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Abstract

A time-dependent Dalitz-plot analysis of the decay channel B0 → K0
S
π+π− has been

performed on a data sample of 383 ± 3 millions of BB pairs recorded by the BABAR

detector at the PEP-II B Factory. Branching fractions, direct and time-dependent

asymmetries of different resonant modes have been measured, as well as the relative

phases between them, among which that between B0 → K∗+(892)π− and B0 →
K∗−(892)π+ is relevant for the extraction of the unitarity triangle angle γ. A summary

of the results follows, the branching fractions quoted being averaged over CP conjugate

states:

• B(B0 → K0π+π−) = (45.8± 1.6)× 10−6

• B(K∗±(892)π∓;K∗±(892)→ K0π±) = (5.1± 0.5)× 10−6

• B(K∗±
0 (1430)π∓;K∗±

0 (1430)→ K0π±) = (23.4± 1.4)× 10−6

• B(ρ0(770)K0; ρ0(770)→ π+π−) = (4.4± 0.6)× 10−6

• B(f0(980)K0; f0(980)→ π+π−) = (7.4± 0.7)× 10−6

• B(K0π+π− non resonant) = (3.1± 0.8)× 10−6

• S(ρ0(770)K0) = −0.06± 0.37

• S(f0(980)K0) = −0.77± 0.21

• ϕ(B0 → K∗−(892)π+, B0 → K∗+(892)π−) = (−6± 31)◦
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• All ACP for the resonant modes quoted above are found to be consistent with

zero.
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Chapter 1

Introduction

In this Chapter we briefly state the physics interest of the analysis that is the subject of

this thesis, the charmless 3-body decay B0 → K0
S
π+π− and put it in the wider context

of particle physics today. We start by introducing some fundamental concepts relevant

to B physics, such as CP violation and tagging.

1.1 Matter, antimatter and CP violation

When matter is created from energy, it is always done via a “pair production” process,

in which both a particle and its antiparticle are formed. If the same mechanisms were

involved in the Big Bang, equal amounts of matter and antimatter would have been

generated, and they would have annihilated completely back to photons. In addition,

the observation that no antimatter seems to be present today in the Universe, except

in events energetic enough to produce it, raises an important question: How did the

early Universe evolve from its initial matter-antimatter symmetric state to the one

that exists today?

This question was addressed by Andrei Sakharov in the 1960’s in [1], where he

concluded that three conditions were necessary: baryon number non-conservation,

departure from thermal equilibrium and the so called “CP violation”. The latter for-

malizes the concept of matter-antimatter asymmetry (see Chapter 2 for more details)
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and means that the combined symmetry of exchanging a particle by its antiparticle

(C) and reflection through the origin (P ) is not respected.

Evidence for the breaking of such combined symmetry had also been found exper-

imentally in the decays of the neutral strange mesons [2]. Kobayashi and Maskawa,

compelled to introduce a source of CP violation into the current theories of particle

physics, introduced a complex matrix that couples the quarks with the carriers of the

weak force [3]. By choosing the dimensionality of the matrix to be 3 × 3, implying

three generations of quark flavours, they found that an irreducible phase could be

introduced, which would lead to CP violating effects in processes where interference

occurs among several amplitudes.

By the end of the 1970’s and early 1980’s, Bigi, Carter, Sanda and others noticed

that the additional amplitudes required could be provided by the phenomenon of “mix-

ing” [4, 5, 6], in which a neutral meson turns into its antiparticle via second-order weak

interactions (see Chapter 2). These would lead to particularly large asymmetries in the

case of the B0 mesons (composed of a bottom antiquark and a light d quark) decaying

to states common to both B0 and B0. Their conjecture was supported by the dis-

covery that, for these mesons, the period of these particle-antiparticle oscillations was

comparable to their lifetimes [7, 8], which meant that the interfering amplitudes would

be of the same order, and made the B system the best choice to study CP violation.

However, the same phenomenon also impeded the experimental determination of the

flavour (i.e. B0 or B0) of the particle in decay, a sine qua non to compare the decay

rates of both flavours. The proposed solution involved using pairs of B0-B0 mesons

produced in the quantum mechanical state of entanglement, one of them decaying to

the channel of interest, and the other one to a final state that uniquely determines its

flavour (a flavour eigenstate). The entanglement implied that, at the precise moment

of the decay of the latter, the former meson would be its antiparticle, and that its

flavour at decay time could be determined as well by evolving its known state in time

(tagging). Thus, measuring CP asymmetries between the B mesons required simulta-

neous reconstruction of the decay products of both B mesons and measurement of the
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time difference between their decays (see Figure 1.1 and Chapter 4 for more details).

 

Figure 1.1: In many processes of interest, Brec decays to a channel that can be reached

by both a B0 or a B0. Evaluation of the CP violating asymmetries requires knowing

the flavour of the B meson at its decay time. This is achieved by identifying the

decay channel of the other B meson, Btag, often only partially reconstructed. If Btag

decays into a state that uniquely determines the flavour of its parent particle, e.g.

B0 → D∗ +X, then the knowledge of the difference between the decay times of both

B’s allows us to infer the flavour of Brec. The time elapsed between the two decays

can be calculated from the distance ∆z measured between the two B decay vertices

along the beam direction, z.

The lifetime of the B mesons (∼ 1.5 ps) made impractical any such measurements

using existing (symmetric) colliders, since the small distances travelled in the detector

would be washed out by the resolution of the instrument. Pier Oddone had the idea

of building an asymmetric e+e− collider, in which the centre-of-mass, and hence any

particles produced, would move in the laboratory frame with a relativistic boost large
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enough to extend those distances into the measurable range [9]. The concept of a B

Factory was born, and would soon grow into the BABAR and Belle experiments. (A

detailed discussion of the requirements that such an unusual situation, and the physics

goals, place on the detector can be found in Chapter 3).

1.2 Flavour physics, charmless 3-body B decays

and physics beyond the Standard Model

The flavour sector is one of the unexplained features of the Standard Model (SM),

and, within our current understanding of particle physics, CP violation is intimately

linked to the existence of flavour, as well as to the ubiquitous Higgs field (see Chapter

2). A B Factory running on the Υ (4S) resonance (
√
s = 10.58GeV) is also a cc and

a τ factory, thus allowing a detailed probe of the flavour structure. Its main goal

is to make precise measurements of the Kobayashi-Maskawa matrix elements, and in

particular the elusive phase within it, for which the B mesons are the best experimental

candidates.

The B-meson system is also unique in that second-order weak interactions (such

as those giving rise to mixing) have relatively large amplitudes. In particular, loop

(or penguin) diagrams have been shown to dominate some B decay modes, e.g. [10].

The interest in such amplitudes lies in the possibility that physics beyond the Stan-

dard Model could enter into those diagrams through virtual particles in the loop (see

Figure 2.5).

Such contributions should arguably be small and, if present, would be best seen in

modes where the SM contribution is itself small. Charmless B decays, which proceed

through suppressed b → s transitions, are a good example and have been studied

extensively in BABAR. Among them, 3-body decays have the added advantage of pro-

viding a larger phase space that allows for interference between different resonances,

and therefore the possibility of extracting directly any phase differences involved. This

feat is achieved by stepping back to the fundamental quantum mechanical postulate
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that what is observed in any process in nature is an intensity resulting from one or sev-

eral amplitudes. Therefore, rather than modelling the intensity directly, an additional

level of detail is gained if the amplitudes are taken as the most fundamental objects

(Dalitz-plot or amplitude analysis). The interferences between these amplitudes, now

taken into account correctly, give access to the relative phases between them. (A more

thorough discussion follows in Section 2.5.)

For example, in B0 → K0
S
π+π−, the channel studied in this thesis, this analysis

technique and the use of flavour symmetry allow the extraction of the phase γ [11] of

Kobayashi and Maskawa’s matrix (see Section 2.1.2), in addition to the more common

β, involved in B0-B0 mixing and accesible with many neutral decay modes.

Some experimental prerequisites for the amplitude analysis of B0 → K0
S
π+π− are

examined in Chapter 4, whereas the analysis itself and its results are discussed in

Chapters 5 and 6, respectively.
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Chapter 2

Theory

The theoretical foundations of CP violation in the Standard Model, briefly outlined

in the previous chapter, are examined in detail here (Section 2.1). These are followed

by a review of the current experimental status of the decay mode B0 → K0
S
π+π−, and

the theoretical interest in it (Section 2.4). We finish by discussing the kinematic and

dynamic peculiarities of three-body decays, pointing out why these are best suited for

the physics goal of extracting a phase and motivating the parameterizations used in

their description.

2.1 CP violation and the Standard Model

2.1.1 Weak interactions, mass and the flavour sector

The origin of CP violation in the Standard Model lies, as mentioned in Chapter 1, in an

irreducible phase appearing in the Lagrangian describing the charged current decays

of quarks. This phase results from the complex interplay between the structure of the

flavour sector in the weak interactions, and the mass terms for the quarks, brought

about by the Higgs mechanism in the Standard Model.

The charged current interactions that arise in the Glashow-Weinberg-Salam elec-
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troweak model are described by the following terms in the SM Lagrangian [12]:

Lcc =
ig√
2

[

ν̄mγ
µ

(

1− γ5
2

)

emW
+
µ + ēmγ

µ

(

1− γ5
2

)

νmW
−
µ +

ūmγ
µ

(

1− γ5
2

)

dmW
+
µ + d̄mγ

µ

(

1− γ5
2

)

umW
−
µ

]

(2.1)

where the index m runs over the three generations that make up the particle content

of the model. The first line accounts for the coupling of the leptons to the W boson,

and the second line for that of the quarks. Note that the expression is written in terms

of the flavour basis, in which the three generations are not connected.

These particles acquire mass through their Yukawa couplings to the Higgs conden-

sate φ:

LY = −Y u
ij q̄L,iφuR,j − Y d

ij q̄L,iφdR,j (2.2)

where the Y u,d are 3 × 3 complex matrices, the indices i and j label the generations,

and the terms for the leptons have been dropped for simplicity, being analogous to

those of the quarks. These terms couple the left-handed component of each quark

q with the right-handed projections of all flavours, and are thus non-diagonal in the

flavours. Since the states that propagate in space and time are the mass eigenstates,

the Yukawa terms must be diagonalized. This is done by changing from the flavour to

the mass basis:

um = Uumnu′n, dm = Udmnd′n. (2.3)

Substituting in the charged current lagrangian gives

Uu†miUdmjū′iγµ
(

1− γ5
2

)

d′jW
+
µ + Ud†mjUumid̄′jγµ

(

1− γ5
2

)

u′iW
−
µ (2.4)

where quarks from different flavours i and j are coupled through the complex matrix

V CKM
ij ≡ Uu†miUdmj, named after Cabbibo, Kobayashi and Maskawa [13, 3].

This matrix would be the unit matrix if the rotations needed to diagonalise the

up-type and the down-type quark mass terms, Uu and Ud, were identical. The up-

and down-type mass matrices turn out to be misaligned and the Standard

7



Model is then endowed with generation-changing transitions via charged cur-

rents, and CP -violation if three or more generations exist, as irreducible phases

appear in the CKM matrix (see next section).

A similar argument leads to an analogous matrix in the lepton sector, known as

the PMNS matrix (for Pontercorvo, Maki, Nakagawa and Sakata) [12].

2.1.2 The CKM matrix and the Unitarity Triangle

The 2N 2 real parameters of the complex N × N matrix V CKM , as Kobayashi and

Maskawa realized [3], are reduced toN 2 by the unitarity conditions (V CKM†V CKM = 1),

and by another 2N − 1 degrees of freedom when individual phase redefinitions for the

2N quark fields are considered. (One of those just changes the overall phase, and

cannot be used to eliminate one of the free parameters.) The number of irreducible

phases is found by comparing how many free parameters remain with the number

expected in a N × N real, orthogonal matrix ( 1
2
N(N − 1)), and turns out to be 0

for N = 2 and 1 for N = 3. As they also noticed, this irreducible phase in a three-

generation model would be the origin of all CP violation in the SM (see Section 2.1.3).

The CKM matrix can, therefore, be parameterized with a complex phase and three

angles, that describe the rotation between each generation. Surprisingly, these angles

take rather small values in Nature, favouring a nearly diagonal matrix in which little

mixing between the three generations is produced. The matrix elements containing a

complex phase vary among parameterizations, while the physics, of course, remains

the same. A relative phase arises between transitions from the third to first genera-

tions, and those that proceed from third to second or from second to first generations.

A useful parameterization, that emphasizes the hierarchical, nearly diagonal struc-

ture of the matrix, and between which flavours the relative phases appear, is due to

Wolfenstein [14]:

V CKM =









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









'









1− 1
2
λ2 λ λ3A (ρ− iη)

−λ 1− 1
2
λ2 λ2A

λ3A (1− ρ− iη) −λ2A 1









+O
(

λ4
)
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∼









1 λ λ3e−iγ

−λ 1 λ2

λ3e−iβ −λ2 1









, (2.5)

where λ ' |Vus| ∼ 0.22 is the expansion parameter, and A, ρ and η are all of order 1.

α = arg

(

− VtdV
∗
tb

VudV ∗
ub

)

β = arg

(

−VcdV
∗
cb

VtdV ∗
tb

)

(2.6)

γ = arg

(

−VudV
∗
ub

VcdV ∗
cb

)

Figure 2.1: Pictorial representation, dubbed “Unitarity Triangle”, of the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 derived from the unitarity of the CKM matrix. Each

of the terms in the LHS can be viewed as a vector in the complex plane. Their sum

being equal to zero then implies that they have to form a (closed) triangle in the

Argand plane. The base of the triangle has been aligned with the horizontal (real)

axis by dividing the equation by VcdV
∗
cb. The definitions of the angles of the triangle

in terms of the CKM matrix elements are given on the right.

The physics goal of the B Factories is to improve the experimental constraints on

the elements of V CKM, particularly on the phase. (A good review of the experimental

and theoretical effort towards that aim is [15]). Of course, not all the matrix elements

are easily accesible to BABAR or Belle. The typical combinations of CKM factors

affecting B decays also appear in one of the relations implied by the unitarity condition

V CKM†V CKM = 1:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (2.7)

Regarding each term in the LHS as a vector in the complex plane, this equation can

be visualized as a triangle whose apex is determined by the ρ and η parameters, or
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equivalently, the irreducible phase (see Figure 2.1). Once this pictorial representation,

known as the Unitarity Triangle, has been introduced, the goals of the B Factories

can be stated more accurately to be making as many independent measurements of

the sides and the angles of the triangle as possible. Any direct inconsistencies between

them, or indirect, such as the angles not adding up to 180◦ or the shapes inferred from

the angles and the sides being incompatible, would indicate that the Standard Model

picture of the flavour sector and of CP violation is no more than a good approximation

(Figure 2.2). The analysis described in this thesis aims to measure the angle β, and

contribute towards another measurement of γ.

2.1.3 CP violation in the SM and beyond

In previous sections, the origin of the non-trivial phases in the Standard Model coupling

constants has been discussed with the observation that they are responsible for all CP -

violating effects. Such phases, which exist in the CKM matrix and may also appear in

the PMNS matrix, arise as constants multiplying otherwise CP -invariant terms of the

Lagrangian (see Eq. (2.4)). They are called CP -odd because they become complex-

conjugated under CP transformations [17], thus breaking the CP symmetry of the

terms they form part of. In contrast, the phases generated by CP -invariant terms in

the Lagrangian, such as those from QCD, are equal for a process and its CP -conjugate,

and are therefore known as CP-even phases. As we shall see, it is the interplay between

both behaviours that brings about CP violation.

Consider a quantum-mechanical amplitude with CP -odd and CP -even phases φ

and δ, respectively. According to the remarks above, the amplitude transforms under

CP as

Aei(δ+φ)
CP−→ Aei(δ−φ) . (2.8)

However, phases are not directly observable, so even though these two amplitudes are

different, the rates for the processes they describe are the same. Since only relative

phases have physical meaning, more than one amplitude is needed for CP -violating
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CKM
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Figure 2.2: Pictorial representation of the current experimental constraints on the sides

and angles of the unitarity triangle, by the CKMfitter group [16], updated with the

results available in May 2007. The bands representing each experimental measurement

or bound are seen to be in very good agreement with each other, all of them overlapping

around the apex of the triangle drawn. The variables plotted on the axes, ρ̄ and η̄,

are defined by ρ̄ + iη̄ ≡ VudV
∗
ub/VcdV

∗
cb, and are related to the quantities ρ and η from

Wolfenstein’s parameterization. They are preferred over the latter because they are

independent of the order at which the expansion in λ is truncated.
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asymmetries. Consider now the amplitude

A = A1e
i(δ1+φ1) + A2e

i(δ2+φ2) (2.9)

and its CP -conjugate:

Ā = A1e
i(δ1−φ1) + A2e

i(δ2−φ2) . (2.10)

The difference in the rates is

|A|2 − |Ā|2 = −4|A1||A2| sin (δ1 − δ2) sin (φ1 − φ2) . (2.11)

Thus, for such direct CP asymmetries to appear, two or more amplitudes must con-

tribute to the process with different CP -odd and CP -even phases. Processes that give

rise to non-zero direct asymmetries are said to be affected by CP violation in the decay

or direct CP violation.

There are two other kinds of CP violation, both related to the phenomenon of

mixing (see Section 2.2.1), by which a neutral meson turns into its antiparticle through

a second-order weak transition. One of the possibilities, called CP -violation in the

mixing, is that the physical states, that propagate in space and time, are not CP

eigenstates, or equivalently, that they are not composed of equal amounts of particle

and antiparticle. The first observation of CP violation [2], made in 1964 thanks to very

precise measurements of the neutral kaon system, falls into this category. The other

possibility, named mixing-induced CP violation, is the one foreseen by Bigi, Carter,

Sanda and others to be of primary importance in the decays of neutral B mesons, in

which CP violation arises as a consequence of the interference between decays with

and without mixing, i.e. B0 → fCP and B0 → B0 → fCP . A requisite for these is

that the final state must be accessible from both flavours, a condition that is satisfied

if it is a CP eigenstate. This case is discussed in detail in the next section. Before

the start of the B Factories, CP violation had been observed in the mixing and in the

decay of the K0 −K0 system [2, 15].

