fractional difference between the measured electron W-value and the corre-

sponding asymptotic value is shown.

5.5.2 Results

The quenching factor (qf2) for each ion species in a gas was estimated using Eq. 5.10 with

the asymptotic electron W-value, and are presented in Fig. 5.10. The uncertainty in the

estimation of the Wa for electrons and the uncertainty for the W-values for ions provided

in the respective publications were propagated to calculate the uncertainty in the quenching

factor. The systematic uncertainty arising from the difference between the inferred Wa and
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Figure 5.9: Relative difference of measured electron W-values to the asymptotic W-value in
the gases under study.

that recommended by ICRU is indicated on each plot, but not included in the error bars.

The estimated quenching factors provided by SRIM are also presented for reference [183].

The quenching factor displays an energy dependence, which is a consequence of the energy

dependence of the W -value for ions. For electron kinetic energies lower than a few keV

(Sec.5.4.2) the W -value for electrons becomes also energy dependent, as shown in Fig. 5.8,

introducing an effective electron ionisation quenching. If the conversion between observed

signal deposit and electron equivalent signal is to be calculated correctly, this additional

reduction in ionisation has to be considered, which is definition qf3 . The difference between

Wa and the measured W-value for electrons in various gases is shown in Fig. 5.9. At an

energy of 500 eV there is approximately a 3% difference between the two, which increases

with decreasing energy.
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Figure 5.10: The ionisation quenching factor, inferred from measurements of the W-value,
versus ion energy for several ion species in different gases. The quenching factors estimated
by SRIM are also provided for comparison. σWa

syst is the systematic uncertainty on Wa, which
is taken to be the difference between the fitted and ICRU recommended Wa.

5.5.3 Proton quenching factor greater than unity

The W-value for high energy protons, O(MeV) kinetic energy, in any gas is in general larger

than or equal to the one for electrons in the same gas [194]. However, in Fig. 5.10 the

quenching factor for protons in H2, Ar, N+
2 , and CO2 is found to be greater than unity in

some energies. This counter intuitive effect is a result of the minimum in the proton W-value

curve which is observed in those gases, and can be seen in Fig. 5.8. This is attributed to

charge exchange reactions involving H and the molecule (atom) of the gas [208, 213]. These

reactions are dominant in the energy range around the minimum.
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As an example, the case of N+
2 is discussed, following the arguments found in Ref. [214].

The charge exchange cycle starts with the proton capturing an electron resulting in the

production of neutral H and a N+
2 ,

H+ + N2 → H + N+
2 . (5.11)

The concluding stage of the cycle is the stripping of the electron from the neutral hydrogen

by a collision with the N2 molecule,

H + N2 → H+ + e− + N2 . (5.12)

However, before concluding the cycle, the H atom can further undergo the following reactions:

H +N2 → H +N∗2 (5.13)

H +N2 → H +N2 , (5.14)

H +N2 → H +N+
2 + e− . (5.15)

These possible interactions between the H atom and the N2 are: Eq. 5.13, excitation; Eq. 5.14,

elastic scattering; and Eq. 5.15, ionisation. This cycle converts an initially pure proton beam

into a mixture of H+ and H. Below 10 keV, the charge exchange and direct ionisation energy

losses for the proton almost equally compete. This results in additional ionisation, due to

charge cycle processes occurring, and so a lower W-value than would be anticipated from

ionisation alone. Above approximately 100 keV, the charge exchange process shuts off,

resulting in a rise in the W-value. Subsequent increases in the direct proton ionisation and

δ-electrons around the MeV-scale result in a decrease in the W-value. While the latter effect

is beyond the energy scale considered in the presented results, the ionisation enhancement

due to the charge exchange cycle is visible in the W-value, and results in an increase in the
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quenching factor to values greater than unity.

5.5.4 Comparison with predictions from SRIM

In Fig. 5.10, the estimated quenching factor curves are compared with quenching factor from

SRIM calculations. The level of agreement with SRIM is variable, and depends on ion type,

energy range and gas. SRIM predictions seem to be in reasonable agreement with results for

N+ in N+
2 , C+ and O+ in CO2. SRIM predictions are also comparable to the results for He+

in N2, CO2, Ar, as well as Ar+ in Ar over 10 keV. SRIM predictions are consistently higher

than the estimated quenching factors for energies below 10 keV. SRIM computes the total

electronic stopping power, which includes effects such as excitation that could be invisible

to a detector collecting charge. This could indicate that such effects become dominant for

lower energies. This effect may also be accentuated by an overestimation of the electronic

stopping power in low energies by SRIM, which has been highlighted in the literature [215].

Two further points of disagreement between SRIM and the experimental results are evident.

In the case of protons in H2, Ar, N2, and CO2 there is a discrepancy that likely originates from

the charge exchange cycle, resulting in additional ionisation with respect to the electronic

stopping power estimated by SRIM. In carbon-containing molecules, the order of quenching

factors is inverted with respect to what would be anticipated by molecular mass arguments,

as shown in Fig. 5.11. For example, as predicted also by SRIM, ions in CO2 would be

expected to have a lower quenching factor than in CH4 or C3H8. This behaviour has been

also reported previously [216], but its source remains unclear.
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Figure 5.11: Quenching factor for C+ ions in CO2, CH4 and C3H8. The energy in CH4 data
has been increased by 3 keV for visibility.

151





6
Background Suppression through

Electroformation

Rare event searches have stringent limits on radioactive background in order to achieve

their physics potential. The radiopurity of detector construction materials is of vital impor-

tance and has driven advancements in both radiopure material production and radioassay

techniques. This chapter discusses the use of one such production technique, copper elec-

troforming, to reduce the suppress radioactive backgrounds in SNOGLOBE. The process

of producing highly-radiopure copper through electroforming is presented, along with its

use to apply a copper layer to the inner surface of SNOGLOBE. Radioassays of the copper

used for SNOGLOBE and of the electroplated layer are discussed. This work is presented

in detail in Ref. [1], of which I am a main author and I prepared the manuscript. As a

result, texts and figures from Ref. [1] are included here. The scale model presented in Sec-

tion 6.4 was constructed and tested at PNNL. The measurements of the 210Po contamination

of C10100 copper used, presented in Section 6.2, were performed in collaboration by NEWS-

G and XMASS. Both the scale model and 210Po contamination are both included here for
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completeness.

6.1 Copper as a Detector Construction Material

Copper is a common choice material for high-purity applications [217, 218, 219] because it

is commercially available and there are no long-lived Cu radioisotopes; 67Cu is the longest-

lived with a half-life of 61.8 hours [145]. For this reason, the NEWS-G collaboration [144]

chose C10100 (99.99% pure) copper, procured from Aurubis AG, to construct SNOGLOBE.