A further source of CP violation in the Standard Model is an extra term in the

QCD Lagrangian, allowed by the gauge principle, of the form ∝ ~Ea · ~Ba, where a is
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the colour index, and ~E and ~B are the colour electric and magnetic fields. It has been

found experimentally that the constant that determines the relative contribution of

this term, θQCD, either vanishes or is very close to zero: θQCD . 10−10 [15].

Beyond the Standard Model, almost any unification scheme introduces more CP

violating sources as a consequence of the possibly complex couplings of the new par-

ticle fields incorporated. Supersymmetry is also well known for the large increase in

the particle content of the model that it postulates. The minimally supersymmetric

extension of the SM (MSSM) requires five physical fields (three neutral Higgs, and

two charged), which are good candidates to host more CP -violating phases [17]. Cur-

rently, all ideas for physics beyond the Standard Model have found no support from

experiment beyond the realm of speculations.

2.2 The B meson system

2.2.1 Mixing

A neutral meson can turn into its antiparticle via a process involving two charged

currents. The phenomenon has been observed in kaons [18], Bd and Bs mesons [7, 19],

and very recently, D mesons [20, 21], and is central to the generation of such large time-

dependent CP asymmetries in the neutral B system. Whereas in kaons the transition

is dominated by long-distance, hadronic effects, in the B mesons it is short-distance

contributions that are most prominent, and hence, the mixing frequency is amenable

to perturbative calculations1.

Consideration of the relevant diagrams leads, in principle, to the inclusion of the

three up-type quarks in the loop (see Figure 2.3), since all of them couple via a λ6

CKM factor. However, integration of the internal degrees of freedom (the up-type

quarks and the W ) yields an expression that weighs the contribution of each quark by

the ratio of its mass to that of the weak boson [17]. Thus, the top quark contribution

1In D mesons both kinds of effects are important, and the theoretical estimations suffer from large

uncertainties.
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is enhanced, and evaluation of the corresponding CKM factors (see Eq. (2.5)) readily

gives a phase of (VtdV
∗
tb)

2 ∼ e−i2β . In other words, the B0 states that oscillate into

B0 pick up an extra −2β phase, called the mixing angle, with respect to the B0 states

that do not oscillate. This phase is measurable whenever both flavours decay to a

common state.

d

b

0B W W

t,c,u=q

q=u,c,t

qb
*

V qdV

qb
*

VqdV b

d

0
B

d

b

0B

+W

-W

q=u,c,tq=u,c,t

qb
*

V qdV

qb
*

VqdV b

d

0
B

Figure 2.3: Diagrams describing the mixing phenomenon for neutral B mesons via a

second-order weak transition. Although the three up-type quarks may appear in the

loop, the u and c contributions turn out to be negligible, and only the t quark needs

to be considered, which implies that the oscillation results in a phase shift of −2β.

In the neutral B mesons, the amplitude for the mixing process is rather large

due to the relative proximity of the values for their lifetime, τ = 1.530(9) ps, and the

frequency of oscillation, ∆md = 0.507(5) ps−1 [22]. They conspire to give an integrated

probability of oscillation of order 1 [23]:

χd =
(τ∆md)

2

2(1 + (τ∆md)2)
= 0.188(3) , (2.12)

hence the prominent role of mixing. An immediate consequence are the large time-

dependent CP asymmetries that mixing produces, and that are discussed in the next

section.

2.2.2 CP violation in B mesons

Whereas for the neutral kaons CP violation appears mainly in the mixing and in the

decay only as a fairly minute effect (∼ 10−3 [22]), in the B mesons CP violation is
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rather large (reaching 70% [24] in time-dependent asymmetries, and ∼ 30% [25, 10]

in the charged modes), although mostly in the forms of mixing-induced and direct

CP violation. Indeed, the shift in phase due to mixing, which provides the necessary

CP -odd phase, and the high probability of oscillation join forces to produce large

time-dependent CP asymmetries through the interference between B0 → fCP and

B0 → B0 → fCP . The large direct CP asymmetries observed in charged modes are

explained by the interference of tree-level and loop diagrams (see Section 2.3). CP

violation in the mixing, however, is believed to be below the 10−3 level [15] for neutral

B mesons.

We shall now consider the mixing-induced CP violation in more detail. Direct CP

asymmetries are usually quantified experimentally by

ACP =
B
(

B → f̄)
)

− B (B → f))

B
(

B → f̄)
)

+ B (B → f))
. (2.13)

Such an observable is well defined for charged mesons, since the flavour of the B is

readily found from the charge of the candidate, or minus the charge of the rest of the

event. The flavour of neutral B mesons, however, is not straightforward to determine,

as their oscillating nature means that their flavour changes over time. The design

of the BABAR and Belle experiments, in which the Υ (4S) resonance is produced and

allowed to decay into a BB system, eases the task by providing us with an entangled

pair of mesons. Indeed, in another instance of the celebrated “EPR paradox” [26, 27],

quantum mechanics predicts that the instantaneous probability of one of the mesons

being a particle equals the probability for the other meson to be an antiparticle.

Hence, when one of them is observed to decay in a flavour-dependent way, the flavour

of the other meson can be inferred to be the opposite at that exact same instant,

and evolves afterwards indepedently by means of mixing. Thus, the ingredients to

the determination of the flavour of a given B meson, Brec (see Figure 1.1), are two:

observation of the other meson (Btag) decaying into a flavour state that uniquely

establishes its flavour (tag flavour), and measurement of the time elapsed between

the two decays, ∆t, so that the oscillations of the meson under consideration can be

accounted for. The hierarchy of the CKM matrix happens to help for the former,
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since the decays of a B meson most often involves a single c quark, e.g B0 → D−π+ →
K+π−π+, thereby revealing the flavour of the b.

With the previous considerations in mind, it makes sense to construct the observ-

able

ACP (∆t) =
B (Btag=B0 (∆t)→ fCP ))− B

(

Btag=B0 (∆t)→ fCP )
)

B (Btag=B0 (∆t)→ fCP )) + B
(

Btag=B0 (∆t)→ fCP )
) . (2.14)

An expression for the distributions of events as a function of the tag qtag and the time

difference ∆t, and hence the asymmetry, can be found [28] in terms of the ratio of the

amplitudes for the decay of the B0 and B0 mesons to the final state fCP , respectively

A = 〈B|H|fCP 〉 and Ā = 〈B̄|H|fCP 〉:

fqtag (∆t) =
e−|∆t|/τ

4τ

[

1 + qtag
∆D
2

+ qtag〈D〉 (S sin (∆md∆t)− C cos (∆md∆t))

]

(2.15)

from which the asymmetry is readily evaluated:

ACP (∆t) = 〈D〉 (S sin (∆md∆t)− C cos (∆md∆t)) (2.16)

where

S =
2Imλ

1 + |λ|2 , C =
1− |λ|2
1 + |λ|2 , λ = e−iφmix

Ā
A , (2.17)

qtag = +1(−1) when the Btag is identified as a B0 (B0) and φmix is the mixing phase.

The terms 〈D〉 and ∆D
2

have been introduced to account for a non-zero probability of

mistagging (see Section 4.1 for definitions and a detailed discussion).

The coefficient S is different from zero when there is mixing-induced CP violation,

whereas C 6= 0 indicates direct CP violation (|Ā| 6= |A|). Also note that C = −ACP . If

there is only one SM contribution to the amplitudesA and Ā, the expectations are that
S = −ηCP sin (2β) and C = 0, where ηCP is the CP eigenvalue of the final state fCP .

Deviations from that imply the existence of unaccounted amplitudes that, depending

on the characteristics of the mode, could originate from theoretical uncertainties in

the Standard Model contributions, or constitute a first glimpse at physics beyond the

SM.
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In order to facilitate the comparisons of the experimentally measured time-dependent

asymmetries among themselves and with the thoeretical predictions, it is common (see

Figure 2.6) to quote the sine of the “effective mixing angle” 2βeff , defined by:

S =
√
1− C2ηCP sin 2βeff . (2.18)

For three-body decays it is useful to write Eq. (2.15) in terms of the ampli-

tudes rather than their ratios, and keep track of their dependencies. In the case

of B0 → K0
S
π+π−, it yields [29]:

dΓ
(

m2
K0

Sπ
+ ,m

2
K0

Sπ
− ,∆t, qtag

)

d∆t dm2
K0

Sπ
+ dm

2
K0

Sπ
−

=
1

(2π)3
1

32m3
B0

e−|∆t|/τ
B0

4τB0

× (2.19)

[

(

|A|2 + |A|2
)

(

1 + qtag
∆D
2

)

− qtag〈D〉
(

|A|2 − |A|2
)

cos (∆md∆t)

+ qtag〈D〉2Im
[

AA∗e−iφmix
]

sin (∆md∆t)

]

,

where the B0 and B0 Dalitz-plot amplitudes A = A
(

m2
K0

Sπ
+ ,m

2
K0

Sπ
−

)

and A =

A
(

m2
K0

Sπ
+ ,m

2
K0

Sπ
−

)

exhibit a dependence on the phase space variables of the final

state, the invariant masses squared of two pairs of particles cons(see Section 2.5).

Finally, the distribution for the decays of neutral B mesons to flavour (i.e. non-

CP ) eigenstates (the so-called flavour or mixing sample) is considered, since they are

experimentally the cleanest way to measure any parameters related to the time depen-

dence, such as the lifetime of the mesons or their mixing frequencies, and constitute a

common source of background for decays to CP eigenstates [23]:

fqtag (∆t) =
e−|∆t|/τ

4τ

[

1 + qtag
∆D
2
± 〈D〉 cos (∆md∆t)

]

(2.20)

where the ± signs correspond to the unmixed and mixed possibilities, respectively.
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2.3 Trees and Penguins

The interpretation of S as sin2β is accurate only when, apart from the oscillation,

just one amplitude dominates the decay B → fCP , or, in the case in which several

are present, they all have the same CP -odd phases. That is the case in the so-called

“golden mode” B0 → J/ψK0
S
, in which two Feynman diagrams contribute. One of

them, in which the W boson is emitted and absorbed by the same quark line, is called

a “loop” or, more often, a “penguin” diagram, whereas the other, is said to be a

“tree-level”, or simply “tree”, diagram (see Figure 2.4).

d

b

0B

+Wcb
*

~V2λ

~1csV
s

c

d

c

0K

ψJ/

d

b

0B +W
,12λ,γie3λ qb

*
V

2λ,1,-λ
qsV

t,c,u
c

c

d

s
0K

ψJ/

Figure 2.4: Feynman diagrams for the amplitudes contributing to the B0 → J/ψK0
S

decay. The one on the right, with the internal loop formed by the W boson and a

quark is a penguin diagram; the one on the left, a tree diagram. Since the top quark

dominates the loop, the CKM factors in both amplitudes carry the same phases, as

can easily be seen thanks to the powers of λ and phases that have been written next to

the CKM terms (recall Eq. (2.5)). Thus, a clean interpretation for the time-dependent

asymmetry is obtained: ACP (∆t) = sin2β sin (∆md∆t). In fact, this decay channel is

considered to be a “golden mode” due to its theoretical and experimental cleanliness,

playing the role of a benchmark with which to compare measurements of sin2β possibly

affected by new physics.

Tree diagrams are usually cleaner in their theoretical interpretation than penguin

diagrams. However, the latter are an open window to physics at the electroweak scale,

as hypothetical new, heavy particles could traverse the loop and provide new CP -odd

phases or dramatically enhance the amplitude (Figure 2.5 shows two examples). This
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is analogous to the constraints on the top quark mass that are derived from B0 − B0

mixing. There is some theoretical interest [15] as to whether any of those possibilities

is realized in charmless b→ s decays, where the absence of the large b→ c amplitudes

will not mask small deviations due to unknown physics (see Section 2.4.2 for a brief

review of the experimental state of affairs).

b
+H

t,c,u

s b
g~

b
~
,s

~
,d

~

s

Figure 2.5: Diagrams demonstrating the potential for new physics sensitivity in b→ s

penguin diagrams. On the left, a charged Higgs, predicted by the MSSM, enters the

loop possibly carrying a complex coupling constant. On the right, the loop is formed

by a gluino and (anti)squarks, enhancing the SM amplitude. Supersymmetry has

potentially large effects on flavour observables, since squarks may change flavour while

propagating, e.g, the loop on the right could be produced by a gluino and a bottom

squark that turns into a strange squark in the middle of the loop [17].

Within the Standard Model framework, penguin diagrams are important because

they often provide amplitudes of an order of magnitude matching those of tree dia-

grams, hence setting the scene for interference sensitive to CKM phases.

2.4 B0 → K0
Sπ

+π− and charmless 3-body B decays

In this section we briefly review the current experimental knowledge on theB0 → K0
S
π+π−

decay channel, and then introduce the main theoretical motivations for its study: the

determination of sin 2βeff in a b→ sq̄q mode, and the extraction of a constraint on the

Unitarity Triangle angle γ.
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2.4.1 Experimental and theoretical status

Over the past few years, the B Factories have thoroughly explored the area of charm-

less quasi-two body (the two bodies being a stable particle and a resonance, hence

the “quasi”) and three-body B decays. Early results established that the branching

fractions of the main hadronic three-body modes were in the range of 5×10−5 to 10−6

(see, for instance, [30]). Later studies with larger data samples allowed for Dalitz-plot

analyses of the most prominent modes or those with higher reconstruction efficiencies,

such as B+ → π+π−π+ [31], B0 → ρπ [29], B0 → K+π−π0 [32], B+ → K+K+K− [33]

and B+ → K+π−π+ [10]. The latter allowed Belle to find the first evidence for direct

CP violation in a charged mode [25] in the channel B+ → ρ0K+, in which the BABAR

result also showed a hint of large direct CP violation.

The B0 → ρπ analysis distinguishes itself by being the first time-dependent Dalitz-

plot analysis. More recently, B0 → K+K−K0 [34] has followed. Although a similar

goal is pursued in the B0 → K0
S
π+π− channel, the lack of sufficient statistics had pre-

vented it until now, and only quasi-two-body [35] and tag-independent, time-integrated

Dalitz-plot studies [36] had been performed. The quasi-two-body approach tries to

isolate each resonance and measure its yield independently. Corrections for the in-

terferences with other resonances are needed, severely limiting the accuracy with sys-

tematic effects. These interferences are taken into account by the time-integrated,

tag-independent Dalitz analysis, which enables us to calculate the phases between res-

onances and their relative magnitudes. Still, it ignores the time-dependence and its

associated asymmetries, and, although direct CP asymmetries for neutral modes can

be calculated, the extra sensitivity provided by the tagging is lost. The aim of the

analysis described in this thesis is to study simultaneously the Dalitz-plot and time

dependencies, thereby gaining sensitivity on all fronts. In particular, the Dalitz-plot

analysis is a technique especially well-suited for the extraction of phases, and has

therefore a large impact on measurements of the CKM phase (see Section 2.4.2 and

Section 2.4.3).

The works mentioned above measure a branching fraction of B (B0 → K0π+π−) =
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Table 2.1: Previous measurements concerning B0 decays to the K0
S
π+π− final state.

The branching fractions are in units of 10−6. The first of the errors is statistical and the

second systematic. Measurements from the CLEO Collaboration are excluded as they

have been clearly superseded by theB Factories. The reference for each measurement is

indicated. Note that the small branching fraction of ω → π+π− makes its observation

in B0 → K0
S
π+π− unlikely. The so-called “non-resonant” (NR) branching fraction

corresponds to decays that cannot be ascribed to any of the resonant structures in the

Dalitz plot.

BABAR Belle
B(B0 → ρ0(770)K0) 4.9± 0.8± 0.9 [37] 6.1± 1.0+1.1

−1.2 [36]

B(B0 → f0(980)(→ π+π−)K0) 5.5± 0.7± 0.6 [35] 7.6± 1.7+0.9
−1.3 [36]

B(B0 → ωK0) 6.2± 1.0± 0.4 [38] 4.4+0.8
−0.7 ± 0.4 [39]

B(B0 → K∗+(892)π−) 11.0± 1.5± 0.7 [35] 8.4± 1.1+1.0
−0.9 [36]

ACP (B
0 → K∗+(892)π−) −0.11± 0.14± 0.05 [35] −

B(B0 → K∗+
0 (1430)π−) − 49.7± 3.8+6.8

−8.2 [36]

B(B0 → K0π+π− NR) − 19.9± 2.5+1.7
−2.0 [36]

B0 → K0π+π− 43.0± 2.3± 2.3 [35] 47.5± 2.4± 3.7 [36]

(44.8± 2.5)× 10−6, and identify the resonances K∗(892), K∗
0(1430), f0(980), ρ

0(770),

as well as a state in the π+π− spectrum around ∼ 1.3GeV/c2 whose nature is yet to

be determined (see Table 2.1). Both the branching fraction and the Dalitz structure

agree well with those found in B+ → K+π−π+. For the time-dependent parameters,

see Table 2.2.