C10100 refers to the Unified Numbering System (UNS) designation for Oxygen-Free Elec-

tronic (OFE) copper [220]. Even without long-lived Cu radioisotopes, a copper sample will

have some (non-copper) radiogenic contamination resulting from cosmogenic activation and

industrial production processes. For example, cosmic-ray neutrons interacting with copper

through the (n, α) reaction can produce 60Co. The half-life of the produced 60Co is ap-

proximately 5.3 years, making it a long-lived background relative to the typical time scale

of direct DM detection experiments. At the surface of the Earth, the added activity due to

60Co is approximately 0.4 µBq/kg/day [221]. Other cosmogenic contaminants with shorter

half-lives are also produced, e.g. 59Fe. These contributions can be suppressed by minimising

copper’s exposure to cosmic rays. Other radiocontaminants primarily originate from the

238U and 232Th decay chains. The 238U decay chain is shown in Fig. 6.1. This contamination

is both inherent to the raw material and a result of the manufacturing and handling pro-

cesses. An established technique to estimate this contamination is to directly measure the

uranium and thorium levels with inductively coupled plasma mass spectrometry (ICP-MS),

with a demonstrated sensitivity better than 30 fg/g to these contaminants [222, 223, 224].

The progeny activities can also be inferred and used to estimate background contributions

to experiments, under the assumption of secular equilibrium. Some measurements of the

uranium and thorium contaminations of commercial copper are shown in Table 6.1.
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Figure 6.1: 238U decay chain. All daughters are solid at room temperature and pressure
except 222Rn, which is a gas. Only decays with a branching fraction greater than 0.05% are
shown. Data obtained from [145].

222Rn, which is part of the 238U decay chain, is a gas. As a result, 222Rn may deposit

its decay products on the copper surface or into the copper bulk at the raw ore stage or

during manufacturing. This contribution adds to the contamination and may break the

secular-equilibrium assumption. The longest-lived isotope in the 222Rn decay chain is 210Pb

with a half-life of 22.2 years [225]. Accumulation of 210Pb from 222Rn deposits results in

experiment backgrounds that cannot be inferred by ICP-MS measurements of the 238U pro-

genitor. One method to assess this contamination is by directly measuring the 5.3 MeV α

particles from the 210Po decays [226, 227, 228], using a high-sensitivity XIA UltraLo-1800

spectrometer [229], which has a sensitivity of 0.0001 α/cm2/hour [229]. The XMASS col-

laboration established a method to estimate very low 210Pb contamination in copper bulk,

having demonstrated discrimination between bulk and surface contamination. in bulk from
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Table 6.1: ICP-MS measurements of uranium and thorium contamination in C10100 copper
samples [224].

Cu Type U Th
[µBq kg−1] [µBq kg−1]

C10100 cake stock 0.21± 0.06 0.46± 0.06
C10100 saw cut 6.62± 0.66 10.2± 1.0
C10100 with machined surfaces 3.11± 0.39 1.88± 0.45
C10100 0.5” plate stock 0.009± 0.001 < 0.03

that on the surface [228]. For oxygen-free copper that was at least 99.96% pure by weight1,

the 210Pb contamination in the bulk is estimated in the range 17–40 mBq kg−1 [228]. The

corresponding measurement for the C10100 copper procured by the NEWS-G collaboration

is 29+8+9
−8−3 mBq kg−1 as discussed in Section 6.2.

The measured level of 210Pb in the C10100 copper bulk of the NEWS-G detector and the

corresponding contamination of its progeny would represent approximately 82% of the exper-

imental background below 1 keV [221], as estimated by means of a Geant4 [157] simulation,

excluding possible contributions originating from activation of the copper induced by expo-

sure to surface-level flux of cosmic muons. An approach to suppress the background from

210Pb contamination is to grow a layer of ultra-radiopure copper onto the inner surface of

the detector sphere [1]. This layer acts as an internal shield to suppress backgrounds, e.g.

from β-decays of 210Pb and accompanying X-rays and Auger electrons, and its progeny 210Bi,

originating from the bulk of the commercially sourced C10100 copper. It was estimated that

a 500 µm-thick layer of ultra-radiopure copper will suppress this background contribution

below 1 keV by a factor of 2.6 [221, 1].

An established method to deposit ultra-radiopure copper is potentiostatic electroforming [228,

230]. This method takes advantage of electrochemical properties to produce copper with re-

duced impurities. The process is described in Section 6.3. This method was previously used

1Japanese Industrial Standard, JIS:C1020.
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to produce a variety of detector components, including those requiring extreme radiopurity.

Internal fittings were fabricated for the Majorana Demonstrator [231] from electroformed

copper with 238U and 232Th levels less than 0.099 and 0.119 µBq kg−1 at 68% confidence

level, respectively2 — limited by the ICP-MS assay precision [224]. The 210Pb contamina-

tion of electroformed copper has previously been measured to be below the sensitivity of an

XIA UltraLo-1800 spectrometer, with a 90% confidence level upper limit on its activity of

<5.3 µBq kg−1 [228]. In order to apply this process to a hemispherical surface, a scale model

was produced and used to determine the operating conditions.

6.2 210Pb Contamination in NEWS-G Copper

To assess the level of 210Pb contamination in the C10100 copper used to construct the de-

tector, samples were taken from the same batch of copper after casting. The α particles

from 210Po decays were measured using an XIA UltraLo-1800 ionisation chamber, which

uses an active veto to obtain a second complementary signal arising from cases where the

α particle does not originate from the sample under test. This is used to suppress back-

ground coming from the spectrometer’s own construction materials. The sample is placed

in the detector which is flushed with argon gas to minimise 222Rn contamination. In this

measurement, the 210Po content of the bulk of the copper sample is of interest. The ob-

servable energy of 5.30 MeV α particles emerging from the bulk of the copper sample as a

function of their original depth was estimated with a Geant4 simulation. An energy window

of 2.5 MeV to 4.8 MeV was used to primarily select α particles originating from a depth of

approximately 2 µm to 8 µm. This improves the signal-to-noise ratio for selecting bulk α

particle events. The number of events detected in the accepted energy range must then be

converted to a bulk activity. This was done by means of a Geant4 simulation which yielded

2For 238U, 1 µBqkg−1 ≈ 0.081 pg/g. For 232Th, 1 µBqkg−1 ≈ 0.244 pg/g.
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2.7× 102 (Bq/kg)/(α/cm2/h) [228].

210Po has a half-life of approximately 138 days, which is significant shorter than the approx-

imately 22 years of the progenitor 210Pb. As a result, the activities of 210Po and 210Pb may

be different due to different contamination amounts at the production phase. Therefore, the

activities of the two isotopes may be out of secular equilibrium; however, the 210Po activity

in a sample will evolve over time until it matches that of 210Pb. Therefore, multiple measure-

ments of the 210Po activity over time are required to accurately infer the activity of 210Pb

in the copper. Four measurements of the α particles from the sample were made over the

course of approximately one year, each lasting between 12 and 23 days. Table 6.2 shows the

results of the four measurements.

Table 6.2: Measurements of the α particles in a 2.5 MeV to 4.8 MeV energy window origi-
nating from 210Po decays in a C10100 copper sample. Table reproduced from Ref. [1].