Several QCD factorization [40] and SU (3) flavour symmetry [41] predictions exist

for the branching fractions and CP asymmetries of the submodes B0 → ρ0(770)K0
S

and B0 → K∗(892)+π−, that contribute to B0 → K0
S
π+π−. The branching fractions

obtained using the latter approach agree well with experiment, whereas QCD factoriza-

tion reliably calculates the branching fraction of B0 → ρ0(770)K0
S
while importantly

underestimating that of the K∗+(892)π− submode. More recent calculations tackle
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B0 → f0(980)K
0
S
[42], but are harder to interpret due to the lack of consensus on

the proportion of f0(980) that decays into two pions. All of the above computations

predict rather small direct CP asymmetries for the channels mentioned, of the order

of a few percent, reaching 7.5% for ρ0(770)K0
S
in one of the factorization scenarios.

Larger asymmetries could be observed in K∗+
0 (1430)π−, since the diagrams that make

up its amplitude are formally the same as in B0 → K+π−, where ACP ' −11% has

been measured [43].

2.4.2 sin 2β in b→ sq̄q decays and New Physics

The B → Kππ modes are penguin dominated and therefore, as pointed out in Sec-

tion 2.3, are good candidates to display sizable deviations from the Standard Model

predictions should any new physics enter the process through the loop. Indeed, the

prominent role that comparisons between the Standard Model value of sin2β, obtained

from the “golden channel” (see Section 2.3), and those measured in the penguin-

dominated modes should play in the search for new physics has long been recog-

nised [44]. The latter, decaying as b → sq̄q with q = u, d, s through a loop diagram,

involve the same CKM matrix elements as the golden mode, and should therefore

exhibit, up to hadronic effects, the same time-dependent asymmetries. Any signifi-

cant differences in these, or between the measured direct CP asymmetries and their

theoretical evaluation, would be a tell-tale sign of unknown physics appearing in the

process.

Currently, the discrepancies between the charmonium and charmless time-dependent

asymmetries are not statistically significant, but show a trend that has aroused some

attention (see Figure 2.6). Most of the charmless modes seem to exhibit lower values

of sin 2βeff than the golden mode. The discrepancy cannot be accounted for by the

theoretical estimations of corrections due to hadronic effects, such as final state in-

teractions, which tend to push the theoretical charmless asymmetries in the opposite

direction [48, 49].

The final state K0
S
π+π− is a CP -eigenstate, thus allowing for a measurement of
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sin(2βeff) ≡ sin(2φe
1
ff)
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Figure 2.6: sin 2βeff (the notation φ1 is also used to designate the Unitarity Triangle

angle β, notably by the Belle Collaboration) from penguin modes compared to the

golden mode, according to the Heavy Flavour Averaging Group [45] after the 2007

Winter conferences. The penguin modes tend to lie on the left of the value for the

golden channel, contrary to what the theoretical estimates on hadronic corrections

suggests. The statistical significance of the trend is hard to assess, since the correc-

tions are mode-dependent. However, a näıve average is less than 3.0σ away from the

charmonium value.

sin2β in the channels B0 → f0(980)K
0
S
and B0 → ρ0(770)K0

S
. Such measurements

have been performed previously on smaller data samples by isolating each resonant

mode (quasi-two-body approach). A Dalitz analysis of the larger sample is justified,
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Table 2.2: Previous time-dependent measurements of B0 decays to the K0
S
π+π− final

state. The first of the errors is statistical and the second systematic. The reference

for each measurement is indicated.

BABAR Belle
S(B0 → ρ0(770)K0) 0.20± 0.52± 0.24 [37] −
C(B0 → ρ0(770)K0) 0.64± 0.41± 0.20 [37] −
S(B0 → f0(980)(→ π+π−)K0) −0.95+0.32

−0.23 ± 0.10 [46] 0.18± 0.23± 0.11 [47]

C(B0 → f0(980)(→ π+π−)K0) −0.24± 0.31± 0.15 [46] 0.15± 0.15± 0.07 [47]

S(B0 → f0(980)(→ K+K−)K0) −0.32± 0.30± 0.6 [34] −
C(B0 → f0(980)(→ K+K−)K0) −0.45± 0.28± 0.10 [34] −

since it can improve on the quasi-two-body measurements shown in Table 2.2, by

properly accounting for interferences between resonances. This makes it unnecessary

to apply any harsh cuts or systematic errors that intrinsically limit the precision of

the quasi-two-body approach. Moreover, whereas the quasi-two-body analyses are

sensitive only to the interference of the state with its oscillated counterpart, thus

reporting just sin 2β, a Dalitz analysis can exploit the interference of other resonances

with the oscillation amplitude, thus determining β itself and removing the four-fold

ambiguity resulting from the sine.

2.4.3 Constraints on γ from B → Kππ modes

The current methods to measure γ rely on the interference between the colour-allowed

B− → D0K− and the colour-suppressed B− → D0K− decay modes resulting in direct

CP violation. They are theoretically very clean, as only tree amplitudes are involved,

but their sensitivity to γ is governed by the rather small relative magnitude of the two

amplitudes, denoted rB: 0.05 . rB . 0.3, depending on the D meson decay channel.

As a consequence, γ is the most poorly determined angle of the unitarity triangle,

(83± 19)◦ (c.f β =
(

21.0+0.9
−1.1

)◦
) [50]. Therefore, any independent determinations of

the angle γ should be exploited in order to reduce the statistical uncertainty.
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Although a first proposal on using the charmless three-body decays B → Kππ to

extract the unitarity triangle angle γ via isospin relations was made in 2002 [51], the

more recent ideas in [11, 52] are both far more accurate in their estimations of the

theoretical uncertainties of their methods, and more convenient experimentally. We

will therefore concern ourselves only with the latter two.
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Figure 2.7: Diagrams contributing to the amplitudes for B0 → K∗0π0 (top row) and

B0 → K∗+π− (bottom row), with the tree diagrams on the left, and the penguin dia-

grams on the right. The tree diagram for B0 → K∗+π− is dubbed “external emission”,

and for B0 → K∗0π0, “internal emission”. Powers of λ and phases have been written

next to the CKM matrix elements to clarify the hierarchical and phase structures.

The paper by Ciuchini, Pierini and Silvestrini [11] recovers the theoretical use of

the phase-extraction capabilities of the Dalitz-plot analysis technique, which had been

left unexploited since the Lipkin-Nir-Quinn-Synder method to measure α in B0 →
ρπ → π+π−π0 [53]. They start by relating the ratio of the amplitudes for the decays

B0 → K∗+π− and B0 → K∗0π0 and their CP conjugates to γ through isospin, and then

cleverly take advantage of the Dalitz plot to determine the phase difference between

the two B flavours.
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More explicitly, looking at the diagrams (see Figure 2.7) we can see that isospin

ensures that the amplitudes with the same topology are approximately equal for the

two modes, up to factors of −1/
√
2 and 1/

√
2 for the penguin and tree amplitudes in

K∗0π0 2:

A
(

K∗+π−
)

= P̃ + Ẽe, (2.21)

A
(

K∗0π0
)

=
−1√
2
P̃ +

1√
2
Ẽi (2.22)

where P̃ stands for the penguin amplitude, and Ẽi and Ẽe for the internal and external

emission tree amplitudes. If we now factor out their CKM elements and group them

accordingly, we get

A
(

K∗+π−
)

= V ∗
tbVtsP − V ∗

ubVus
(

Ee − PGIM
)

, (2.23)
√
2A
(

K∗0π0
)

= −V ∗
tbVtsP − V ∗

ubVus
(

Ei + PGIM
)

(2.24)

where use has been made of the unitarity triangle relation V ∗
tbVts + V ∗

cbVcs + V ∗
ubVus =

0 to separate the penguin amplitude into CKM-favoured (P ) and CKM-suppresed

(PGIM) contributions3. Recalling that the amplitude for the CP -conjugate B0 process

is obtained simply by complex-conjugating the CP -odd phases (i.e. the CKM factors),

we can use the previous isospin relations to cancel out the penguin terms:

A0 = A
(

K∗+π−
)

+
√
2A
(

K∗0π0
)

(2.25)

= −V ∗
ubVus (Ee + Ei) , (2.26)

Ā0 = A
(

K∗−π+
)

+
√
2A
(

K∗0π0
)

(2.27)

= −VubV ∗
us (Ee + Ei) , (2.28)

whose ratio is

R0 =
Ā0

A0
=
VubV

∗
us

V ∗
ubVus

= e−i2γ . (2.29)

2These factors of −1/
√
2 and 1/

√
2 in the K∗0π0 amplitudes can be regarded as stemming from

the quark wavefunction of the π0,
(

uū− dd̄
)

/
√
2

3The u- and c- loop amplitudes entering in PGIM nearly cancel each other due to the near equality

of the masses of the two virtual quarks when compared to the W mass, in another instance of the

celebrated “GIM mechanism” [54].
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At this point it must be noted that with quasi-two-body approaches, only the magni-

tudes of the amplitudes involved in the A0 quantities can be measured. In contrast,

with a Dalitz analysis, their relative magnitudes and phases can be extracted from the

3-body decay B0 → K+π−π0, which can proceed through B0 → K∗+π− → K+π0π−

and B0 → K∗0π0 → K+π−π0. The relative phase between A0 and Ā0, however, cannot

be measured simultaneously, since the charges of the kaon and the pion tag the flavour

of the parent meson, thereby preventing any interference. This obstacle can be sur-

mounted with the help of a time-dependent Dalitz analysis of another 3-body mode,

B0 → K0
S
π+π−, from which the phase between the K∗+π− and K∗−π+ resonances can

be inferred. Indeed, even though these are flavour-eigenstates, they both decay to

the same final state K0
S
π+π−, where they can interfere with common resonances. For

example, the phase between K∗+π− and K∗−π+ can be resolved through their mutual

interference with ρ0K0
S
.

In the above discussion, the so-called electroweak penguins (obtained by exchanging

the gluon in the penguin diagrams by a photon) have been ignored. These result in

isospin-breaking effects due, among other things, to the different electric charges of

the u and d quarks, and precision measurements must take these into account. By

considering the full (weak, strong and electromagnetic) effective Hamiltonian for the

transition, the authors of [11] give the following final expression:

R0 = e−i(2γ+arg(1+κEW)) × (1 + ∆) (2.30)

where ∆ is theoretically bound (. 0.05) and κEW is

κEW =
3

2

CEW
+

C+

(

1 +
1− λ2

λ2 (ρ+ iη)
+O

(

λ2
)

)

(2.31)

with CEW
+ and C+ being, respectively, the coefficients of the electroweak and normal

QCD 4-quark operators in the effective theory.

The second paper, due to Gronau, Pirjol, Soni and Zupan [52], extends the previous

work and thoroughly studies the isospin structure of all the amplitudes and effective

field theory operators involved in the decay. These also involve a more detailed evalu-
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ation of the electroweak penguin amplitudes, thus providing similar formulae for more

general cases.

As a closing remark, it is worth emphasizing that the only as yet undetermined

experimental input to the above method is the Dalitz analysis of B0 → K0
S
π+π−, since

data from B0 → K+π−π0 are already available [32]. Further isospin relations permit

the use of measurements from all the B → Kππ modes, increasing the statistical reach.

2.5 Three-body decays

2.5.1 Introduction

The aim of the present analysis is to study the structures arising in the three-body

decay B0 → K0
S
π+π−. In this section we explore some of the consequences of the

kinematics of the decay and discuss the parametrization employed. It is important

to spell out the latter in detail, as a single sign or a different choice in the angular

convention will change the numerical values obtained for the phases in a Dalitz analysis.

The general features of the decay of a particle can be discussed based on elementary

concepts of Quantum Mechanics. Formulae for the transitions of an initial state into a

final state can be found by application of the standard time-independent perturbation

theory and are explicitly presented in most textbooks, e.g. [27]:

cfi =
〈ψf |Vint|ψi〉
Ei − Ef

(2.32)

Eq. (2.32) gives the amplitude cfi to find a system, whose initial state is i, in a final

state f when an interaction potential Vint connecting them is introduced, where ψi and

ψf describe the initial and final states in the absence of the interaction and Ei and

Ef are their energies. The transition can happen directly, 〈ψf |Vint|ψi〉 ≡ Vfi 6= 0, or it

may involve intermediate, “virtual” states j, also called resonances, in which case the

transition amplitude can be approximated by:

cfi =
∑

j 6=i,f

VfjVji
(Ef − Ej) (Ej − Ei)

− VfiVff

(Ef − Ei)
2 . (2.33)
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Both equations display a similar form, involving the vertex factors Vjk and the propa-

gators (Ej − Ek)
−1. The former represents the “strength” with which the interaction

connects the two states, while the latter is related to the overlap of the two states:

〈E ′|E〉 =
∫

dt〈E ′|t〉〈t|E〉 =
∫

dteiE
′te−iEt ∝ 1

E ′ − E . (2.34)

If the final state is degenerate, the probability to observe the transition has to be

summed over all the states sharing the same quantum numbers:

cfi =

∫

cfi (Ef ) ρ (Ef ) dEf (2.35)

where ρ (Ef ) is the density of final states or phase space factor.

In the following subsections we discuss in detail the peculiarities of the densities of

states for three-body decays (Section 2.5.2), the vertex factors (Section 2.5.3) and the

propagators (Sections 2.5.4 and 2.5.6).

2.5.2 Kinematics of three-body decays

In the decay of the pseudo-scalar B meson, with mass mB, into three more pseudo-

scalar particles with masses m1,2,3 and 4-momenta p1,2,3, there are several kinematical

constraints that reduce to two the number of degrees of freedom needed to specify the

final state. Defining the invariant mass squared of a pair of particles asm2
ij ≡ (pi+pj)

2

we get

m2
12 +m2

23 +m2
31 = m2

B +m2
1 +m2

2 +m2
3 (2.36)

so that one of the m2
ij is linearly dependent on the other two. Furthermore, in the B

rest frame,

m2
ij = (pB − pk)2 = m2

B +m2
k − 2mBEk (2.37)

= (pi + pj)
2 = m2

i +m2
j + 2EiEj − 2|~pi||~pj| cos θij. (2.38)

Eq. (2.37) shows that the energies depend solely on the invariant masses of the pairs of

particles, whereas Eq. (2.38) indicates that the angles between the momenta of the final
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state particles are known once their energies are determined. Together, Eqs (2.37)-

(2.38) imply that the knowledge of two quantities, customarily chosen from among the

m2
ij, are sufficient to specify the state of the system, up to its overall orientation.
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Figure 2.8: Toy Monte Carlo simulation of B0 → K0
S
π+π−. The resonances f0(980),

ρ0(770), K∗(892) and K∗
0(1430) have been included, approximately in the proportions

found by Belle [55], although without interference. Note the two wide strips parallel

to the axes, and the fine band close to the diagonal edge - they correspond to the

scalars K∗
0 (1430) and f0(980), respectively. In contrast, the two separate, elongated

blobs on each axis and on the diagonal belong to the K∗(892) and ρ0(770), which,

being vector resonances, have their corresponding bands unpopulated in the centre.

Observe as well that the sensitivity to interference between different states is greater

for events on the corners, as that is where the resonance bands overlap.

A Dalitz plot [56] is produced when a two-dimensional scatter plot is made in two

30



of the m2
ij variables, say m2

13 ≡ x and m2
23 ≡ y (see Figure 2.8). The kinematical

boundaries for such a plot can be read from Eq. (2.38): for a given value of m2
jk, the

maximum of m2
ij is attained when the particles i and j are flying back-to-back, and the

minimum when they are at rest in the ij centre-of-mass system, i.e. their directions

are parallel.

Similarly, for events close to the edges of the Dalitz plot, one of the m2
ij takes a

small value while the other two have rather large values (Eq. (2.36)), whereas in the

centre the invariant masses of the three pairs of particles take approximately the same

values. This implies that in the latter case, the directions of the three particles are

distributed quite isotropically, and that they carry similar energies, whereas in the

former case, one of the particles in the final state is back to back to the other two,

which move in parallel, giving the event a strong directionality. It is also worth noting

that, for an event lying near the corners of the Dalitz plot, one of the particles is slow,

as can be seen from Eq. (2.37).

We are now ready to discuss the phase space factor. The summation should be

done over all momenta in the final state, but application of the kinematical constraints

noted before should enable us to write it as a function of only two of the energies or

squared invariant masses:

ρ
(

m2
13,m

2
23

)

dm2
13dm

2
23 =

d3p1d
3p2d

3p3
E1E2E3

δ (p1 + p2 + p3 − pB) (2.39)

where the energies in the denominator of the RHS have been introduced to ensure

Lorentz invariance. Integration over p3 yields

d3p1d
3p2

E1E2E3

δ (E1 + E2 + E3 −mB) =
p21dp1dΩ1p

2
2dp2dΩ1−2

E1E2E3

δ (E1 + E2 + E3 −mB)

(2.40)

where Ω1 and Ω1−2 are the solid angles for the direction of ~p1, and for the direction

of ~p2 with respect to ~p1. Since the B is a scalar, the angles should be integrated over,

giving

p21dp1 (4π) p
2
2dp2 (2πd cos θ1−2)

E1E2E3

δ (ΣEi −mB) = 8π2
dE1dE2p1p2d cos θ1−2

E3

δ (ΣEi −mB) .

(2.41)

31



Noting

E2
3 = p21 + p22 + 2p1p2 cos θ1−2 +m2

3 =⇒ E3dE3 = p1p2d cos θ1−2, (2.42)

substituting it and integrating the δ-function gives
∫

8π2dE1dE2dE3δ (E1 + E2 + E3 −mB) = 8π2dE1dE2 =
4π2

m2
B

dm2
23dm

2
13. (2.43)

Therefore, the density of final states is constant when expressed in terms of the m2
ij

variables. In other words, the decay rate (the probability of decay per unit time) has

the form (c.f. Eq. (2.35))

dΓ ∝ |M|2dm2
13dm

2
23 (2.44)

whereM encodes all the dynamical information about the decay, containing the vertex

factors and the propagators.

We observe that, according to Eq. (2.44), a constant |M|2 results in a uniform

distribution over the Dalitz plot, and that any departure is due to dynamical effects,

i.e. a non-trivial |M|2.

2.5.3 The Isobar Model

The Isobar Model [57, 58] approximatesM as a sum of terms with individual couplings

and propagators, each representing a resonance in one pair of particles:

M
(

m2
13,m

2
23

)

=
N
∑

j=1

cjFj
(

m2
13,m

2
23

)

(2.45)

whereN is the number of intermediate states considered, cj are the complex amplitudes

describing the coupling of the B meson to the particular resonant final state (i.e. the

vertex factors) and Fj (m
2
13,m

2
23) are the propagators. These are a product of several

terms:

Fj
(

m2
13,m

2
23

)

= Rj B
B
L Bres

L ZL
j , (2.46)

with the different terms being: first, the mass-dependent part of the propagator, second

and third, factors that account for the difficulty of slow decay products to conserve the

32



angular momentum due to the spin of the resonance and last, the term that describes

the angular distribution. The conventions adopted for these are described in detail in

the following sections, a good reference being [59]. World averages [22] are used for

the parameters characterizing each resonant state (e.g. mass, width).

A Dalitz or amplitude analysis aims to extract the complex couplings cj from the

data, when a given model for the resonant structure has been proposed. Note that,

since the decay rate depends on |M|2 (2.44), Eq. (2.45) implies that bilinear terms in

Fj (m
2
13,m

2
23) will appear in the model of the distribution over the Dalitz plot. These

terms, ∝ F ∗
j Fk, represent, and are sensitive to, the interference between two resonances

j and k, thus allowing for the relative phase between cj and ck to be determined.

In neutral decays to CP eigenstates, one expects the same resonances to be present

in the B0 and the B0 decays in the same amounts, up to direct CP violating effects.

Therefore a parameterization of the complex couplings cj and c̄j appearing in the B0

and B0 amplitudes (A and Ā, respectively) that reflects that fact is preferred instead

of, for example, using separate magnitudes and phases for each flavour. This analysis

adopts

cj = (xj +∆xj) + i (yj +∆yj) , (2.47)

cj = (xj −∆xj) + i (yj −∆yj) , (2.48)

where the parameters free to vary in the fit are the x, y, ∆x and ∆y, although the

alternative

cj = aje
i(δj+φj)

(

1 +
bj
aj

)

, (2.49)

cj = aje
i(δj−φj)

(

1− bj
aj

)

, (2.50)

proposed by CLEO [60], is also found useful. Note that the latter breaks the phase of

each component into their CP -even (δ) and CP -odd (φ) contributions.

A Dalitz analysis extracts all non-trivial information from the data – no physically

meaningful aspect of the decay is left unmodelled. Therefore, all the observables
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mentioned in earlier sections must be expressible in terms of the cj
4:

Sj = 2 Im
[

cjc
∗
je

−iφmix
]

/
(

|cj|2 + |cj|2
)

, (2.51)

ACP j =
(

|cj|2 − |cj|2
)

/
(

|cj|2 + |cj|2
)

. (2.52)

The relative weight of a given resonance in the decay is usually quoted in terms of the

fit fraction:

FFj =

∫ ∫

DP
|cjFj (m2

13,m
2
23)|

2
dm2

13dm
2
23

∫ ∫

DP

∣

∣

∣

∑

j cjFj (m
2
13,m

2
23)
∣

∣

∣

2

dm2
13dm

2
23

, (2.53)

where the DP integration domain means the integral must be calculated over the

whole phase space.

Finally, let us acknowledge that the approximation in Eq. (2.45) neglects rescat-

tering of the final state particles and is known to lead to unitarity violation whenever

the overlapping of two resonances is sizable. Alternatives, such as the so-called K-

matrix [61], exist but their complexity outweighs their merits for use in the present

analysis. Apart from the validity of the approximations, the main source of systematic

uncertainties in the model is the term Rj from Eq. (2.46), whose precise functional

form is not well known for some components, notably the higher K∗ resonances (see

the LASS subsivision in Section 2.5.4 and Section 6.4).

2.5.4 Mass term description

Breit-Wigner

The most common parametrization of the mass term is the Breit-Wigner formula, that

arises from the overlap between a state of energy E and a resonant state with mass

mR and decay width ΓR, and therefore gives the amplitude for a system in the first

4φmix for instance, being a relative phase, can be absorbed in the cj and extracted from them.

However, in this particular case we choose to keep it as an explicitly distinct, global parameter (see

Section 6.3).
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state to be in the second state as well:

〈E|R〉 =
∫

dteiEte−t(imR+ΓR/2) ∝ 1

(E −mR)− iΓ/2
. (2.54)

Relativistic Breit-Wigner

An obvious improvement is making Eq. (2.54) relativistic [62]:

Rj(m) =
1

(m2
R −m2)− imRΓ(m)

, (2.55)

in which the variation of the width with the energy is taken into account via

Γ(m) = ΓR

(

q

q0

)2L+1
(mR

m

)

B2
L(|~q |r). (2.56)

where L is the angular momentum quantum number of the resonance, ~q is the mo-

mentum of one of the daughters in the resonance rest frame and q0 = q (m = mR).

Flatté

The conditions under which a Breit-Wigner lineshape is a good description are rather

restrictive. A particular phenomenon not accounted for, and that is relevant to the

present analysis, is the change in shape resulting from the opening of a threshold.

The best example is the f0(980) state, whose main decay modes are f0(980) → ππ̄

and f0(980) → KK̄. The mass of the KK̄ system at rest is ∼ 990MeV/c2, within a

fraction of the width of the mass of the resonance. This means that events decaying

through the f0(980) state with masses below that threshold can proceed essentially

only to the two-pion final state, whereas events with masses above the threshold also

have the possibility of producing the two-kaon state. In short, a very asymmetric

shape should be expected.

The Flatté lineshape [63] correctly handles the problem:

Rj(m) =
1

(m2
R −m2)− imR(Γππ(m) + ΓKK(m))

(2.57)
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with

Γππ(m) = gπ

(

1

3

√

1− 4m2
π0/m2 +

2

3

√

1− 4m2
π±/m

2

)

, (2.58)

ΓKK(m) = gK

(

1

2

√

1− 4m2
K±/m

2 +
1

2

√

1− 4m2
K0/m2

)

, (2.59)

with the couplings to the ππ̄ and KK̄ channels needing to be determined experimen-

tally. As for the rest of the properties of the f0(980) resonance, there is no consensus

on their values. We take those measured by BES [64]:

gπ = (0.165± 0.010± 0.015) GeV/c2, gK/gπ = 4.21± 0.25± 0.21. (2.60)

LASS

Another poorly understood area of the spectrum is that of the higher K∗ resonances.

In particular, the K0
S
π mass range in which the state K∗

0 (1430) appears seems to be

correctly described only when a non-resonant effective range component is included

and allowed to interfere with the resonance. Following the LASS collaboration [65],

we parameterize it as:

Rj(m) =
m

q cot δB − iq
+ e2iδB

mRΓR
mR

q0

(m2
R −m2)− imRΓR

q
m
mR

q0

, (2.61)

where mR and ΓR are the mass and the width of the K∗
0 (1430) resonance and cot δB

is given by

cot δB =
1

aq
+

1

2
rq. (2.62)

The parameters a and r are the scattering length and the effective range, respectively,

and have been measured by LASS to be

a = (2.07± 0.10) (GeV/c)−1, r = (3.32± 0.34) (GeV/c)−1 . (2.63)

The non-resonant part of the amplitude is cut off at 1.8GeV/c2.
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2.5.5 Barrier factors

The Blatt-Weisskopf barrier or penetration factors [66] (the BL terms in Eq. (2.46)) are

motivated by the consideration of the Schrödinger equation in spherical polar coordi-

nates. An effective potential, dubbed “centrifugal barrier”, arises from the vanishing

of the wavefunction at the origin when the orbital angular momentum is non-zero,

both in the decay of the B meson to a J 6= 0 resonance and in the subsequent decay

of the resonance to two pseudoscalar particles. Physically, it means that particles

emitted very close to the centre need too large momenta to account for all the angular

momentum of the resonance. A correction is thus needed to the usual Breit-Wigner

lineshapes, that can be derived from the transmission coefficients for the centrifugal

potential.

Empirically, an effective radius r is needed to describe the shape of the barrier

correctly. We take the value of r = 4.0GeV−1 ≈ 0.8 fm. The factors are

BL=0(z) = 1, (2.64)

BL=1(z) =

√

1 + z20
1 + z2

, (2.65)

BL=2(z) =

√

z40 + 3z20 + 9

z4 + 3z2 + 9
, (2.66)

where z = (|~q|r)2 and z0 is the value that z takes when ~q is evaluated at the resonance

pole mass.

2.5.6 Angular dependence and helicity angles

It can be argued that the distribution of events decaying through a scalar resonance will

uniformly populate the band of mass associated to the intermediate state, since the lack

of spin means there is no preferred direction for the daughters of the resonance. For a

vector intermediate state, however, a privileged direction exists, and their distribution

is not obvious. It can be calculated though, by evaluating the propagator for B →
Rc→ abc, where R is the resonance. The vectorial nature of the intermediate state is
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accounted for by the sum over its helicity states λ [59] (c.f. Eq. (2.33)):

∑

λ

〈ab|Rλ〉〈cRλ|B〉. (2.67)

The first factor represents the probability of finding the decay daughters a and b in a

given state of relative motion:

〈ab|R〉 ∼ (pa − pb)ν . (2.68)

The second factor can be regarded as the probability of B turning into c by emitting a

vector particle R. Since the emission of hard particles (large momentum) is suppressed,

states with the momenta of c and B as parallel as possible are favoured:

〈cR|B〉 ∼ (pB + pc)µ . (2.69)

Finally, using standard techniques documented in any Quantum Field Theory text-

book [12], the sum over the helicity states can be performed, giving

Z1 = (pB + pc)µ

(

−gµν + pµRp
ν
R

m2
ab

)

(pa − pb)ν (2.70)

=
(

m2
bc −m2

ac

)

+
(m2

B −m2
c) (m

2
a −m2

b)

m2
ab

(2.71)

= −2~p · ~q (2.72)

= −2|~p||~q| cos θac (2.73)

where ~p and ~q are, respectively, the momenta of c and a in the resonance rest frame.

The angle θ is the helicity angle of the resonance. For completeness, we also quote the

expression for tensor resonances:

Z2 =
4

3

[

3(~p · ~q )2 − (|~p ||~q |)2
]

. (2.74)

The formulae for Zj adopted here are collectively known as Zemach tensors.

It is important to note that there is a convention-dependent sign in the Zemach

tensor for the vector case (Eq. (2.73)). In a resonance R → ab, the helicity angle

can be defined as the angle between a and c, or between b and c. For a given event,
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changing the choice results in a sign flip. In a Dalitz analysis, that entails shifts of π

radians in the fitted phases, so it is essential to state the conventions clearly.

In the channel B0 → K0
S
π+π−, resonances can be found in the pairs of particles

K0
S
π+ and π+π− for B0 events, and in K0

S
π− and π−π+ for B0. In other words, if

the variables labelling the axes of the Dalitz plot are chosen to be m2
K0

Sπ
+ and m2

K0
Sπ
− ,

the plane will be symmetric with respect to the diagonal in the absence of direct CP

violation. In order to respect this symmetry in our helicity conventions, the particles

K0
S
π− are chosen to define the helicity angle for all intermediate states in the B0 decay,

and K0
S
π+ = CP (K0

S
π−) are used for the B0. Note that it implies a different helicity

angle for neutral resonances like ρ0(770) or f0(980) depending on whether the parent

meson is a particle or an antiparticle. If the same pair were used in both cases, the

constructive interference between the f0(980) (scalar, no dependence on helicity) and

the ρ0(770) (vector, amplitude proportional to cos θ) would happen on the same side of

the Dalitz plot for both flavours of the parent, thus spoiling the symmetry (Figure 2.9).

The value of the angle can be worked out at all points in the Dalitz plot with the help

of

cos θ =
m2

bc,max +m2
bc,min − 2m2

bc

m2
bc,max −m2

bc,min

(2.75)

which gives the helicity for a resonance in mac in terms of mbc and allows us to confirm

the symmetry of our conventions under CP (see Figure 2.10).

2.5.7 Square Dalitz-plot

B decays proceed mostly through low mass resonances, such as ρ0(770), f0(980),

K∗(892) and K∗
0 (1430). That implies that the most populated areas of the Dalitz

plot are close to the edges, where the resonances recoil against energetic bachelor par-

ticles. Furthermore, the combinatoric nature of background events (see Section 4.5)

means that their density also peaks around the edges. Clearly, the binning of the his-

tograms used to characterize the latter will be problematic, as fine binning is needed

around the edges, and coarse binning around the centre. Instead of using variable

binning, we introduce another set of variables to parameterize the final state phase
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Figure 2.9: Toy Monte Carlo simulation demonstrating the asymmetry produced by

the wrong convention in the calculation of the helicity angles of neutral resonances, a

f0(980) and a ρ0(770) in this case. On the left, the same pair of particles has been

used to calculate the helicity for resonances originating in neutral B mesons of both

flavours. On the right, a CP symmetric convention has been used, resulting in a

symmetric Dalitz plot distribution. Both Dalitz plots are shown in terms of the m′

and θ′ variables (Section 2.5.7), that expand the areas of interest, in this case the

diagonal of the conventional Dalitz plot, while contracting the generally unpopulated

centre of the figure.

space. All input histograms will be expressed in terms of these variables:

m′ ≡ 1

π
arccos

(

2
mπ+π− −mπ+π−,min

mπ+π−,max −mπ+π−,min

− 1

)

, (2.76)

θ′ ≡ 1

π
θπ+π− ,

where mπ+π− is the invariant mass of the two pions and θπ+π− is the angle between

the π+ and the K0
S
in the π+π− rest frame. Their effect is a magnification of the areas

of interest, as can be seen in Figures 2.9 and 2.11.

Transforming histogram bin contents from one set of variables to another involves

the calculation of the jacobian:

dm2
K0

Sπ
+ dm

2
K0

Sπ
− −→ | det J | dm′ dθ′ , (2.77)
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Figure 2.10: The helicity angles for resonances appearing on a given pair of particles

are drawn, with the values they take at each point of the Dalitz plot. On the left, the

values they take for B0 decays, and on the right, for B0. Note that application of the

CP symmetry is equivalent to folding over the lower right corner of the B0 plot to the

top left corner of the B0 plot, and that the signs of the helicities on the two corners

are consistent.

where

| det J | = 4 |p∗
π+ ||p∗

K0
S
|mπ+π− ·

∂mπ+π−

∂m′ · ∂ cos θπ+π−

∂θ′
,

∂mπ+π−

∂m′ = −π
2
sin(πm′)

(

mmin
π+π− −mmax

π+π−

)

, (2.78)

∂ cos θπ+π−

∂θ′
= −π sin(θ′π) , (2.79)

and all frame-dependent quantities are evaluated in the π+π− rest frame.
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Figure 2.11: Example of a square Dalitz plot clearly showing the shape and loca-

tion of typical resonances. The vertical continuous and discontinuous bands are the

f0(980) and ρ
0(770), respectively, whereas the discontinuous bands on top and bottom

correspond to the K∗+ and K∗− resonances.
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Chapter 3

BABAR and PEP-II

3.1 An asymmetric e+e− collider as a B factory

In Chapter 1 we briefly sketched the physics-driven design requirements of a B Factory:

since b quarks are produced in particle-antiparticle pairs, one of the B mesons produced

can be used to determine the flavour of the other one, thus enabling the measurement

of asymmetries in the decay of a B0 and its B0.

The ideal conditions for such measurements are met by an e+e− collider with the

centre-of-mass energy tuned to the Υ (4S) resonance, which decays almost uniquely

to B0
dB̄

0
d and B+

u B
−
u pairs with equal probabilities. The advantages over a hadronic

collider are substantial, a number of factors contributing to the much cleaner environ-

ment and hence to better event reconstruction: the low multiplicity of the events (with

an average of 11 charged tracks per event), the relatively large signal-to-background

ratio (σBB/σtotal hadronic ' 0.28), the possibility of reconstructing photons and π0 and

a physics rate low enough (∼ 10 Hz) for the detector not be overwhelmed by data

during its dead time [28]. Furthermore, the precise knowledge of the kinematical state

of the e+e− system allows for a complete reconstruction of the event and naturally

provides us with background discriminating variables (Section 4.5). In addition, run-

ning at the Υ (4S) resonance implies that the neutral B mesons are produced in a

quantum mechanical state of entanglement, which greatly helps in the tagging process
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by forcing the two particles to remain a particle-antiparticle pair for as long as both

exist. In a hadronic environment, such a statement is no longer true and the tagging

efficiencies (Section 4.1) fall dramatically for two reasons: first, the higher track mul-

tiplicity is an obstacle to finding the particle whose charge uniquely tags the flavour of

Btag; second, determining the flavour of Brec requires establishing the flavour of Btag,

evolving it back to the production point, and then forward to the Brec decay vertex,

thus depending strongly on the accuracy in the inference of the production point.

These properties, together with a large data sample consisting of ∼ 108 BB pairs,

are the necessary ingredients for BABAR’s main physics goals: precisely measuring

the CP violating time-dependent asymmetries and constraining the CKM matrix el-

ements. Secondary physics interests are rare B decays, such as the subject of this

thesis, charm and τ physics, and QCD and two-photon physics. Other quantum elec-

trodynamic processes, such as muon pair production, are mostly filtered due to their

large cross-sections, some of them being used for calibration and luminosity measure-

ment purposes. Specifically, the integrated luminosity is calculated to great accuracy

by examining the accumulated samples of e+e− → e+e− (γ), e+e− → µ+µ− (γ) and

e+e− → γγ, processes for which the cross-sections are extremely well understood

thanks to QED.