Date Measurement
[10−4 α/cm2/h]

Jul. 2–25, 2018 2.3± 0.4
Oct. 5–17, 2018 2.2± 0.4
Dec. 28, 2018–Jan. 9, 2019 1.4± 0.3
Apr. 19–May 7, 2019 1.4± 0.3

A likelihood fit of the measurements was performed and is shown in Fig. 6.2 along with

the measurements. From this fit, it was estimated that the 210Pb activity in the sample is

29+8+9
−8−3 mBq kg−1, where the statistical and systematic uncertainties are given separately.

This is consistent with other copper samples of similar purity [228].
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Figure 6.2: Measurements of the α particles from the decay of 210Po in a sample of C10100
copper used in the production of the NEWS-G detector. Time is measured from the esti-
mated production date of the copper. The purple (green) line shows the fitted 210Po (210Pb)
activity over time, with the bands showing the ±1σ region. Figure reproduced from Ref. [1].

6.3 Electroplating

6.3.1 The Electrolytic Cell

An electrolytic cell consists of a pair of electrodes, an anode and a cathode, separated by

an electrolyte. A voltage difference is applied between the electrodes so that the anode is

positively charged, as illustrated in Fig. 6.3. A current is used to supply electrons to the

cathode where an ion undergoes a reduction reaction (gain of electrons), while oxidation

reactions (loss of electrons) occur at the anode. The reactions occurring at each of the

electrodes will be of the general form:

A(y+z)+ + ze− � Ay+ , (6.1)

where A is the molecular species, y is its ionic charge and z is the number of electrons re-

quired for the reduction reaction (reading left-to-right) or the number of electrons released
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Electrolyte

Anode Cathode

ReductionOxidation

Figure 6.3: Schematic diagram of a simple electrolytic cell. Arrows indicate the motion of
ions, which are released into the electrolyte by oxidation reactions at the anode and then
deposited on the cathode in reduction reactions.

in the oxidation reaction (reading right-to-left). Reading this equation in one direction gives

the “half-cell reaction”, where the anode and cathode half-cell reactions are not necessarily

the same; e.g., in the case where one species is oxidised at the cathode but a different species

is reduced at the anode. Oxidation reactions each release z electrons to the anode, which

flow through the circuit to the cathode where they may be used for reduction reactions.

Conventionally, the amount of released charge is expressed in terms of the Faraday con-

stant, F , defined as the electric charge per mole of electrons, eNA, which is equivalent to

approximately 9.65× 105 C mol−1.

6.3.2 Electroplating

The flow of electrons gives a current I through the circuit. As the reduction reactions

require electrons, the number of reduced atoms during electroplating is proportional to the

total supplied charge, Q(t) =
´
Idt. The number of moles n of ions reduced at the cathode
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in time t is given by,

n(t) =
Q(t)

zF
, (6.2)

The resulting deposited mass as a function of time is

M(t) = mrn(t) , (6.3)

where mr is the molecular mass of the deposited species. This is the mathematical form

of Faraday’s laws of electrolysis [232]. When the current is reversed the process is called

electropolishing, which is a technique used to remove material from a surface.

There will be several species of ions in the electrolyte available to electroplate to the cathode.

The tendency of an ion species to be reduced is quantified by the reduction potential E0.

Examples are shown in Table 6.3 for copper and radioisotope contaminants. A greater value

of E0 indicates a species that is more easily reduced. Each half-cell reaction will have its

own reduction potential. The standard cell potential E0
cell of the electrolytic cell is defined

as the difference between the reduction potentials of the half-cell reactions at the anode EA

and cathode EC,

E0
cell = E0

C − E0
A . (6.4)

The standard cell potential is related to the change in Gibbs free energy per mole ∆G0 for

the system by,

∆G0 = −zFE0
cell . (6.5)

For a system in equilibrium, the Gibbs free energy is minimised [233], so ∆G0 = 0. ∆G0 < 0,

meaning E0 > 0, is the case when the reaction is spontaneous, whereas, if ∆G0 > 0, E0 < 0,

the process is not spontaneous and so cannot proceed unless driven by a voltage between the

electrodes. For a given species being oxidised at the anode, the reaction will only proceed

when the cathode half-cell reaction has a higher reduction potential, or a sufficiently high
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Table 6.3: Reduction potential for copper and possible radiocontaminants.
Reductants Oxidants E0 (V)

Cu2+ + 2e− � Cu +0.34 [234]
Pb2+ + 2e− � Pb -0.13 [235]
U3+ + 3e− � U -1.80 [236]
Th4+ + 4e− � Th -1.90 [236]
K+ + e− � K -2.93 [237]

voltage is applied between the electrodes. In the case of a copper anode being oxidised,

only ion species in the electrolyte with a reduction potential greater than that of copper will

reduce. The relatively high reduction potential of copper compared to many radioisotopes

means that it is purified during electroplating.

However, other factors, such as mass transport of contaminant ions, can cause species with

lower reduction potentials to be deposited with the copper in small amounts [230]. This is

discussed further in the Section 6.3.3.

For electroplating the NEWS-G detector, a copper anode is used to provide Cu2+ ions to the

electrolyte. For Cu2+ ions reducing at the cathode, the system will have E0
cell = 0 V. Thus,

to drive the reaction and overcome energy loss mechanisms in the system, the electrodes are

kept at a potential difference of 0.3 V [238], which is low enough to prevent the plating of

undesirable contaminant isotopes.

6.3.3 Nernst Equation

The previous discussion outlines the principle behind copper refinement in electroplating.

However, there is currently no complete model for the electrochemical dynamics of the plating

system, and so the advancements in the field are driven by empirical results. As an example,

the Nernst equation describes how the standard cell potential is modified by the temperature
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T and chemical activity a of reductants i and oxidants j, and is given by,

Ecell = E0
cell −

RT

zF
ln

(∏
i a

si
i∏

j a
sj
j

)
, (6.6)

where si (sj) is the stoichiometric coefficient of the reductants (oxidants). Due to the diffi-

culty in measuring chemical activity it is often approximated by the concentration. This can

be used to compute the required concentration of a contaminant in order for it to electro-

plate, i.e., Ecell > 0. In the case of Th4+ ions reducing at the cathode and copper oxidising

at the anode, a Th4+ concentration over 10× 10150 mol L−1 would be required for it to elec-

troplate. If the voltage between the electrodes was included, then the required concentration

is still over 10× 10125 mol L−1. However, the Nernst equation assumes the electrolytic cell

is in equilibrium, and the application of a voltage in electroplating creates a dynamic sys-

tem. In previous studies of electroplating, the rejection rate of thorium was measured to

be approximately 99.9% at a concentration of 4.31× 10−9 mol L−1, which is in disagreement

with the simplified application of the Nernst equation – however, the authors note that this

is a ‘worst case scenario’ because the measurement conditions were expected to produce

significant mass transport of ions [230]. The observed plating of thorium was attributed to

the influence of other factors, such as mass transport of contaminants to the cathode surface

and co-deposition with the copper.

6.3.4 Reverse-Pulse Plating

It has been shown that applying a time-varying potential difference between the electrodes

can have several benefits compared to a constant potential difference [239]. During electro-

plating, the region of the electrolyte at the surface of the cathode becomes depleted of Cu2+

relative to the bulk electrolyte. This slows down the rate of electroplating and affects the

properties of the deposited copper [239]. The waveform of the time-varying potential differ-
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ence allows this region to be replenished by allowing diffusion from the bulk electrolyte when

no voltage is applied and by reintroducing more ions from the surface during the reverse-

voltage part of the waveform. Also, differences in current density can arise due to differences

in the distance between the anode and cathode surfaces (e.g. a surface rough point). High

current density regions of the electrolyte are more depleted of Cu2+ than lower density re-

gions. When no voltage is applied, ions can diffuse between two such regions and thus lead

to a more uniform overall current density, while the reverse-voltage part of the waveform

prevents a thick layer forming in the high current density regions [239]; both effects pro-

mote more uniform growth of the electroplated copper layer. The reversing of polarity also

allows for release of contaminant ions that may have been entrapped during the high mass

transport portion of the forward plating. The waveform used for the electroplating is shown

in Fig. 6.4. Note that while the potential is applied it is potentiostatic at a level that favours

the oxidation/reduction of copper.

Potential
Difference

Figure 6.4: Waveform used in electroplating.

6.3.5 Transport of Ions in Electrolyte

During electroplating, the region of the electrolyte at the surface of the cathode becomes

depleted of Cu2+ relative to the bulk electrolyte. The diffusion flux density of ions Jx in one

dimension x, under the influence of a concentration gradient and a static electric potential
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φ, may be modelled by an extension of Fick’s law, the Nernst-Planck equation [240, 241],

Jx = −D∂c

∂x
− zF

RT
Dc

∂φ

∂x
+ uc , (6.7)

where c is the concentration of the ion species, D is its diffusion coefficient and u is the

fluid velocity. The three terms on the right-hand side of Eq. 6.7 describe movement of the

ions under the influence of the concentration gradient (diffusion), electric potential gradient

(migration) and due to hydrodynamic transport (convection), respectively. In the case of a

weak electric potential, as is the case in potentiostatic electroforming, and assuming u = 0,

J is dominated by diffusion, and so can be written as,

Jx ≈ −D
∂c

∂x
. (6.8)

During electroplating, ions in the electrolyte at the cathode surface are reduced first, resulting

in a decreased concentration. Assuming a constant concentration in the bulk electrolyte, cb,

there will be some region between the cathode surface and bulk electrolyte where there is a

concentration gradient, known as the diffusion layer. This is shown in Figure 6.5. A similar

gradient is found at the anode surface, however, with a higher concentration than the bulk.

If the diffusion layer is approximated to have a constant gradient over some distance δx,

known as the Nernst diffusion layer [240], then J may be written as,

Jx ≈ −
D

δx
(cb − c0) , (6.9)

where D
δx

is defined as the mass transfer coefficient Km.

The concentration and its gradient at the surface of the anode defines the maximum current

at which plating can take place; qualitatively, operating with too high a current will cause the

cathode-surface concentration to be lower, and the diffusion limits the ability for ions in the
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bulk to replenish this. This affect can be reduced by agitating the solution (i.e. introducing

a non-negligible u), which can bring ions from the bulk closer to the electrode surface. In

the electroplating of the NEWS-G detector, this was achieved with the use of a pump that

circulated the electrolyte, as mentioned in Section 6.5.
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Figure 6.5: Pictorial figure of diffusion layer at electrode boundaries and the construction of
the Nernst layer. The solid line represents the true concentration, where are the dashed lines
show the constant gradient approximation concentration between the surface and bulk, and
the distance between the intersection of these two lines and the electrode is the thickness of
the Nernst layer. The subscript a, c are for the anode and cathode, respectively. Based on
a figure in Ref. [240]

6.4 Scale Model

The copper electroplating procedure described in the previous section is a well-established

method for over a decade [230]. However, fairly rigid operational conditions must be met

to produce material with the required radiopurity and mechanical properties. Failure to

meet these conditions may not only produce copper of poor radiopurity but often results in

deposits with poor physical properties as well. For NEWS-G, the initial loading of copper into

solution was generated from an initial electropolishing step, because commercially available

copper sulphate is not sufficiently pure. However, for traditional electroforming, the amount
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of copper required in the electrolyte is too great to achieve through electropolishing. As a

result, the plating conditions for the NEWS-G hemispheres required a major deviation in

the concentration of copper sulphate (CuSO4) in the electrolyte.

Several parameters can have an effect on electrodeposition growth, such as ion concentration,

temperature, current and the presence of other ion species. The exact effect of many of these

is not well-understood, especially when multiple parameters are outside of their established

optimal operating ranges. Prior experience has shown that electrolyte with a low copper-ion

concentration can produce dendritic copper deposition. In the absence of accurate deposition

models, it was necessary to run a scaled experiment prior to plating the full-sized ∅140 cm

sphere underground in LSM. Key growth parameters were identified and an experiment was

designed based on those that could be adjusted in situ at LSM and projected onto a scale

model.

The key independent and adjustable variables were determined to be the concentration of

copper and overall conductivity of the electrolyte, and the current based on the limiting

set of voltage conditions. Control of the CuSO4 concentration is limited by the amount

of copper that can be dissolved during an initial electropolishing step, which serves two

purposes: (a) expose the underlying bulk crystal structure to prepare the copper surface

for electroplating; and (b) load the electrolyte with copper. During this step, the ∅140 cm

hemisphere will act as the anode and careful control of the potential is not as important,

whereas subsequently copper will be plated to the ∅140 cm hemisphere which will then be

serving as the cathode. During the latter step, the voltage control and deposition rate are

critical. As a result, establishing how the plating responds to small changes in CuSO4 is

crucial. As such, three variations of CuSO4 concentration, three conductivities, and three

voltage settings were identified for experimentation on the scale model.

A stainless-steel spherical float with a diameter of 30 cm was cut in half and used as a stand-
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(a) (b)

(c) (d)

Figure 6.6: (a)CAD model of the small-scale setup; (b) the assembled scale-model experi-
ment; (c) copper plated onto the scale model’s stainless-steel hemisphere; and (d) the final
scale-model growth of copper. Figure reproduced from Ref. [1].

in for the full-scale ∅140 cm copper hemisphere. A smaller hemisphere was machined from

aluminium and plated with copper to serve as the anode after the initial electropolishing step.

Fig. 6.6 shows the experimental setup of the scale model. Although the transport dynamics

involved are not fully understood, previous experience has shown that the electrode gap

(path length) has an effect on plating, regardless of CuSO4 concentration and conductivity.

As a result, while the spacing between the two electrodes was scaled, the impedance needed

to be matched to that of the full-scale setup. This required the electrolyte conductivity to

be reduced to compensate for the reduced electrode spacing in the model.

A bath, shown in Fig. 6.6(a) and 6.6(b), was designed to hold and stabilise the stainless-
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steel hemisphere. Several iterations of plating were performed to cycle through the plating

variations and determine the optimal electroplating conditions based primarily on the quality

of grain uniformity and size observed in the deposit. Based on these trials, the parameters

chosen for plating copper onto the full-scale hemispheres were a CuSO4 concentration of

0.03 mol L−1, a conductivity of 91.9 mS cm−1 (corresponding to a full-scale conductivity of

300 mS cm−1), and a potential of 0.35 V. Using these parameters, the estimated time to

electroplate each full-scale hemisphere was ∼ 8 days to attain a thickness of 500 µm. The

resulting growth for the small-scale model is shown in Fig. 6.6(c) and Fig. 6.6(d).