The constraints posed to the accelerator configuration by the difficulties of time-

dependent analyses and the high luminosities needed to achieve the desired sample

size are discussed in the next section.

3.2 PEP-II and the B Factory

For the time-dependent CP violating asymmetries arising in neutral B mesons to be

measured, an asymmetric collider is required. The boost of the B mesons in the

laboratory frame allows the distance between the decay vertices of the two mesons

to be measured, from which the time between the decays of the two particles can be

inferred.
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The asymmetry is achieved by injecting into the PEP-II storage rings 9.0GeV e−

and 3.1GeV e+ beams which, upon collision, result in a boost of βγ = 0.56 along

the e− beam direction in the laboratory frame for the centre-of-mass of the particles

produced. The centre-of-mass energy is tuned to the Υ (4S) mass, 10.58GeV, for 90%

of the running time, the remaining 10% being set 40MeV below the resonance peak.

The first sample, known as the on-peak sample, contains the BB events, whereas the

second one, called the off-peak sample, is recorded for background characterization

purposes. The light quark processes e+e− → qq, q = u, d, s, c which constitute the

most prominent background to the BB events are the only hadronic reactions allowed

below the Υ (4S) threshold.

The injection is carried out using the two mile long Stanford Linear Accelerator,

which diverts a fraction of the accelerated electrons to produce positrons in collision

with a high-Z stationary target. These are then directed back to the linear accelerator

to be brought to their nominal energy before entering the storage rings. Once there,

the electrons and the positrons, which circulate in bunches along physically separated

rings, are collided in one Interaction Region, in which the BABAR detector is located.

3.2.1 The Interaction Region

The Interaction Region is heavily instrumented with magnets that focus the beams

before the collision, directs them so that there is no crossing angle between them, and

finally separates them before a given bunch of particles collides with a second bunch

from the other beam (see Figure 3.1). The quadrupole magnets labelled QD and

QF, situated outside the BABAR detector, focus the high and low energy beams. The

dipoles labelled B1 are responsible for bringing the beams together and separating

them immediately afterwards. This is the reason why they need to be close to the

interaction point; in fact, within the detector volume.
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Figure 3.1: Schematic view of the Interaction Region. Observe the strong bending

needed to make the two beams collide head-on, that results in the most prominent

machine background: synchroton radiation.

3.2.2 Machine backgrounds

By “machine backgrounds” we refer to the radiation that reaches different parts of

the detector as a consequence of being immersed in an accelerator environment. They

should be avoided as they lead to degradation of the performance of the detector, due

to the sustained radiation damage, and they produce large dead times in which the

different systems of the detector are unable to accept any real physics event because

they are processing and flushing out the spurious signals. In BABAR, there are three

main sources of machine backgrounds. In order of decreasing importance these are:

synchroton radiation, beam-gas interactions and radiative Bhabha scatterings.

The synchroton radiation is a direct consequence of the rather complex optics

discussed before, and especially of the dipoles inside the detector, as it is caused by the
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bending of the beams so close to the interaction point. The geometry of the crossing has

been designed to minimize the probability of those photons, and the electromagnetic

showers that they produce, impacting the detector. Copper masks are also used to

prevent them from interacting with the beam pipe and creating further debris. This

kind of background scales with the currents going through each of the storage rings.

Increases in luminosity stemming from higher currents bring this background as an

undesired side effect.

Interactions of the beam with gas molecules present in the beam pipe often lead to

particles in the beam acquiring a momentum outside the range that can be focused by

the optics. These lost particles may then hit the beam pipe and produce an electro-

magnetic shower that spreads over the detector. Collimators are employed to prevent

any of these from occurring close to the detector.

Finally, radiative Bhabha scatterings of electrons and positrons may cause one of

them to hit the pipe inside the detector and produce an electromagnetic shower that

spreads over our measuring instrument. Such a background scales with luminosity,

and may prove to be important as the luminosity is increased towards the end of the

lifetime of the experiment.

3.2.3 Trickle injection

The currents stored in the rings can be topped up once every two or three hours,

during which the voltage is ramped down in the detector to prevent any background

from affecting it. A new injection is only arranged when the instantaneous luminosity

falls below a pre-established threshold. It can also be made continuously at a low rate,

in which case the resulting machine backgrounds must be dealt with. In succesive tests

during late 2003 and early 2004, it was shown that these backgrounds could be kept to

a manageable level, and the default operation mode has involved such trickle injection

ever since, greatly helping to improve the delivered luminosity (see Figure 3.2).
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Figure 3.2: Plot showing the evolution of the monthly integrated luminosity as deliv-

ered by PEP-II. Note the increase in the first half of 2004 - partly due to the trickle

injection. During the last months of running, instantaneous luminosities have been

above 1034 cm−2s−1.

3.2.4 Performance

The design luminosity and accelerator parameter goals were met by PEP-II within the

first year of running, and they have been improving ever since (Figure 3.2). Table 3.1

compares the design goals with the latest records achieved. 500 fb−1 have been deliv-

ered so far, and 750 fb−1 are projected for the end of data taking, in September 2008.

The latest instantaneous luminosities are above 1034 cm−2s−1, and they are hoped to

reach 2× 1034 cm−2s−1 in 2008.
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Table 3.1: PEP-II design parameters, and best achieved.

Parameter Design Best achieved

HER current (A) 0.75 1.96

LER current (A) 2.14 3.03

Luminosity (1033 cm−2s−1) 3.0 12.07

3.3 The BABAR detector

In this section we state the main requirements on the BABAR detector resulting from the

physics under study, describing each subsystem and its performance in later sections.

A detailed description of the detector can be found in [67].

The physics goals stated in Section 3.1 lead to an asymmetric collider, and there-

fore, since a uniform acceptance in the centre-of-mass system is preferred, to an asym-

metric detector as well, with its centre displaced from the interaction point by 37 cm.

It should also comply with the following requirements:

• A high reconstruction efficiency for charged and neutral particles of momenta

above 60MeV/c and 20MeV/c, respectively.

• Good momentum resolution or charged particles in the momentum range 60MeV/c

to 4GeV/c. Low momentum particles are important, among other reasons, be-

cause they are copiously produced by D∗ mesons decaying to D mesons.

• Good photon energy and angular resolutions, in order to reconstruct π0 and η

particles.

• Excellent particle identification capabilities, as these are crucial to the tagging

procedure. In particular, electrons and muons should be reliably identified, and

hadrons such as p,K, π should be distinguished.

• Excellent vertex resolution, so that the typical distances associated to a time-

dependent analysis, βγcτB0 . 250µm, are resolved. It is also desirable for D and

τ physics, since these particles also exhibit displaced vertices.
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• Dead times as short as possible, so that higher luminosities can be handled

without problems.

• Radiation resistance, in order for the efficiencies of the subsystems not to degrade

badly over the lifetime of the experiment.

The final design of the detector consists of five subsystems: the silicon vertex

tracker (SVT), which provides the accuracy needed to reconstruct the displaced ver-

tices of the B mesons and other particles with similar lifetimes; the drift cham-

ber (DCH), the main tracking device; the detector of internally reflected Čerenkov

light (DIRC), whose input for particle identification is essential; the electromagnetic

calorimeter (EMC), that allows for exclusive studies of final states containing π0 and

other neutral particles; and the flux return (IFR), instrumented first with resistive

plate chambers (RPC) and more recently with limited streamer tubes (LST), which

serve as muon detectors and as a primitive hadronic calorimeter e.g. for the K0
L
. All

but the last two subsystems are immersed in a uniform axial 1.5T magnetic field neces-

sary to measure the transverse momentum from the curvature of the tracks. Figure 3.3

shows the whole detector, specfiying each subsystem.

The convention adopted in BABAR for the coordinate system follows a standard

spherical-polar coordinate system centred on the interaction point (IP), the z axis be-

ing parallel to the e− beam direction, and θ and φ being the usual polar and azimuthal

angles. The cartesian axes form a right-handed system with the x axis pointing out-

wards from the PEP-II ring and the y axis pointing upwards.

3.4 Silicon Vertex Tracker

3.4.1 Physics requirements

The Silicon Vertex Tracker is located just outside the beam pipe, at around 3 cm from

its centre. Its position makes it crucial in the determination of decay vertices of B and

D mesons and τ leptons. To achieve the necessary resolution in ∆t, a resolution of
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80µm must be attained in z for single-vertex measurements. In the xy plane, distances

of ∼ 100µm must be resolved for the correct reconstruction of secondary vertices such

as those from D and τ decays.

The SVT is also responsible for the tracking of low momentum particles, since for

pt < 120MeV/c they are unlikely to reach the drift chamber or produce enough hits

in it. This is particularly relevant to the reconstruction of the D∗ decay into a low

momentum pion and a D meson, which is important in itself and for tagging purposes.

Finally, the SVT also plays a role in particle identification through its own mea-

surements of the rate of energy loss, and by giving the best determination of the polar

angle of high momentum tracks, which is a necessary input to fully exploit the DIRC.

3.4.2 Design

Although maximum coverage is desirable, the B1 dipoles situated inside the detector

(see Figure 3.1) and some support structures limit the SVT acceptance to the polar

angles 20.1◦ < θ < 150.2◦, which still comprises 90% of the solid angle in the centre-

of-mass system. Another constraint on the SVT design is that it must be able to

withstand the irradiation associated with being so close to the beam pipe, while still

keeping the amount of material as low as possible to avoid multiple Coulomb scattering.

The SVT is composed of five layers of double-sided silicon strips (see Figure 3.4),

with the strips on the outside being parallel to the beam and on the inside perpen-

dicular, thus providing simultaneous measurements of φ and z, respectively, for each

hit.

The first three layers are composed of 6 modules each, slightly tilted to provide

complete coverage. Layers 4 and 5, having 16 and 18 modules respectively, produce

the overlap between neighbouring strips by alternating the radii at which thay are

located. The strips in the two outermost layers are arch-shaped, in contrast to the

three innermost, in order to reduce the material a track goes through while providing

complete coverage. The two innermost layers are particularly important in determining

the polar angle of a track, while the role of the two outermost is to help in matching
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tracks to those found by the DCH. The third layer provides extra information for low

momentum tracks that may not reach the drift chamber.

To be able to meet the resolution goals, the local and global alignment of the SVT

is crucial. The local alignment, of the different modules relative to each other, is only

necessary after accesses to the detector. It is carried out by fitting tracks from cosmic

rays and e+e− → µ+µ− events. Global alignment, of the SVT with respect to the rest

of the detector, is done at the beginning of each run, by minimizing the differences

between the SVT and DCH tracks in a small sample of events.

3.4.3 Performance

The efficiency in track reconstruction of the SVT as measured in data on dimuon events

is 97%, after excluding the defective strips. A good example of the efficiency of low

momentum tracking in the SVT is BABAR’s recent evidence for D0 −D0 mixing [20],

in which extraordinarily large samples of D∗ mesons decaying to a charged pion and

a D meson are needed in order to tag the flavour of the neutral meson and detect the

minute oscillation.

The spatial resolution of the SVT hits can be evaluated by fitting high momentum

tracks without the hit in the layer under inspection and comparing the hit with the

intersection of the fitted track. The residuals are divided by the uncertainty on the

track determination to get the resolution. This is found to be better than 40µm,

implying a vertex resolution better than 70µm.

3.5 Drift Chamber

3.5.1 Physics requirements

The drift chamber is the main tracking system in the BABAR detector and it is there-

fore expected to measure the momenta and polar angles of the tracks efficiently and

precisely over a wide range of momenta, 0.12 < pt < 5.0GeV/c. It provides one of the
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main inputs to the Level-1 trigger and plays a key role in the extrapolation of tracks

into the DIRC, EMC and IFR. Thus, the solid angle coverage must be as complete as

possible whilst minimizing the amount of material that the particles have to traverse.

The DCH must achieve a resolution of σpt/pt < 0.3% in order to reconstruct

B and D candidates. Furthermore, a spatial resolution of 140µm is needed. The

vertexing of long-lived particles such as the K0
S
, present in the golden mode and in

the channel analyzed in this thesis, as well as in many other final states studied with

time-dependent analyses, requires the drift chamber to measure longitudinal positions

to better than 1mm.

Finally, the DCH also bears the responsibility for particle identification for mo-

menta pt < 700MeV/c, for which the DIRC is is not effective, and for tracks that fall

outside the acceptance of the latter in the forward region. K/π separation is attained

with a precision of 7% on dE/dx measurements.

3.5.2 Design

The DCH is a 276 cm long cylinder located immediately outside the SVT, with inner

and outer radii of 23.6 and 80.9 cm respectively and displaced towards the forward

direction to increase the centre-of-mass acceptance. A mixture of helium and isobutane

in a ratio 4:1 fills the chamber, with additional small amounts of water vapour (0.3%)

to extend the lifetime of the device.

The DCH is formed from 40 layers of hexagonal drift cells, with each group of

4 layers organized into a superlayer. The cells consist of a sense wire in the centre,

with a diameter of 20µm and kept at 1930 V , surrounded by 6 field wires, of 80 and

120µm diameters, that are grounded. Each layer of cells is staggered with respect

to the previous one, which allows the left-right ambiguity in the measurements to be

resolved. Longitudinal positions are measured by orienting of the layers at a small

angle to the z axis. Their arrangement is as follows: superlayers alternate between

axial (A) and stereo (U,V) superlayers forming a pattern AUVAUVAUVA, with the

angle of the stereo layers with respect to the z axis increasing outwards from 45 to 76
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mrad. Altogether, the whole volume of gas and the wires represent only 0.28% of a

radiation length for tracks with normal incidence.

3.5.3 Performance

When a charged particle goes through the chamber, it ionises some of the molecules in

the gas. The charges then start drifting due to the electric field, which is locally quasi-

cylindrical around each sense wire. Collisions with further gas molecules result in a

gain of ∼ 5× 104. The time taken for the charge to arrive at the wire translates into

a distance from the wire. That drift time, however, requires cell-by-cell calibration,

which is performed by fitting high momentum µ+µ− and e+e− tracks while omitting

the cell being calibrated. The total charge deposited, which is used to calculate dE/dx,

also needs calibration.

The track reconstruction efficiency can be estimated from the sample of tracks that

traverse both tracking devices, the DCH and the SVT. After correcting for fake SVT

tracks, the ratio of the number of tracks reconstructed in the DCH over those observed

in the SVT is found to be (96± 1)%.
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Figure 3.6: On the left, DCH dE/dx measurements and the Bethe-Bloch predic-

tions [67]. On the right, the resolution on pt as calculated from cosmic ray events

that fall within the acceptance of the SVT and the DCH [67].

The dE/dx value for a given track is calculated as the truncated mean of the

80% lowest measurements dE/dx measurements for the track, since these follow a

Landau distribution whose mean diverges. Figure 3.6 shows the dE/dx measurements

in the DCH as a function of the momentum, and the corresponding Bethe-Bloch

expectations [22]. A good separation between pions and kaons is achieved below

0.7GeV/c momentum, above which the DIRC has the main responsibility for particle

identification. This is also demonstrated in practice in BABAR’s last measurement

of B0 → h+h− (where h = K, π) [43], where the DCH is used to provide particle

identification of forward tracks falling outside the acceptance of the DIRC1. The dE/dx

resolution on electrons is 7.5%, almost at the design value (7%). The resolution on pt

is, as shown in Figure 3.6, very close to the design value too.

1Unlike in this example, most analyses in BABAR which require particle identification do not use

the information from each subdetector separately, and instead draw on a combination of information

from the DIRC and the DCH and SVT dE/dx measurements, as described in Section 4.3.3.
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3.6 Detector of Internally Reflected Čerenkov light

3.6.1 Physics requirements

Particle identification is essential to BABAR, since its physics programme consists of

measuring CP violating asymmetries in a variety of channels. In neutral modes, the

measurement of these asymmetries necessitates the determination of the flavour of

the other B in the event, which is done through the correlation of the charges of

certain particles with the flavour of the parent meson. These correlations depend on

the particle species, making their identification mandatory (see Section 4.1). It is also

crucial to avoid contamination in the isolation of final states, since similar channels,

like B0 → K+π− and B0 → π+π−, have different asymmetries.

More specifically, above 700MeV/c, the drift chamber is no longer able to distin-

guish kaons from pions, which the DIRC aims to separate at 4σ significance up to a

momentum of 4.2GeV/c. For the muons, the DIRC must complement the IFR, whose

effectiveness falls for momenta below 750MeV/c.

Finally, given its location between the drift chamber and inside the calorimeter,

it must be small to minimize the size of the most expensive part of the detector, the

calorimeter, and it amounts to only a fraction of a radiation length (see below).

3.6.2 Design

When a particle travels faster than the speed of light in the medium that surrounds

it, v/c = β ≥ 1/n, it emits Čerenkov photons at an angle cos θC = 1/nβ with the

direction of the particle. Hence, provided that its trajectory is known accurately

enough, a measurement of the direction of these photons establishes the speed of the

particle. Given the space constraints sketched above, the instrumentation to detect

them must lie outside the main body of the detector. Internal reflection on a plane

surface is used to preserve the angle of these photons while directing them towards

the photomultiplier tubes (see Figure 3.7). Forward moving photons are reflected

in a mirror, allowing the DIRC instrumentation to occupy only the less populated
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Figure 3.7: Diagram illustrating the operating principles of the DIRC.

backward end of the detector.

The material used to confine the photons is quartz (n = 1.474) shaped in bars

that are only 17 mm thick and 35 mm wide, but as long as 4.9 m. They amount to

17% of a radiation length for a normally incident particle. In the backward end of

the detector, the photons go through a wedge-shaped quartz piece and then into a

water filled expansion region, known as the standoff box, after which they meet the

photomultiplier tubes. The role of the wedge is to reflect photons arriving at large

angles, thereby reducing the area of the standoff box that needs to be instrumented

at the cost of introducing ambiguities in the angle.

The photomultiplier tubes, of which there are 10752, are surrounded by “light

catchers”, increasing the detection area. Also, the standoff box is magnetically shielded

to avoid disturbances in the tubes.
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3.6.3 Performance

The angle and time resolution can be calibrated from dimuon events. The Čerenkov

angle resolution for a track turns out to be 2.5 mrad, giving over 4σ separation at

3GeV/c (see Figure 3.8). Figure 3.8 also shows the mass peak of the decayD0 → K+π−

with and without the kaon/pion separation provided by the DIRC.
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Figure 3.8: Plots illustrating the DIRC capabilities for kaon-pion separation [67]. On

the left, the reconstructed D0 mass with and without the PID information provided

by the DIRC. On the right, the separation of kaons and pions achieved by the DIRC

in standard deviations.

3.7 Electromagnetic Calorimeter

3.7.1 Physics requirements

A number of CP eigenstates within BABAR’s physics goals contain π0’s in the final

state. Many others involve η particles or photons directly, such as b→ sγ, in which the
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spectrum is quite hard. Some QED processes, such as e+e− → e+e−γ or e+e− → γγ are

also important for calibration or luminosity measurement purposes. Therefore, BABAR

must be able to reconstruct photons over a wide range of energies, from 20MeV up to

4GeV.

The EMC must also be efficient in identifying electrons, as they are important for

flavour tagging and semi-leptonic B decays, and no other system can provide accurate

particle identification information for them.

3.7.2 Design

The EMC is formed from 6580 Thallium doped Caesium Iodide crystals arranged in a

barrel and a forward endcap . The material was chosen due to its high light yield and

small Molière radius, which imply good energy and angular resolutions, respectively.

The crystal size varies from 16 radiation lengths in the backward direction to 17.5

radiation lengths in the forward endcap, since these receive impacts from the more

energetic Lorentz-boosted particles. The crystals are tilted in such a way that they

face the interaction point. Their exposed area is ∼ 5 cm2 (c.f. their Molière radius, 3.8

cm), so a typical electromagnetic shower will spread over several crystals. Figure 3.9

shows a schematic view of the subdetector.

3.7.3 Performance

The calibration of the electromagnetic calorimeter involves determining the relation

between the light yield and the energy deposited in the crystal, and between the cluster

energy and the total energy of the incident particle. The light yield dependence on

the energy varies from crystal to crystal, and may change over time due to radiation

damage. It is calibrated for low energies using 6.13 MeV photons from a radioactive

source, and in the high energy range by using Bhabha scattering events, for which

the polar angle precisely determines the energy of the particle. Crystal leakage and

absorption of energy by the material at the front of the crystals or between them leads
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Figure 3.9: Side view on the Electromagnetic Calorimeter.

to the need for the calibration of the cluster energy. This is applied during the offline

reconstruction and is derived from samples of π0 and η mesons.

The photon energy and angular resolutions of the EMC are also extracted from

the calibrations, and are found to be parameterized, respectively (see Figure 3.10), by

σE
E

=
a

(E(GeV))1/4
⊕ b (3.1)

σθ = σφ =
c

E(GeV)
+ d , (3.2)

where the first sum is in quadrature, and a = (2.3 ± 0.3)%, b = (1.85 ± 0.12)%,

c = 3.87± 0.07 and d = 0.00± 0.04.

3.8 Instrumented Flux Return

3.8.1 Physics requirements

The golden mode, J/ψK0
S
, involves muons, as the J/ψ is reconstructed in the channels

e+e− and µ+µ−. Their detection is also essential for semi-leptonic physics and for

the tagging algorithms. Particle identification information on muons is desirable for

momenta from about 1GeV/c.
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Figure 3.10: Photon energy (left) and angular (right) resolutions achieved by the

electromagnetic calorimeter [67].

Muons are heavier than electrons, making bremsstrahlung a far less effective energy

loss mechanism for them. Since they have relatively long lifetimes and do not partici-

pate in nuclear interactions either, they are very penetrating particles. Therefore, the

best choice is to place a dedicated subdetector outside the rest of the instruments.

In BABAR, the outer part of the detector plays the role of the flux return for the

solenoid, at the same time as it provides a support structure. Interleaved between

the steel plates of the flux return, instruments can be placed to turn it into a muon

detector and a primitive hadron calorimeter, in charge of detecting neutral hadrons,

mainly K0
L
. These feature in a number of modes of interest, due to them having an

opposite CP eigenvalue to the best experimentally suited modes containing a K0
S
.

3.8.2 Design

The steel of the flux return, which is distributed in layers of increasing thickness from

the inner to the outer sides, serves the purpose of filtering the muons and absorbing

the neutral hadrons. Between the steel sheets, in the barrel and the endcaps, there

are 19 and 18 gaps, respectively, which host the instrumentation. These are shown in

Figure 3.11, where the almost complete coverage of the detector is also apparent. The
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Figure 3.11: Schematic view of the IFR, with the barrel on the left and the forward

(FW) and backward (BW) endcaps on the right.

arrangement of these gaps, and the thickness of each of the layers was carefully chosen

after dedicated MC studies to optimize the physics capabilities.

In these gaps, resistive plate chambers were installed. Two cylindrical RPCs were

also placed between the EMC and the magnet to detect particles leaving the EMC

and link any EMC clusters to IFR energy deposits.

The resistive plate chambers (see Figure 3.12) consist of two graphite electrodes

separated by two 2 mm thick sheets of bakelite, and in between these, another 2 mm

gap filled with a mixture of gases: argon, freon and isobutane in the proportions

57:39:4. Readout strips are located next to the graphite, separated from it only by a

film of insulator. They are placed orthogonally (hence the labels “X strip ” and “Y

strip” in the figure), providing three-dimensional positional information when com-

bined with the distance of the RPC to the interaction point. The apparatus works as

a capacitor, with one of the graphite electrodes grounded and the other one set to an

8 kV voltage. The passage of a charged particle or a hadronic shower do not cause a

discharge, but induce temporary changes in the charge accumulated at each electrode,

that are capacitatively read by the readout strips.
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Figure 3.12: Resistive plate chamber design.

3.8.3 Performance

During BABAR’s first year of running, an 8% pion misidentification probability was

found for a 90% muon efficiency.

The calibration of the angular resolution and efficiency of the detection of neutral

hadrons was studied through the process e+e− → φγ → K0
S
K0

L
γ, and yielded efficien-

cies between 20 and 40%, and angular resolutions around 60 mrad for K0
L
that did not

interact in the EMC. When the latter also provided information, the resolution was

twice as good.

However, shortly after installation, the performance of the RPC was observed to

degrade quickly, with the muon efficiency dropping at an average rate of 1.2% per

month and growing numbers of plates being declared “dead” (efficiencies less than

10%). The RPCs in the endcaps were replaced by new RPCs built with more stringent

quality constraints, except for the first five, in whose place brass was placed to improve

pion rejection. A different solution was adopted for the barrel RPCs. These were

substituted by limited streamer tubes.
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3.8.4 Limited streamer tubes

The principle of operation of limited streamer tubes is similar to that of the RPCs.

In the case of BABAR, a conducting wire with a 100µm diameter is placed in a long

resistive cell (the “tube”), with a section of 15× 17mm2, the wire playing the role of

the anode, and the tube, of the cathode. The volume between them is filled with a

gas that is ionized upon the passage of a charged particle or the spread of a hadronic

shower, altering the charge distribution in the cylindrical capacitor. The signal can

then be read either by external strips attached to both sides, or from the wires directly.

In BABAR, the latter method is used to measure the φ coordinate, and the former, to

read the z coordinate.

Their efficiency is monitored by using dimuon events and cosmic rays, finding an

average of 90%, without any noticeable degradation trend over time.

3.9 Trigger

The aim of the trigger is to reduce the potential number of events per second recon-

structed by the detector, which is essentially determined by the frequency of bunch

crossing, to a manageable level of events that can be recorded. Of course, the goal of

the trigger is to reject badly reconstructed events and background while retaining as

much signal as possible.

In BABAR, that is achieved through a two-stage trigger, composed of the level-1

trigger (L1T), implemented in hardware, and the level-3 trigger, which is carried out

by software, and after which all surviving events are recorded.

3.9.1 Level-1 trigger

The level-1 trigger consists of a global trigger (GLT) that combines the input from

several individual triggers linked to the different subsystems of the detector, and ac-

cepts events at rates around 1 kHz, its limit being 2 kHz. The indivual triggers feeding

the global one are the DCH trigger (DCT), the EMC trigger (EMT) and the IFR trig-
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ger (IFT). These are continuously producing abstract data (primitives) describing the

objects found by the subdetectors they are associated to, and are passed to the GLT.

The global trigger then tries to match them to any of 24 trigger lines that represent

events of interest, and if the timing of the trigger signal coincides with one bunch

crossing, the fast control and timing system issues an accept signal. It is at this point

that some classes of physics events, such as typical QED processes that are used only

in calibration, are scaled down, making their acceptance less likely.

The DCT produces its primitives by looking for sequential DCH hits in neigh-

bouring cells. These are then joined if possible to construct either short tracks, that

traverse only a few superlayers, and long ones, that reach the end of the chamber.

Axial superlayers are also examined looking for segments consistent with tracks with

transverse momenta greater than 800MeV/c.

The EMT sums the energy deposited on 40 strips along the φ polar angle, and

finds a peak whose energy is compared to thresholds for different physics processes:

minimum ionizing particle cluster (E > 120MeV), intermediate energy cluster (E >

307MeV), high energy electron or photon (E > 768MeV), minimum ionizing particle

in forward endcap (E > 100MeV) and backward high energy cluster (E > 922MeV).

The IFT primitives are just single clusters or back-to-back coincidences. These

select cosmic ray events for calibration purposes, and µ+µ− events.

The different trigger subsystems are optimized to select high multiplicity, multi-

hadronic events, resulting in efficiencies over 99% for BB events for both the DCT

and the EMT individually, and over 99.9% when combined.

3.9.2 Level-3 trigger

The level-3 trigger must reduce by >∼ 10 the number of events accepted by the L1T. It

is implemented in software and run in computing farms, which allow the use of infor-

mation from all the subdetectors. Examples are the rejection events with tracks not

originating from the interaction point, as these are likely to be machine background,

or events whose timing does not match a bunch crossing.
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Figure 3.13: Schematic explanation of the interplay between the detector, the triggers

and the first stages of the reconstruction process, known globally as the data acquisition

system.

Level-3 trigger lines may also be prescaled to reduce the rate of less interesting

physics events, such as Bhabha scatterings. Calculation of efficiencies requires ac-

cepting events that do not satisfy any of the level-3 criteria. These are known as L1

passthrough events.

3.10 Data Aqcuisition

By data acquisition (DAQ) system we refer to the overall architecture by which the

detector, the triggers and the computing structure are governed. The diagram in

Figure 3.13 schematically depicts it. The front end electronics process and digitize

the signals coming from the detector and passes them to the the level-1 trigger and

the data flow buffers. If an accept signal is issued by the fast control and timing,

the event is passed to the level-3 trigger, which also performs some basic data quality

monitoring. Finally, if the event is accepted by the L3T, it is written to disk, where

it will be passed to the online prompt reconstruction software in a matter of days.

The DAQ is also responsible for recording the detector conditions, that will be used

in the production of simulated data to better reproduce the running conditions (see

Section 4.2).
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3.11 Online Prompt Reconstruction

After a data sample, typically consisting of around an hour of experiment running,

has been logged on to disk, it goes through a prompt calibration processing, during

which some of the calibration methods mentioned earlier in the chapter are run, and

part of the data quality monitoring is performed. Following that, the data continue to

event reconstruction, where tracks and clusters are found, and particle identification

information (PID) is calculated. An event, by then essentially a collection of tracks,

EMC clusters and IFR clusters, is stored in a database that will be accessed by the

analysts reconstruction code to form candidates for events of a given decay channel

(see Section 4.3). Once all these quantities have been calculated, a more detailed data

quality check is made.
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Chapter 4

Analysis Techniques

In this Chapter, we describe in detail some tools and methods commonly used in High

Energy Physics analyses, such as simulated data (see Section 4.2), the approach to re-

constructing data events (Section 4.3), signal and background discriminating variables

(Section 4.5) and maximum likelihood fits (Section 4.6). We also discuss some other

techniques that are particular to B physics, such as tagging (Section 4.1), the mea-

surement of ∆t and the modelling of its resolution (Section 4.4). A good, published

reference for the latter ones is [23].

4.1 Flavour Tagging

As discussed in Chapter 2, an essential ingredient to the measurement of time-dependent

CP asymmetries is the determination of the flavour of one of the two B mesons in the

event, referred to as Btag. This is achieved by examining the decay products of the

meson when it decays into a flavour-specific state. A good example is the process

b→ cl−ν̄, in which the charge of the lepton l unambiguously identifies that of the b

quark and hence its flavour, b or b̄. The importance of such a procedure, known as

tagging, stems from the fact that the statistical error on measurements extracted from

time-dependent analyses like sin2β or ∆md depends strongly on the mistag rate, w,

the probability of wrongly assigning a flavour to Btag. Specifically, the error σ on
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such quantities is inversely proportional to the square-root of the so-called “effective

tagging efficiency”, Q [23]:

Q = εtag (1− 2w)2 , σ ∝ 1√
Q
, (4.1)

where εtag is the fraction of events that are assigned a tag, and D = 1 − 2w is the

dilution factor. The efficiency εtag is calculated with respect to the sample of events

that satisfy the requirements for the tag-side vertexing (see Section 4.4) and that have

at least one fully reconstructed candidate. In such conditions, the effective tagging

efficiency of BABAR is Q = 30.5 ± 0.3% [24] with the latest version of the tagging

protocol, Tag04, that we describe later in this section.

Denoting by w (w̄) the probability of incorrectly reporting a Btag = B0 as B0

(Btag = B0 as B0), the following quantities, which are more convenient from the

experimental point of view, are defined:

〈w〉 = 1
2
(w + w̄) , ∆w = (w − w̄) (4.2)

D = 1− 2w , D̄ = 1− 2w̄ (4.3)

〈D〉 = 1
2
(D + D̄) = 1− (w + w̄) , ∆D = (D − D̄) = −2(w − w̄), (4.4)

where ∆D (or ∆w) parameterizes a possible difference in performance of the tagging

procedure for the two tags, B0 and B0.

4.1.1 BABAR’s flavour tagging algorithm

The BABAR tagging algorithm [68] first removes from the event the tracks and neutral

objects belonging to the fully reconstructed B meson. The remnants are analyzed

by a Neural Net (NN, see Section 4.5.3), referred to as Tag04, which assigns to the

event an overall (signed) probability, the magnitude representing the confidence in the

estimation, and the sign indicating the flavour of the meson (NN=+1 → Btag = B0,

qtag = +1; NN=−1→ Btag = B0, qtag = −1). The inputs to Tag04 are themselves the

results of other NNs, which are optimized to find any of nine distinct processes that
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would uniquely identify the flavour of their parent B meson, and are hence known as

“sub-taggers”.

The algorithm also classifies the event in the most stringent of seven disjoint,

hierarchical categories matching the event’s Tag04 output value. In order of decreasing

dilution, these categories are: Lepton, KaonI, KaonII, Kaon-Pion, Pion, Other

and Untagged, where the last one is deemed to provide no reliable tagging information,

Duntagged = 0. Although the categories are defined solely according to the range of NN

values they span (and in the exceptional cases of Lepton and KaonI, PID information),

their names are related to the sub-tagger that contributes the most.

The algorithm is trained and checked against simulations (MC), and is later vali-

dated in data on a large sample of fully reconstructed, flavour-specific decays, B0 → D(∗)±π∓,

B0 → D(∗)±ρ∓ and B0 → D(∗)±a∓1 (together known as Bflav), where a fit to the ∆t

distribution (see Eq. (2.20)) allows the extraction of the mistag rates (see Table 4.1).

Table 4.1: Performance of BABAR’s Tag04 tagging algorithm, described by the tagging

efficiencies and mistag rates and broken down by tagging category, as measured on

the Bflav sample. ∆εtag and ∆Q are defined analogously to ∆w. The algorithm is

described in detail in [69] and references therein, and the efficiencies presented here

are compatible with those in the cited reference.

Category εtag(%) ∆εtag(%) w(%) ∆w(%) Q(%) ∆Q(%)

Lepton 8.69± 0.07 −0.0± 0.2 3.1± 0.3 −0.1± 0.6 7.66± 0.12 0.04± 0.41

KaonI 10.96± 0.08 0.2± 0.2 5.2± 0.4 −0.1± 0.7 8.78± 0.16 0.21± 0.50

KaonII 17.23± 0.10 0.1± 0.3 15.4± 0.4 −0.5± 0.6 8.26± 0.18 0.29± 0.54

Kaon-Pion 13.78± 0.09 −0.3± 0.3 23.5± 0.5 −1.8± 0.7 3.88± 0.14 0.43± 0.38

Pion 14.37± 0.09 −0.7± 0.3 32.9± 0.5 5.1± 0.7 1.67± 0.10 −1.08± 0.26

Other 9.57± 0.08 0.3± 0.2 41.8± 0.6 4.6± 0.9 0.26± 0.04 −0.28± 0.10

Total 74.61± 0.12 −0.4± 0.6 30.5± 0.3 −0.4± 1.0

We now proceed to describe each of the nine sub-taggers in more detail. It should
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Figure 4.1: Diagrams representing b decays likely to produce a Lepton tag (left) and a

Kaon tag (right). The effectiveness of the variable E90
W in identifying primary leptons

is illustrated, since, unlike secondary ones, they are likely to be isolated from the rest

of the charged tracks involved. The right-hand diagram demonstrates how right- and

wrong-sign kaons may appear in a b decay.

be born in mind that the classification of events into tagging categories is performed

according to their overall numerical value of the NN, to which all nine sub-taggers

contribute, in spite of the names of some of the sub-taggers and tagging categories

suggesting a direct link between the two.