6.5 Electroplating SNOGLOBE

The electroplating was conducted at LSM. The detector outer shell is comprised of two

∅140 cm hemispheres, produced by a spinning technique using C10100 copper. The result

after cleaning with commercial detergent is shown in Fig. 6.7(a). The hemispheres were

then sanded with silicon carbide sandpaper to produce a smooth surface. During sanding,

particulates of the abrasive substance can become embedded in the copper, which motivated

the use of silicon carbide sandpaper as opposed to common alternatives, such as aluminium

oxide, which are considered to be more radioactive. The subsequent preparation steps also

help to remove these embedded particulates. Subsequently, the surface was chemically etched

using an acidified hydrogen peroxide solution [226, 242]. The result of this preparation is

shown in Fig. 6.7(b).

A smaller C10100 copper hemisphere was produced to act as the anode for electroplating

and was cleaned in the same way as the detector hemispheres. It was suspended inside the

detector, separated by an electrolyte comprised of deionised water (18 Mohm), Optima R©

grade sulphuric acid (Fisher Scientific), and copper sulphate produced by a previous electro-

plating. A pump provided mechanical mixing with a filter removing particulates greater than
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(a) (b)

Figure 6.7: A detector hemisphere following (a) initial cleaning with detergent and (b) sand-
ing and chemical etching with an acidified hydrogen peroxide solution. The discolouration
observed in the latter is a result of oxidisation of the copper and it is removed when the
hemisphere is put in contact with the electrolyte.

1 µm in size from the electrolyte. The anode and cathode were connected to a pulse-reverse

power supply (Dynatronix, Amery, WI, USA), which could supply up to 80 A. The hemi-

sphere was contained within a stainless-steel container to contain any leaks or spillages. The

set-up was contained in a temporary purpose-constructed cleanroom to prevent particulates

entering the electrolyte and subsequently providing nucleation sites for nodule-like copper

(a)

Detector Hemisphere

Inner Hemisphere

Electrolyte

Stainless
Steel Ring

To Power Supply

To Power Supply

To Pump and Filter

Conductivity Probe

(b)

Figure 6.8: (a) Electroplating setup showing the detector hemisphere, anode, support struc-
tures, and fixtures. (b) Schematic diagram of the setup.
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growth [243]. The setup is shown in Fig. 6.8.

Prior to electroplating, each hemisphere was electropolished to remove a layer of material

from the surface. This exposes the underlying crystalline structure and provides an ultra-

clean surface prior to deposition. Furthermore, this process enhances the amount of Cu2+

in the electrolyte. A higher voltage was used for this process to extract all species from the

surface. During electropolishing, (21.2±0.1) µm and (28.2±0.1) µm were removed from the

first and second detector hemispheres, respectively. This was estimated from the integrated

current and Eq. 6.3, assuming uniform polishing. Following this process, the electrolyte

circulated through the filter for several days prior to electroplating to remove particulates

released from the copper surface.

The electroplating procedure used the reverse-pulse plating waveform shown in Fig. 6.3. The

current and voltage were monitored throughout, and the conductivity and temperature were

recorded using a HACH inductive conductivity sensor. Electroplating continued for a total

of 19.8 days and 21.0 days for the first and second hemispheres, respectively. The process

took longer than estimated based on the small-scale experiments due to power supply current

limitations, plating at slightly lower potential and a slightly lower electrolyte conductivity.

This resulted in a slightly rougher surface than obtained in the model. The process was only

interrupted for short periods to perform checks or due to power outages. The thickness of the

deposited layer, which is shown as a function of time in Fig. 6.9, was estimated from the inte-

grated current assuming a uniform deposition. Total copper thicknesses of (502.1± 0.2) µm

and (539.5±0.2) µm were plated onto the first and second detector hemispheres, respectively.

The achieved plating rate corresponds to approximately 1.3 cm/year. A photograph of the

final result is shown in Fig. 6.10 for each hemisphere. The surface of the first hemisphere

displayed more nodular growths then the second, however, still below a level which would

significantly affect the electric field in the detector. A possible explanation of the nodular

growth is particulates released from the anode surface during the first electroplating can be
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transported to the cathode by mass transport and be entrained into the electrodeposited

layer, providing a nucleation site for further growth [243]. This was not observed during the

electroplating of the second hemisphere.
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Figure 6.9: Estimated thickness of the electroplated copper for both detector hemispheres.

After removing the hemispheres from the setup, they were rinsed with deionised water and

the surface passivated with a 1% citric-acid solution to prevent surface oxidation [242].

Following the welding of the hemispheres together, a final stage of surface etching using an

acidified-peroxide solution will be undertaken in order to mitigate the surface contamination

caused by contact with the air. This etching technique has been shown to reduce the surface

contamination of 210Pb on electroformed copper to the background level of the XIA UltraLo-

1800, which is used in these assays [226]. This process is conducted under a nitrogen cover

gas to mitigate possible surface recontamination following the etching. Following this stage,

the inner detector surface will not be exposed to air again.
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(a) (b)

(c) (d)

Figure 6.10: (a) ((c))The inner surface of the first (second) hemisphere after electroplating
and (b) ((d))a close-up of the surface.

6.6 Radioisotope Assay Results

Samples of the electroplated copper were used to assess 238U and 232Th concentrations.

Samples were taken from copper plated on the stainless-steel ring, shown in Fig. 6.8, to

avoid damaging the detector cladding. These samples originate from near the electrolyte–air

interface and from the stainless-steel surface; thus, they represent a contamination worst

case scenario. The samples collected from each hemisphere are shown in Fig. 6.11.
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Figure 6.11: Electroplated copper samples taken from the stainless-steel ring shown in
Fig. 6.8.

Table 6.4: ICP-MS results for 238U and 232Th contamination in samples of the electroplated
copper layer, along with representative examples of electroformed and commercially sourced
copper [224]. These are quoted as 68% upper confidence limits, where the measurement
sensitivity was limited by the available sample mass.

Sample Weight 232Th 238U
[g] [µBq kg−1] [µBq kg−1]

C10100 Cu - 8.7± 1.6 27.9± 1.9(Machined)
Cu - <0.119 <0.099Electroformed
Hemisphere 1 0.256 <0.58 <0.26
Hemisphere 2 0.614 <0.24 <0.11

The samples were shipped to Pacific Northwest National Laboratory and analysed using

ICP-MS following the methods described in Refs. [222, 223]. The results are summarised

in Table 6.4, along with representative examples of electroformed and commercially sourced

(machined) copper. A substantial improvement over the latter is observed, with radiopurity

levels comparable to previously measured electroformed copper. The measurement sensi-

tivity for the two hemispheres is limited by the mass of the available samples. Previous

samples of electroformed copper have exhibited a bulk contamination of 210Pb lower than

the background of the XIA UltraLo-1800, and are often used for blank measurements or for

the construction of the sample tray inside the device [226, 228].
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7
Future Electroformed Spheres

In the previous chapter, the ability of electroformed copper to reduce the experimental

background was demonstrated. This chapter discusses future application of electroforming

to produce full spherical proportional counter cathodes. Two projects will undertake this;

ECUME, which has secured funding and is undergoing planning, and DarkSPHERE, which

is in the planning stage and physics assessment stage.

7.1 Fully Underground Electroformed Detectors

As discussed in Chapter 6, a 500 µm electroplated layer was used to reduce the background

below 1 keV by a factor of 2.6 in SNOGLOBE. Despite this, as shown in Fig. 7.1, the 210Pb

contamination remains the dominant experimental background [221]. Cosmogenic activation

is the second largest component, depending on the amount of exposure to sea-level cosmic

muon fluxes and subsequent radioactive decay when installed in the underground laboratory.

The 210Pb contribution can be suppressed by exclusively using electroformed copper for the
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Gas Mixture 4.8%

Copper 

54.4%

Cosmogenic Activation
     (1 year cooling)

20.5%
Shield

19.8%

Cavern 0.6%

Figure 7.1: Fractional contribution of each background source to the total background of
SNOGLOBE. Compiled from Ref. [221].

detector. As discussed in Chapter 6, the 210Pb contamination of electroformed copper is

below the sensitivity of an XIA UltraLo-1800 spectrometer, which is currently the most

sensitive device for this measurement. If secular equilibrium in the 238U decay chain holds

in electroformed copper, then ICP-MS measurements can be used to infer the amount of

210Pb. However, it has previously been shown that the process of machining electroformed

copper can increase the uranium and thorium contamination [224]. For these reasons, a

fully electroformed detector offers a method of producing a highly pure detector material.

The presented electroplating of the NEWS-G inner detector surface achieved a plating rate

of approximately 1.3 cm per year, which makes the production of a fully electroformed

sphere feasible on the time scale of several months. The second largest contribution to

the experimental background, arising from the cosmogenic activation of the copper, can be

suppressed by directly electroforming the detector in the underground laboratory where it

will be operated.
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7.2. ECUME

7.2 ECUME

The Electroformed CUprum Manufacturing Experiment (ECUME) will establish an under-

ground electroforming facility in SNOLAB and as a first project will produce a ∅140 cm

spherical cathode for the NEWS-G experiment. Electroforming will begin in autumn 2021

and is estimated to take approximately eight months to complete. The detector will then

replace SNOGLOBE in its shielding and used in direct DM searches, following the exploita-

tion phase of SNOGLOBE. The projected 90% confidence-level (CL) upper-limit on the

DM-nucleon cross section as a function of DM candidate mass for ECUME operated with

He:CH4 (90%:10%) gas is shown in Fig. 7.2, calculated using the Optimal Interval Method

(OIM) [244] assuming an exposure of 200 kg · days and a background of 0.3 dru. This

background estimation was derived from the calculations for SNOGLOBE, but removing

the background originating from copper [221]. Following the production of the NEWS-G

detector, ECUME will be available as an underground electroforming facility for future ex-

periments.

7.3 DarkSPHERE

Using a fully electroformed underground sphere, the background contribution from the cop-

per becomes sub-dominant with the main remaining background contribution originating

from the lead shielding [221]. Therefore, for future spherical proportional counter DM

searches alternative shielding options need to be explored, including the use of a water

shield. DarkSPHERE, a ∅300 cm spherical proportional counter fully electroformed un-

derground, is proposed to be produced and subsequently operated in Boulby Underground

Laboratory, UK. Boulby Underground Laboratory is located at a depth of 1.1km (2.8 m wa-

ter equivalent) and contains a 1600 m2 clean room, the Large Experimental Cavern, shared
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Figure 7.2: Projected 90% CL upper-limit on the DM-nucleon cross section as a function
of DM candidate mass for SNOGLOBE and the future NEWS-G experiments ECUME
and DarkSPHERE. Predicted 90% CL exclusion limits for SNOGLOBE and ECUME were
calculated using an optimum interval method. The text describes the detector condi-
tions for DarkSPHERE whose projection was calculated using a binned likelihood method.
DarkSPHERE is projected to reach the neutrino floor, which is shown for helium [74]. Exper-
imental exclusion limit measurements for SEDINE [144], and other direct DM experiments,
DarkSide-50 [148], CRESST-III [149], CDMSlite [93] and Xenon-1T [104], are given for com-
parison.

between ISO 7 and ISO 6 standards. Thanks to the composition of the surrounding rock,

the laboratory benefits from exceptionally low radon level in the air of below 3 Bq m−3.

Studies of the shielding requirements to suppress environmental neutron and photon back-

ground contributions [245], originating in the walls of the laboratory, to levels comparable

with that expected from the copper are ongoing. Current best estimates for the contamina-

tion of 210Pb in electroformed copper come from assuming secular equilibrium in the uranium

decay chain and taking current ICP-MS measurements of the uranium contamination of elec-

troformed copper, corresponding to a background of 0.002 dru. It was found that a water

shield, of 3.5 m thickness would achieve this goal. If the experiment was to be hosted in the

Large Experimental Cavern then space requirements are more strict; however, a water-lead
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shield, shown schematically in Fig. 7.3, comprising 130 cm water, 20 cm lead, and 30 cm

water, can achieve comparable background suppression.

DarkSPHERE

Legend:

Water

Lead

3000

All dimensions
are in mm

1300
200

300

Figure 7.3: Proposed shielding for DarkSPHERE.

Additionally, gas mixtures with a higher abundance of light target atoms, such as the

hydrogen-rich isobutane, C4H10, and helium are being explored, which provide increased

sensitivity to light-DM. Furthermore, the advent of the DLC ACHINOS paves the way for

future high-pressure operation, allowing the active mass of the detector to be increased.

The 60-anode ACHINOS structure presented in Chapter 4 is a prototype read-out structure

designed to achieve comparable electric field magnitudes at the outside of the detector as

those obtained in SNOGLOBE. With this technological advancement, it is proposed that

DarkSPHERE will operate with He:C4H10 (90%:10%) at 5 bar, which gives a target mass of

27.3 kg.

In order to calculate the projected sensitivity of the experiment, the negative log-likelihood

ratio was used as the test statistic comparing the signal plus background and the background
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only hypotheses,

λ (µ) = −2 ln

(
L(µ|n)

L(µ̂|n)

)
= −2 ln

(
P (n;µs+ b)

P (n; µ̂s+ b)

)
, (7.1)

where the likelihood functions are Poisson distributions, P (n;x) = xne−x/n!, with s, b, being

the expected signal and background event rates and n being the number of observed events.

According to Wilk’s therem [246], in the asymptotic limit λ, for one parameter of interest,

follows a χ2 distribution with one degree of freedom. From this, the 90% CL upper-limit on

µ can be found when λ = 2.706. To estimate the 90% CL upper-limit that can be achieved,

the Asimov data set with µ = 0 is assumed [247]. The likelihood was binned in recoil energy,

so that the negative log-likelihood ratio used was

λ (µ) = −2
∑
i

ln

(
P (ni;µsi + bi)

P (n; bi)

)
, (7.2)

= 2
∑
i

[
ni ln

(
ni

si + ni

)
+ si

]
. (7.3)

The results that follow assume a flat background of 0.02 dru over 25 recoil energy bins.