Lepton sub-taggers

The lepton sub-taggers aim to exploit the semileptonic decays of the B meson (with a

branching fraction of 10.4(4)% [22]), in which the b(b̄) emits a virtualW−(W+) boson,

and the latter decays to an electron or a muon and an (anti)neutrino. The charge of

the lepton, called the primary lepton, is unambiguously linked to the flavour of the

parent meson. The issue, then, is to isolate these primary leptons from secondary

leptons that could arise further along the decay chain, e.g. in a semileptonic decay of

a daughter D0 meson.

Several discriminating variables are used, an obvious candidate being the CM mo-
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mentum of the track, p∗. The momentum spectrum of a primary lepton will be harder

than that of a secondary lepton. The cosine of the angle between the missing momen-

tum (which approximates that of the neutrino) and the lepton’s momentum, cos θmiss,

is also used, since their directions are expected to be anticorrelated in the CM frame.

Finally, the energy contained in the hemisphere defined by the direction of the virtual

W±, E90
W , is found to be useful (Figure 4.1). For primary leptons, theW recoils against

a c quark in the CM frame, leading to a virtually empty hemisphere, whereas in the

case of secondary leptons, the c quark that emits the W has recoiled from the decay

of the b with an appreciable boost, and all its decay products will be boosted in the

same direction.

There are 3 sub-taggers that are trained independently using the discriminating

variables described above:

• the electron sub-tagger, whose inputs are only tracks that satisfy the VeryTight

(see Section 4.3.3) electron PID criteria.

• the muon sub-tagger, whose input tracks must be at least Tight muon candi-

dates.

• the kinematical lepton sub-tagger, whose goal is to recover primary leptons based

solely on the kinematics, for the cases in which the stringent PID criteria of the

previous sub-taggers are not satisfied. It is therefore run over all the remaining

charged tracks.

Kaon sub-tagger

The purpose of this sub-tagger is to select charged kaons, formed mainly in cascade de-

cays, B0 → D̄ (→ K+Y )X. Again, one must distinguish between kaons whose charges

correlate differently with the flavour of Btag. The most likely production mechanism,

b→ c→ s, gives rise to right-sign kaons, whereas the wrong sign kaons are, for in-

stance, the decay products of the W−, e.g. b → W−c with c → s (right sign) and

W− → c̄q with c̄→ s̄ (wrong sign). This is iluustrated in Figure 4.1.
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The kaon sub-tagger is the highest contributor to BABAR’s Q value, due to the high

branching fraction for inclusive B0 → K±X decays (78(8)% [22]) and the good signal-

to-background ratio. This is yet another example of the close link between the physics

goals of a B Factory and its need for excellent particle identification capabilities, and

especially kaon-pion separation.

The input variables to the NN are in this case the charge and PID likelihood of the

best three kaon candidates of the event, the number of reconstructed K0
S
candidates

and the sum of transverse momentum squared, Σp2t . The latter helps to discriminate

kaons originating from a W rather than from a charmed object, whereas a non-zero

number of K0
S
decreases the certainty of the tag, since the strange quark from the

cascade b→ c→ s could have formed a neutral rather than a charged kaon, providing

no information on the Btag flavour.

Slow Pion sub-tagger

Slow pions provide another source of flavour identification, their charge being the key

that unlocks the copious B0 → D∗+X decays, where D∗± → D0π± about 2
3
of the

time. The small mass difference between the D∗ and D0 mesons means that the pion

will carry an unusually low momentum (hence the “slow” label), with an average of

around 100 MeV/c. It also means that the pion and the D0 are emitted almost at rest

in the D∗ CM frame, and that the latter’s boost will strongly correlate the directions

of the tracks originating from the D0 to that of the pion.

This leads to the slow pion’s momentum, p∗, and cos θthrust, the cosine of the angle

between the pion’s track and the thrust axis of Btag (see Section 4.5), as natural choices

to be input variables. PID information about the slow pion candidate, LK , is also used

to reject slow kaons from the D0 decay.

Kaon-Slow Pion sub-tagger

In a high proportion of D∗± decays we can do better than the previous sub-tagger,

recalling that the favoured decay for a D0 is D0 → K−X (53(4)% [22]), and that the
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D0 decay products fly along the same direction as the slow pion. Thus, using the

slow pion candidates given by the previous sub-tagger, PID information for the kaon

candidates and the angle between their tracks, cos θKπ, a cleaner tag can be obtained.

Highest p∗ sub-tagger

Another source of information about the flavour of Btag is the charge of the decay

products of the virtual W , which can be quite energetic. These decay products may

be leptons not properly identified, or fast particles from the hadronization of the W ,

such as the pion in B0 → D∗π. Apart from the momentum of the track, p∗, and the

cosine of the angle between the fast particle and the thrust axis of Btag, another useful

variable is the track impact parameter in the xy plane, since the W decays so rapidly

that its daughter particles originate from the Btag vertex.

Fast-Slow correlation sub-tagger

An aspect of the decay b → cW− that has not been exploited by the sub-taggers

described so far is the correlation between the directions of the decay products of the

W and of the charmed meson formed by the c. In particular, a slow pion originating

from a D∗± decay should fly roughly back-to-back with the fast decay products of

the W∓, and should also be oppositely charged. The natural discriminating variables

are, thus, the momenta of the slow and fast tracks, the cosine of their angles with the

thrust axis of Btag, the cosine of the angle between the tracks, and PID information

about the slow track (to ensure that it is not a kaon).

Lambda sub-tagger

In a small fraction of events, the process b→ c→ s ends with the strange quark

forming a Λ baryon. In spite of its scarcity, the cleanliness of the signature makes it

worth considering. A number of standard variables for neutral, long-lived objects are

used (mass of the candidate, mΛ, cosine of the angle between its momentum and its
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flight direction, cosα, flight length, cτΛ, momentum of the candidate pΛ and probability

for the fit of the Λ→ pπ decay vertex, χ2) as well as PID information for the proton.

4.2 Monte Carlo

Simulated data, usually referred to as Monte Carlo data, or simply MC, are essential to

understand detector effects (e.g. efficiency, misreconstruction of signal), backgrounds

and any systematic effects that could afflict our analysis procedure. The simulation of

the physics mechanisms that operate in e+e− collisions within BABAR’s energy regime

and the way that their products interact with the detector and are handled by the

reconstruction software does not need to be perfect in order to make a measurement.

However, the more detailed and faithful it is, the more effective we are at discarding

any systematic problems in the data analysis, e.g. efficiency evaluations.

Often, it is most useful to be able to trace the behaviour of single particles within

an event through the whole process, and for this reason information about each of

them is carried along all the phases of simulation, from the production, to the later

stages of track-fitting, cluster-matching and vertexing. The comparison between the

reconstructed information about the event and its generator-level counterpart (truth-

matching) can be realized in a variety of ways. In BABAR, the approach adopted con-

sists of assessing the fidelity of the reconstructed data only after the full reconstruction

has been completed, without any such assessment in the intermediate stages, e.g. after

the track-finding.

The EvtGen package [70] is responsible for the physics simulation, providing an

accurate representation of subtle phenomena such as mixing and interference (nec-

essary for the correct modelling of CP -violation) or the angular distributions of the

decay products in non-trivial situations like pseudoscalar-to-vector-vector decays, for

instance. The vast majority of B decays are generated by EvtGen, with the remaining

generic B decays to hadronic final states (for which there is no specific model) and

the continuum events (e+e− → qq̄, q = u, d, s, c) being produced via an interface
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to JETSET [71]. Charmless 3-body decays are modelled in detail by EvtGen using the

Isobar approximation (Section 2.5.3) with the lineshapes and angular dependencies

described in Sections 2.5.4 and 2.5.6. The output of this stage is a list of particles, the

4-vectors specifying their kinematics, and the (potentially displaced) vertices for the

products of the decays.

The simulation of the interaction of these decay products with the detector as they

propagate through it is carried out by software based on GEANT4 [72], and requires a

detailed model of the instrument, both in geometric and material terms. Processes like

rescattering or photon conversions, for instance, as well as a detailed account of the

energy lost and deposited by the particles in the different parts of the detector (e.g.

the gas that fills the Drift Chamber, or a crystal in the calorimeter) are the concern

at this stage. Each of these interactions with the detector is recorded as a “gHit”.

In the following stage, these “gHits” are used to simulate the data read out from

the electronics of the detector, the trigger and the data acquisition system. Typical

electronic noise and machine backgrounds characterizing a certain period of running of

the experiment are then added. These are obtained by recording the detector’s state

at regular intervals (∼ 1 Hz) during normal operations, and, due to their essentially

random nature, they are unlikely to represent any physics event.

Finally, the simulated detector’s electronic output is run through the same version

of BABAR’s reconstruction software that is used on real data.

A related, widely used term, is toy MC, by which we refer to events simulated

with the highly simplified model employed in the analysis to extract the relevant

physics quantities from signal and background. Only a few of the relevant variables

are usually taken into account and many of their possible correlations are neglected.

Detector response effects are also often ignored, or modelled in a highly abstract

manner, avoiding all the details of the passage of the particles through the detector

and the reconstruction software.
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4.3 Reconstruction

The reconstruction of events is performed in two stages. The first one, known as Offline

Prompt Reconstruction, consists of finding and reconstructing tracks and calorimeter

clusters from hits in the Drift Chamber and the Silicon Vertex Tracker, and crys-

tals with energy deposits in the Electromagnetic Calorimeter, respectively. Čerenkov

photons and dE/dx information are also processed at this stage and abstracted into

“particle identification selectors”. The second part of the process deals with the re-

construction of composites, objects that are not directly observed in the detector but

can be inferred from the properties and correlations of their decay products, the best

example being a B meson. “Candidates” for composites are formed from combinations

of tracks and neutral objects, allowing the important vertexing of the B meson and

the ∆t measurement to be made at this point.

4.3.1 Tracking algorithms

Due to the axial magnetic field in which the inner parts of the detector are immersed,

charged tracks follow helices and are described by five parameters, which we take to

be defined at the point of closest approach (POCA) to the z-axis:

• d0, the distance in the xy plane to the z-axis

• z0, the coordinate along the z-axis

• φ0, the azimuthal angle of the POCA

• λ, the dip angle of the track with respect to the transverse (xy) plane. It is

related to the cylindrical polar angle θ via θ = π/2− λ

• ω, the (signed) curvature of the track, whose sign and magnitude are related, re-

spectively, to the charge of the associated particle and its transverse momentum,

ω ∝ 1/pt .
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The tracks are fitted using a Kalman filter technique [73], that essentially fits each

vertex independently, and iteratively and recursively propagates the changes in the

parameters to the neighbouring vertices. Although the result is a global fit, the local

character of each step of the algorithm allows corrections to be made that model the

fine detail of the material distribution of the detector, the slight inhomogeneities of

the magnetic field or the energy loss of low momentum tracks.

The algorithm starts from the DCH hits found by the Level 3 Trigger to form a

track, and further hits are added if they are observed to be consistent with that track.

Once the process is finished, the remaining hits in the DCH are searched for tracks that

may not have originated at the beamspot (like K0
S
or Λ, that live long enough to have

their decay vertices outside the SVT), or may not be energetic enough to traverse the

whole chamber. Afterwards, SVT hits are examined and added to the existing DCH

tracks if possible, and are otherwise searched to locate any low momentum, SVT-only

tracks.

The reconstructed tracks are then classified and stored in lists according to different

selection criteria. In the present analysis, the pion candidates are required to meet the

conditions of the GoodTracksLoose list:

• pt > 0.1GeV/c

• p < 10.0GeV/c

• at least 12 hits in the Drift Chamber

• d0 < 1.5 cm

• |z0| < 10 cm

The K0
S
candidates are formed from any two oppositely charged tracks (often not

meeting the GoodTracksLoose requirements above), assumed to be pions, and whose

mass, once vertexed, is within 25MeV/c2 of the PDG value [22].
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4.3.2 Calorimeter algorithms

The interactions of particles in the Electromagnetic Calorimeter typically result in

showers, with the deposited energy spreading over neighbouring crystals. Each group

of crystals, known as a cluster, might be due to the impact or passage of more than

one particle and hence present energy distributions with several maxima. The aim

of the calorimeter reconstruction routines is to locate and extract the right shape of

the clusters, and to identify and correctly assign the energy to all the maxima within

them.

The algorithm first looks for crystals with energies greater than 10MeV, that will

be used as ‘seeds’ for cluster formation. Surrounding crystals containing above 1MeV

themselves, or being neighbours of other crystals with more than 3MeV are added to

the cluster.

Local maxima are found by standard methods, and are assigned a fraction of the

energy of each crystal in the cluster that depends on the ratio of the distance from the

crystal to the maximum, and the Molière radius.

Finally, tracks are projected onto the calorimeter, and if their position and entrance

angle are consistent with one of the maxima, they are linked and considered as a

single particle in the following reconstruction routines. The remaining maxima are

assumed to be neutral objects and placed in lists analogous to the GoodTracksLoose

list described above.

4.3.3 Particle Identification

There are five common types of charged, long-lived particles that can be tracked

in the BABAR detector: electrons, muons, pions, kaons and protons. Their correct

identification is paramount for the physics goals of a B Factory, and this can be

achieved thanks to the different ways in which those particles interact with each part

of the detector. Information from all the sub-detectors (SVT, DCH, EMC, DIRC and

IFR) is gathered to form PDFs (see Section 4.6) that represent the likelihood of a

track belonging to a certain species. Since electrons and muons can often be separated
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easily from the other types of particles by their behaviour in the Electromagnetic

Calorimeter and the Instrumented Flux Return, respectively, and protons are quite

scarce, we will focus on the kaon-pion separation.

The likelihood for kaon and pion hypotheses is constructed as the product of the

PDFs from the SVT, the DCH and the DIRC for the given particle hypothesis, where

the first two contribute with measurements of the rate of energy loss (dE/dx) and the

last one, with an estimation of the angle with respect to the track at which photons are

emitted in the quartz bars of the DIRC. For both the DCH and the SVT, the measured

energy loss of each track is compared with the Bethe-Bloch [22] expectation1 by forming

the pull (see Section 4.6), and is parameterized with a gaussian and a gaussian with

asymmetric widths, respectively. The DIRC suffers from long non-gaussian tails that

prevent the use of a similar method, so a binned likelihood is calculated instead with

the help of MC. This likelihood depends on the angle of the Čerenkov photons with

respect to the track, and also on the number of photons, since the latter is a function

of the momentum and type of the particle, and it helps to improve the identification

of low momentum tracks.

Once the likelihoods for the different particle hypotheses have been calculated,

cuts on their values are applied, and the track is entered into different lists according

to the criteria satisfied: VeryLoose, Loose, Tight and VeryTight for pions, and

NotPion, VeryLoose, Loose, Tight and VeryTight in the case of kaons. For the

analysis described in this thesis, piLoose was chosen (see Section 5.4). The efficiency

of such a requirement on pions is above 95% in most of the kinematical range, and

around 5−15% for kaons is ∼ 10% depending on the momentum. The higher intrinsic

fraction of pions over kaons in hadronic events, and the additional cuts on background

discriminating variables, mean that we expect a negligible kaon contamination in our

sample.

1In practice, rather than using the theoretical expectation, an empirical parameterization of the

expected value is used.
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4.3.4 Vertexing of candidates

Candidates for composite (not observable) particles are first formed from all the pos-

sible combinations of tracks and neutral objects matching the decay daughters of the

particle. These candidates are then required to meet some kinematical criteria, and

are subsequently vertexed. For instance, in the reconstruction of the charmless decays

B0 → K0
S
π+π−, any intermediate states that may appear, like ρ0 or K∗+(892), are

governed by the strong force and have such short lifetimes that their decay daughters

may be assumed to originate from the B meson. Hence, there can only be candidates

for the K0
S
and the B mesons, and those of the latter are chosen as all the combinations

of any two oppositely charged tracks in the event and a K0
S
candidate, whose total

centre-of-mass energy is in the range (4.99, 5.59)GeV.

Once a kinematical candidate has been found, its decay vertex is calculated by

means of a geometric fit, in which the tracks of the daughters are required to emerge

from a common vertex. Such is the task of the TreeFitter package, which performs

a global fit to the whole decay chain by applying the Kalman filter technique. An

estimation of the interaction point, obtained from a fit to all tracks in the event, is

used as the first guess in the iterative procedure for the B vertex reconstruction.

Constraints may be applied in the fit to reduce detector resolution effects. Indeed,

the impact of these is higher in Dalitz analyses, since it may cause events to lie outside

the kinematical boundaries of the Dalitz plot (i.e. the 4-momenta of the three daugh-

ters do not add up to that of the parent B meson). Final-state radiation can result

in similar problems. To address these issues, and improve the resolution of structures

in the Dalitz plot, two vertexing fits are done to the B candidates. The first one is

unconstrained, and the kinematical background-rejecting variables mES and ∆E are

extracted from it (see Section 4.5). In the second fit, in which the composite is con-

strained to have the nominal B meson mass [22], the Dalitz-plot coordinates and the

related event shape variables are calculated.