SRIM was used to provide quenching factors for the nuclear recoil energies. A COMPoisson

distribution, with a Fano factor of 0.2, was sampled from to provide fluctuations in the

primary ionisation [248] and a Polya distribution with a θ = 0.12 was used to generate

fluctuations in the avalanche [249]. Assuming an operating time of 300 days, the projected

90% CL upper-limit on the DM-nucleon cross section as a function of mass was calculated

and is shown in Fig 7.2.

The contributions of each nuclei to the total excluded cross section are presented in Fig. 7.4(a),

showing the relative importance of each for a given mass range. The sensitivity to sub-

100 MeV DM masses is primarily though the interaction with hydrogen. In Fig. 7.4(b) the

background-free exclusion limit is presented along with the exclusion limits that would be
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obtained with 30, 150, and 600 days of data taking, compared to the nominal 300 days.
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Figure 7.4: Projected 90% CL upper limit on the DM-nucleon cross section as a function of
DM candidate mass for DarkSPHERE (red dashed line), as shown in Fig. 7.2 with: (a) the
contribution of each nucleus in the gas mixture; and (b) the expected sensitivity for different
data taking periods, along with the back ground-free projection.

As highlighted in Chapter 2, there is some uncertainty in the parameters of the DM halo

velocity distribution, such as the galactic escape velocity and velocity of the solar system

relative to the galactic rest frame. These were considered as potential systematic uncertain-

ties in the projection. They are of particular importance to light DM search experiments

such as NEWS-G, where their influence on the highest energies in the recoil energy distribu-

tion can have a significant effect on the sensitivity. The spread in measurements is around

10%, and the result of applying this as a systematic change to the projection is presented in

Table 7.1. Another potential source of uncertainty is the quenching factor. The discrepancy

between SRIM and measured values varies between gases and has not been investigated for

He:C4H10 due to an absence of measurements. While this must be experimentally deter-

mined, either directly or through measurements of the W-value if these become available,
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Table 7.1: Effect of systematic uncertainties on the expected sensitivity for different DM can-
didate masses, expressed as relative change of the 90% CL upper limit ((σnominal−σ)/σnominal).

Parameter mχ [GeV]
0.06 0.2 1

vesc + 10% 9% 4% 2%
vesc − 10% −21% −7% −2%
vave + 10% 32% 20% 8%
vave − 10% −71% −30% −11%
qf + 30% 22% 18% 6%
qf − 30% −45% −33% −13%

SRIM is currently the most appropriate source of this information. Therefore, potential dif-

ferences between this and future measurements should be taken as a systematic uncertainty.

In Table 7.1, the effect of a 30% systematic uncertainty in the quenching factor is shown.
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8
Summary

The spherical proportional counter has previously demonstrated its potential in the direct

search for light dark matter with its use by the NEWS-G collaboration. Building on this

experience, the next generation detector, SNOGLOBE, has been constructed, and plans for

experiments beyond this are underway. The presented work has enabled this, developing the

understanding of the detector, the properties of gases, background suppression techniques

and the physics potential of future experiments.

The understanding of the detector electric field is essential to detector operation. Finite

element method calculations were used to guide the development of read-out sensors, as was

a dedicated simulation framework for spherical proportional counters, based on Geant4 and

Garfield++. The use of a high-resistivity secondary correction electrode improved detector

operational stability and energy resolution by shaping the electric field. These sensors have

been used by NEWS-G detectors and the R2D2 detector prototype.

The use of high-resistivity materials was extended to the multi-anode sensor, ACHINOS,

which provides a means of operating with increasingly large and high-pressure detectors,
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which is essential for the operation of SNOGLOBE and future spherical proportional counter

rare-event searches. The use of a DLC coated, 3D-printed central electrode provided a

breakthrough in detector stability and robustness. The simulation framework was used to

understand Near-Far anode gain differences and the observed signal in each set of anodes.

The future refinement of the construction techniques, the use of smaller anodes and more

anodes will only improve the utility of ACHINOS. The addition of more anodes has been

explored in the context of the proposed future spherical proportional counter for direct dark

matter searches, DarkSPEHRE. The potential for directional sensitivity through the signal

generated by multiple anodes is beginning to be explored through the simulation, and is a

key future development.

The fraction of deposited energy dissipated as ionisation must be understood to infer the

energy of a recoiling nucleus induced by dark matter elastic scattering. Measurements in

gases are scarce and approximations intended for higher energies are often adopted. A

method has been developed to compute this from precision measurements of the W-value

in gases [7], which have been conducted for several decades. These provide experimental

estimates of the ionisation quenching factor in several gases. The ionisation quenching factor

in CH4 is of particular importance to the NEWS-G collaboration, and is estimated to sub-keV

recoil energies.

The construction of dark matter detectors places extremely rigorous constraints on the ra-

diopurity of materials used. In the case of NEWS-G, despite using 99.99% pure copper, the

222Rn introduced in the manufacturing leads to a 210Pb contamination that brings the largest

contribution to the experimental background. A method of suppressing this background is

highly-pure copper electorforming, which has previously been used by experiments to pro-

duce detector components due to the significant enhancement in purity. The technique has

been scaled up and applied to apply a highly-pure layer to the inner surface of SNOGLOBE,

reducing the background below 1 keV by a factor of 2.6. This is the largest deep under-

184



ground electroforming ever performed, and has demonstrated the feasibility of the technique

on large, spherical surfaces deep underground.

The impressive enhancement in radiopurity that can be achieved with this process has mo-

tivated the proposal of future spherical proportional counters, fully electroformed directly

in the underground laboratory. The ECUME facility in SNOLAB will initially produce a

140 cm detector for NEWS-G, and is beginning operation this year. When installed in the

shielding of SNOGLOBE, the fully electroformed detector will improve on SNOGLOBE’s

sensitivity to even lower dark matter nucleon cross sections in the sub-GeV DM candidate

mass range. Beyond this, DarkSPHERE is proposed as the successor in the NEWS-G di-

rect dark matter search. The 3 m fully underground electroformed detector, installed in

an improved radiopurity shielding composed mainly of water, would have the potential to

explore the DM candidate mass-cross section parameter space to the neutrino floor in the

sub-GeV dark matter mass range. Advancements in ACHINOS in order to individually read

out each anode could bring the potential to infer the direction of the recoil-inducing inter-

action, bringing the exciting possibility of distinguishing a DM signal from radioactive and

even coherent elastic neutrino-nucleus scattering backgrounds.
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Résumé: La collaboration NEWS-G mène des ex-
périences qui recherchent des particules candidates
pour la matière noire jusqu’à des masses en dessous
du GeV avec un détecteur gazeux le compteur pro-
portionnel sphérique. Le détecteur de nouvelle
génération, SNOGLOBE, un compteur proportion-
nel sphérique de 140 cm de diamètre, a été construit
et des plans pour des expériences futures sont en
cours. Le travail présenté a permis de développer la
compréhension du détecteur, les propriétés des gaz,
les techniques de suppression de fond et le potentiel
physique des futures expériences.
La compréhension du champ électrique du dé-
tecteur est essentielle au fonctionnement du dé-
tecteur. Les calculs de la méthode des éléments
finis ont été utilisés pour guider le développe-
ment des capteurs de lecture, tout comme un pro-
gramme de simulation, dédié aux compteurs pro-
portionnels sphériques, basé sur Geant4 et Garfield
++. L’utilisation d’une électrode de correction sec-
ondaire à résistivité élevée avec le capteur à an-
ode unique a amélioré la stabilité opérationnelle et
la résolution d’énergie du détecteur en ajustant le
champ électrique. L’utilisation d’une électrode cen-
trale, imprimée en 3D pour le capteur multi-anode
ACHINOS et enrobée d’une couche de le carbone
adamantin (DLC) a permis une percée dans la sta-
bilité et la robustesse du détecteur. ACHINOS offre
un moyen de fonctionner avec des détecteurs de plus
en plus grands et à haute pression, ce qui est essen-
tiel pour le fonctionnement du SNOGLOBE et des
futures recherches sphériques proportionnelles con-
tre les événements rares.
La fraction d’énergie déposée en forme d’ionisation
doit être bien comprise pour déduire l’énergie d’un
noyau de recul induit par la diffusion élastique de la
matière noire. Une méthode a été développée pour
calculer cela à partir de mesures de précision de la
valeur W dans les gaz, menées depuis plusieurs dé-
cennies. Ceux-ci fournissent des estimations expéri-
mentales du facteur de ‘quenching’ d’ionisation dans
plusieurs gaz. Le facteur de quenching d’ionisation

dans CH4 est d’une importance particulière pour la
collaboration NEWS-G et est estimé à des énergies
de recul en dessous du keV.
La construction de détecteurs de matière noire im-
pose des contraintes extrêmement rigoureuses con-
cernant la radio-pureté des matériaux utilisés. Dans
le cas de NEWS-G, le 222Rn incrusté dans le cuivre
du détecteur, lors de sa fabrication, conduit à une
contamination de 210Pb, qui est la plus grande con-
tribution au bruit de fond expérimental. Une méth-
ode de suppression de ce fond dans le cuivre est
l’électroformage, qui a été utilisé par des expériences
pour produire des composants de détecteur suite à
l’amélioration significative de la radio-pureté. La
technique a été rééchelonnée et une couche de cuivre
très pur a été déposée à la surface interne de
SNOGLOBE, réduisant le fond en dessous de 1 keV
par un facteur de 2,6. Il s’agit du plus grand élec-
troformage souterrain jamais réalisé et a démontré
la faisabilité de la technique sur de grandes surfaces
sphériques profondément souterraines.
L’amélioration de la radio-pureté qui peut être
obtenue avec l’électroformage a motivé le développe-
ment de futurs compteurs proportionnels sphériques
entièrement électro-formés directement dans un lab-
oratoire souterrain. L’installation ECUME de SNO-
LAB produira un détecteur de 140 cm pour NEWS-
G et entrera en service cette année. Lorsqu’il est in-
stallé dans le blindage du SNOGLOBE, le détecteur
entièrement électro-formé augmentera la sensibilité
matière noire de NEWS-G. Au-delà, DarkSPHERE
est proposé comme successeur dans la recherche
directe de matière noire NEWS-G. Le détecteur
électro-formé entièrement souterrain de 3 m, in-
stallé dans un blindage de radioprotection amélioré
composé principalement d’eau, aurait le potentiel
d’explorer l’espace de la section efficace pour la
production de la matière noir proche au plancher
des neutrinos solaires, dans la gamme de masse
de matière noire inférieure à 1 GeV. Le potentiel
physique d’un tel détecteur pour détecter la matière
noire par recul nucléaire induit a été étudié.
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Abstract: The NEWS-G collaboration are con-
ducting experiments that search for dark matter
down to sub-GeV candidate masses with a gaseous
detector, the spherical proportional counter. The
next generation detector, SNOGLOBE, a 140 cm-
diameter spherical proportional counter, has been
constructed, and plans for experiments beyond this
are underway. The presented work has enabled
SNOGLOBE, developing the understanding of the
detector, the properties of gases, background sup-
pression techniques and the physics potential of fu-
ture experiments.
The understanding of the detector electric field
is essential to detector operation. Finite element
method calculations were used to guide the devel-
opment of read-out sensors, as was a dedicated sim-
ulation framework for spherical proportional coun-
ters, based on Geant4 and Garfield++. The use
of a high-resistivity secondary correction electrode
with the single-anode sensor improved detector op-
erational stability and energy resolution by shaping
the electric field. The use of a DLC coated, 3D-
printed central electrode for the multi-anode sen-
sor, ACHINOS, provided a breakthrough in detec-
tor stability and robustness. ACHINOS provides
a means of operating with increasingly large and
high-pressure detectors, which is essential for the
operation of SNOGLOBE and future spherical pro-
portional counter rare-event searches.
The fraction of deposited energy dissipated as ion-
isation must be understood to infer the energy of
a recoiling nucleus induced by dark matter elas-
tic scattering. A method has been developed to
compute this from precision measurements of the
W-value in gases, which have been conducted for
several decades. These provide experimental esti-
mates of the ionisation quenching factor (QF) in
several gases. The QF in CH4 is of particular im-

portance to the NEWS-G collaboration, and is esti-
mated to sub-keV recoil energies. The construction
of dark matter detectors places extremely rigorous
constraints on the radiopurity of materials used. In
the case of NEWS-G, 222Rn introduced into the de-
tector copper during manufacturing leads to a 210Pb
contamination, which is the dominant experimental
background. A method of suppressing this back-
ground in copper is electroforming, which has been
used by experiments to produce detector compo-
nents due to the significant improvement in radiop-
urity. The technique has been scaled up and ap-
plied to apply a highly-pure copper layer to the
inner surface of SNOGLOBE, reducing the back-
ground below 1 keV by a factor of 2.6. This is the
largest deep-underground electroforming ever per-
formed, and has demonstrated the feasibility of the
technique on large, spherical surfaces deep under-
ground.
The enhancement in radiopurity that can be
achieved with electroforming has motivated future
fully electroformed spherical proportional coun-
ters directly in an underground laboratory. The
ECUME facility in SNOLAB will produce a 140
cm detector for NEWS-G, and is beginning op-
eration this year. When installed in the shield-
ing of SNOGLOBE, the fully electroformed detec-
tor will increase NEWS-G’s sensitivity. Beyond
this, DarkSPHERE is proposed as the next gener-
ation detector. The 3 m fully underground electro-
formed detector, installed in an improved radiopu-
rity shielding composed mainly of water, would have
the potential to explore the dark matter candidate
mass-cross section parameter space close to the so-
lar neutrino floor in the subGeV dark matter mass
range. The physics potential of such a detector has
been explored.
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