83



4.4 ∆t measurement and resolution

4.4.1 Measurement of ∆z

As mentioned earlier, the measurement of the time difference between the decays of

the two B mesons is made by first determining the separation along the z-axis between

the decay vertices of the two particles. This sets a constraint on the resolution that

should be achieved, as the distance βγcτB0 = 257µm should be able to be measured

comfortably. The vertex of the fully reconstructed meson, Brec, is fairly well deter-

mined by vertexing its daughters (see Section 4.3.4). The remaining tracks are used to

reconstruct the other B, Btag, but in contrast with Brec, this meson has to be recon-

structed inclusively, in a general way, in order to keep the efficiencies at a reasonable

level. This inability to reconstruct Btag fully is the cause of the poor resolution for the

Btag vertex, which dominates the overall resolution in ∆z. Indeed, although the RMS

of the resolution in z for Brec is ∼ 65µm for more than 99% of the candidates (and as

good as ∼ 45µm for more than 80%), the RMS of the residual in ∆z (fitted minus true

value) is ∼ 190µm (∼ 150µm for 99% of the events). Note that these numbers com-

pare well with the necessary resolution quoted before. We have quoted the resolutions

in this way because a few of the decay vertices are not correctly determined, leading

to long, very widely spread tails in the residuals distribution, comprising a very small

fraction of events (< 1%).

The algorithm used for the reconstruction of the Btag vertex replaces the daughters

of long-lived particles, such as K0
S
and Λ, by the trajectories of the composites in an

effort to avoid the bias and tails that using tracks coming from a displaced vertex would

cause. Tracks consistent with photon conversions are also removed. The daughters

of D mesons and other charmed particles, whose lifetimes are comparable to those of

the B mesons, can still introduce those undesired effects. In an effort to avoid them,

an iterative procedure is used to find the Btag vertex, in which the track that brings

in the highest increment in the χ2 of the fit is excluded, and the fit is redone if the

increase in χ2 is greater than 6 units. This procedure is repeated until all tracks satisfy
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the criterion. The adverse effects of the tracks originating from charmed particles and

other displaced vertices are thus reduced but not completely removed, and they have

to be properly accounted for in the modelling of the ∆t resolution (see Section 4.4.3).

In cases like B0 → K0
S
π+π−, where there are no neutrinos and so Brec is fully re-

constructed, further use can be made of the quantities extracted from its fit to improve

the measurement of ∆z. In particular, its momentum and the beam spot position can

be used to form a pseudo-trajectory for Btag, thus providing an additional constraint

to fit the tagging candidate daughters to a common vertex. This is demonstrated in

the pictorial explanation of the tagging process given in Figure 1.1.

Finally, it is worth stating that, even though ∆z is constructed as the difference

between the positions of two vertices, it is mostly insensitive to the displacements of

the vertices with respect to the beam spot.

4.4.2 Determination of ∆t

In the approximation of negligible B momenta in the Υ (4S) rest frame, ∆t is given by

∆t =
∆z

βγc
, (4.5)

where βγ is the boost factor of the Υ (4S) resonance in the laboratory frame. This

factor is calculated from the beam energies, which are monitored continuously, and

has a value of βγ = 0.56 for the current configuration of BABAR.

However, the B mesons do have a small momentum in the Υ (4S) rest frame,

p∗B = 340MeV/c. Furthermore, this momentum can be measured in the case of a fully

reconstructed Brec meson, as discussed in the previous section, and used to correct

Eq. (4.5):

∆z = βγγ∗recc (trec − ttag) + γβ∗
recγ

∗
rec cos θ

∗
recc (trec + ttag) (4.6)

where γ∗rec = 1.002, β∗
rec = 0.064 and θ∗rec are, respectively, the boost factor of the

reconstructed B meson in the centre-of-mass frame, its speed, and its angle with

respect to the z axis. The problem with the last expression is that the quantity

trec + ttag is not directly measured. It can be related to the transverse displacement
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of one B meson with respect to the other, but its value is rather small (∼ 35-40µm)

compared to the resolution achieved for the Btag vertex. Instead, we take its average

value2:

〈trec + ttag〉 = τB + |∆t| (4.7)

giving

∆z = βγγ∗recc (trec − ttag) + γβ∗
recγ

∗
rec cos θ

∗
recc (τB + |∆t|) (4.8)

which can be solved for ∆t. The value of ∆t is corrected by only ∼ 0.02 ps relative

to Eq. (4.5). The use of Eq. (4.8) improves the resolution for ∆t by about 5% and

removes a correlation existing in signal data between the true value of ∆t and its reso-

lution, although at the cost of introducing a similar correlation for the less understood

continuum background events.

4.4.3 ∆t resolution model

The resolution in ∆t is modelled as the sum of three gaussians, known as the core, tail

and outlier components:

Rsig(δt, σ∆t) = (1− ftail − foutlier)G (δt, bcoreσ∆t, scoreσ∆t) (4.9)

+ftailG (δt, btailσ∆t, stailσ∆t) + foutlierG (δt, boutlier, soutlier)

where δt = ∆t−∆ttrue is the residual, σ∆t is the event-by-event error on ∆t extracted

from the fit and the G functions represent normalized gaussians:

G (δt, µ, σ) =
1

σ
√
2π

exp

(

−(δt− µ)2
2σ2

)

. (4.10)

The dependence of the means and the widths on the error σ∆t, introduced via the

scaling factors bcore(tail) and score(tail), is due to an observed correlation between σ∆t

and the means and RMS of the ∆t residual distributions caused by charmed decay

2Its conditional average for a fixed ∆t, actually (see [74] for details). Note that, as expected from

the LHS, the RHS of Eq. (4.7) is also approximately equal to 2τB , since |∆t| is the time that one of

the mesons takes to decay after the other one has decayed, and therefore satisfies |∆t| ∼ τB .
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daughters. The effect is bigger when the charmed meson flies along the z direction

than in the xy plane, since the error and the bias brought about by vertexing particles

coming from a secondary displaced vertex affects the determination of the z component

of the Btag vertex directly only in the first case. Thus, a correlation between larger

values of σ∆z and the bias in ∆z is produced. This trend is observed to be less

strong in events with a lepton tag, so the b and s parameters are taken to be tagging

category-dependent quantities.

The outlier gaussian, which is indepedent of σ∆t, describes the small fraction of

events (< 1%) for which at least one of the two vertices is badly reconstructed.
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Figure 4.2: ∆t distributions for B0 (red) and B0 (blue) tagged events with perfect tag-

ging and resolution (left), and with typical BABAR mistag rates and resolution effects

incorporated (right). A simple one gaussian model has been used in the demonstration

of the resolution effects.

Although the parametrization described above has been developed in comprehen-

sive studies for the charmonium sin2β analyses [23], we adopt the same model for our

work in the decay mode B0 → K0
S
π+π−. This is justified because the dominant factor

in the ∆t error is the poor determination of the Btag vertex, and the algorithm to find

this is independent of the channel into which Brec decays, so it is a good approximation

to consider the resolution in ∆t to be the same for all channels. The effects that a

typical resolution model has on the ∆t distribution have been illustrated in Figure 4.2.
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See also Table 4.2 for the values of the resolution parameters used in B0 → K0
S
π+π−.

As for the mistag rates (Section 4.1.1), these are extracted from a fit to the Bflav

sample.

Table 4.2: Parameters that describe the resolution in ∆t for signal events, ex-

tracted from the Bflav sample for the charmonium sin2β analyses [24], and used for

B0 → K0
S
π+π−. The parameters from all tagging categories except Lepton were found

to be consistent. Extensive MC studies also suggested which parameters to keep fixed

in the fit. The scaling constants score(tail) (> 1) correct for an overall underestimation

of σ∆t.

Lepton Other categories

bcore −0.0789± 0.0304 −0.1850± 0.0138

score 1.0610± 0.0459 1.1059± 0.0223

fcore 0.8916± 0.0088

btail −1.1186± 0.1354

stail 3.0 fixed

foutlier 0.0034± 0.0006

boutlier 0.0 fixed

soutlier 8.0 ps−1 fixed

4.4.4 Implementation of resolution effects in ∆t

Once an accurate model of the ∆t resolution has been produced, its implementation

requires convolving the expected PDFs with the resolution to obtain the observed

distributions:

Pobserved (x, y, ∆t) =
(

P theory ⊗Rsig

)

(x, y, ∆t) (4.11)

=

∫ +∞

−∞

P theory (x, y, ∆ttrue)Rsig(∆t−∆ttrue)d∆ttrue . (4.12)
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Since the resolution is modelled as a sum of three gaussians, inspection of the expected

signal distribution Eq. (2.19), which has the form

fqtag (∆t) =
e−|∆t|/τ

4τ

(

1 + qtagS sin (∆md∆t)− qtagC cos (∆md∆t)
)

, (4.13)

leads us to consider the following convolution integrals:

e−|x|/τ ⊗G(x, µ, σ), (4.14)

e−|x|/τeikx ⊗G(x, µ, σ). (4.15)

These can be calculated analytically once the following definitions have been intro-

duced:

erfc (z) =
2√
π

∫ +∞

z

e−t
2

dt (4.16)

w (z) = e−z
2

erfc (−iz) . (4.17)

These are, respectively, the “complementary error function” and the “complex error

function” [75]. Writing Eq. (4.14) and (4.15) in term of these definitions gives

e−|x|/τ ⊗G(x, µ, σ) =
1

2
exp

(

σ2

2τ 2
+
x− µ
τ

)

erfc

(

σ

τ
√
2
+
x− µ
σ
√
2

)

(4.18)

+
1

2
exp

(

σ2

2τ 2
− x− µ

τ

)

erfc

(

σ

τ
√
2
− x− µ

σ
√
2

)

and

e−|x|/τeikx ⊗G(x, µ, σ) =
1

2
e−(x−µ)2/2σ2

[

w

(

− kσ√
2
+ i

(

σ

τ
√
2
+
x− µ
σ
√
2

))

(4.19)

+ w

(

+
kσ√
2
+ i

(

σ

τ
√
2
− x− µ

σ
√
2

))

]

.

Computational calculations of these convolutions rely on the implementation of the

complementary error function from ROOT and on our own implementation of the algo-

rithm [76] for the complex error function. However, numerical problems due to large

cancellations arise for parts of the range of interest. Following RooFit [77], they are

taken care of by using

w (z) ' 2e−z
2

(

1 +
ez

2

iz
√
π

)

(4.20)
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when Im (z) ≤ 4.0, thus cancelling explicitly with the exponential on the RHS of

Eq. (4.19) the divergent behaviour of the factor exp ((x− µ)2/2σ2) = exp− (i2=2 (z))

that appears when writing the complex error functions from Eq. (4.19) in terms of the

complementary error function (Eq. (4.16)).

Finally, the normalization can also be derived analytically. Although in the limit

of an infinite range in ∆t, the normalization reduces to the constant 2τ and can be

dropped, for finite intervals the tails due to resolution effects get cut off. This issue

would only give a constant correction to 2τ , were it not for the dependence of the

resolution on the per-event quantity σ∆t, which means that the normalization must

also be calculated on a per-event basis.

To ease the task, we observe that the form of the ∆t distribution, Eq. (4.13), sug-

gests the following reasoning: since qtag can take the values ±1, and the normalization

of the total PDF involves a sum over qtag as well as the integration over ∆t, we calcu-

late the total normalization, in which the terms multiplied by qtag cancel and only the

convolved exponential term remains3. Hence, if (−t0, t0) is the allowed range for ∆t,

norm =

∫ +t0

−t0

e−|x|/τ ⊗G (x, µ, σ) dx (4.21)

which gives

norm = τ

{

erf

(

t0 + µ

σ
√
2

)

+ erf

(

t0 − µ
σ
√
2

)}

(4.22)

+
τ

2
e

σ2

2τ2 +
µ
τ

{

e
t0
τ erfc

(

σ

τ
√
2
+
µ+ t0

σ
√
2

)

− e− t0
τ erfc

(

σ

τ
√
2
+
µ− t0
σ
√
2

)}

+
τ

2
e

σ2

2τ2 −
µ
τ

{

e
t0
τ erfc

(

σ

τ
√
2
+
−µ+ t0

σ
√
2

)

− e− t0
τ erfc

(

σ

τ
√
2
+
−µ− t0
σ
√
2

)}

.

These formulae and their implementations were tested extensively against numer-

ical calculations over a range of values for the lifetime τ and resolution width σ pa-

rameters, and in particular for the typical values in BABAR.

3In other words, the probability of observing an event regardless of its tag is given by an exponen-

tial, resolution effects apart, as we expect due to the exponential law for the decay of particles. We

can therefore calculate the overall normalization by integrating the exponential rather than adding

the normalizations of the PDFs for each tag separately.
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4.5 Discriminating variables

The small branching fractions of charmless B decay modes like the one studied in

this thesis (for B0 → K0
S
π+π−, (2.24± 0.13) × 10−5 [22]) and the high cross sections

for the undesired processes e+e− → qq̄, q = u, d, s, c (σudsc ∼ 3.2 × σbb̄), make the

use of background-rejecting variables unavoidable. By making use of the differences

between the distributions of signal and background events in these variables, statistical

separation of the two species can be attained. These differences can be taken advantage

of in two ways. If the densities of events for the two types peak at different points of

the range in the variable considered, a “cut” on the variable may be imposed, rejecting

all events that lie on one side of the cut value, and enriching the sample with signal

events. The other approach consists of accepting all events, and assigning each of

them a weight or probability of belonging to each species based on their value for the

discriminating variable. In the present analysis, a mixed strategy has been followed:

loose cuts are applied on the three discriminating variables, mES, ∆E and F , but their
distributions are also used in the fit to help determine the number of events of each

species.

We now proceed to describe in detail the variables mentioned above.

4.5.1 Kinematic variables

Two kinematic variables, largely uncorrelated [78], are defined to help discriminate

signal and background: the energy-substituted mass, mES, and the difference between

the reconstructed centre-of-mass energy of the B candidate and half the total centre-

of-mass energy, ∆E:

mES =
√

(s/2 + ~pi · ~pB)2/E2
i − ~p 2

B , ∆E = E∗
B −
√
s/2 , (4.23)

where ~pB is the momentum of the B candidate,
√
s denotes the centre-of-mass energy

and (Ei, ~pi) ≡ pi is the four-momentum of the initial state (the electron-positron

system). The mass of the B candidate calculated from the kinematic constraints, mES,

is used rather than simply
√

E2
B − ~p 2

B. The reason is that the candidate is formed from
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a number of tracks and neutral objects whose energies are not as accurately measured

as are the beam conditions. Therefore, a great improvement in the mass resolution

is achieved by using our knowledge of the initial kinematics. Since the electron and

the positron annihilate creating a BB pair, and the masses of the particle and of the

antiparticle are equal,

p2B = p2
B
= (pi − pB)2 = p2i + p2B − 2pipB ⇒ 0 = p2i − 2pipB ⇒ s/2 = −EiEB + ~pi · ~pB

⇒ mB =
√

E2
B − ~p 2

B =

√

(

s/2−~pi·~pB
Ei

)2

− ~p 2
B = mES.

Thus, for signal events, mES yields the mass of the B meson and shows a clean peak.

For continuum events, composed of light quarks, the only way of reaching the B rest

mass is by artificially associating random tracks. As a consequence, their distribution

displays the slowly varying shape that one could expect from their combinatoric nature.

The idea behind ∆E is different and complementary to that of mES. Whereas the

latter is by construction independent of the mass hypotheses for each of the tracks,

∆E depends strongly on them. If, for example, a kaon is misidentified as a pion,

its energy
√

~p 2
measured +m2

hypothesis, and consequently that of the B candidate, will be

smaller than its due share, and the event will be shifted towards negative values of

∆E. In contrast, the distribution for signal events peaks at zero as expected, making

∆E especially helpful in isolating backgrounds from misreconstructed B decays.

Plots of both variables for signal and background can be seen in Figures 5.7 and

5.22.

4.5.2 Event-shape variables

Event-shape variables, also known as topological variables, aim to exploit the angu-

lar correlations among the decay products in BB and qq events to further help the

separation of the two species.

In qq events (e+e− → qq̄, q = u, d, s, c), known as continuum, the small amount

of energy invested in the rest masses of the quarks means that most of the available

centre-of-mass energy will be carried as kinetic energy. This, in turn, implies that the
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event will have a two-jet-like structure, roughly following a (1 + cos2 θ) dependence,

where θ is the centre-of-mass angle of a jet with respect to the beam axis. This is as

predicted by lowest order Feynman diagram for the quantum electrodynamical (QED)

process of annihilation of an electron-positron system to produce a fermion-antifermion

pair. Indeed, since the typical energy scale for strong interactions is far smaller than

the available kinetic energy, ΛQCD ¿ mB −mqq, hadronization and other QCD effects

are not expected to alter greatly the expected QED angular dependence.

The e+e− → Υ (4S) → BB process, in contrast, is charaterized by the decay of

the vector resonance Υ (4S) into two pseudo-scalars, resulting in a sin2 θ distribution,

where θ is the angle between the momentum of one of the B mesons and the beam

axis. Furthermore, the reaction is barely allowed kinematically, with very little of the

centre-of-mass energy converting into kinetic energy of the B mesons. Their average

momenta, ∼ 340MeV/c, are in fact smaller than the typical momenta of their daugh-

ters, ∼ 1-2GeV/c, which means that the decay products of a bottom meson will not

be boosted enough to follow the flight direction of their parent. Hence the angular

distribution of the decay products will be roughly preserved. Since the B mesons are

pseudo-scalars, they decay isotropically and the distributions of their daughters in the

Υ (4S) centre-of-mass frame will be approximately spherical.

We will now describe a few variables that put to good use the differences explained

above. In the definitions that follow, it is useful to distinguish between the recon-

structed B side of the event, and the Rest Of the Event (ROE), that comprises all

tracks, composites and neutral objects that do not make up the B candidate.

Angle between the B momentum and the beam axis

As noted before, the distribution of the B momentum direction with respect to the

beam axis for BB events has a parabolic shape, sin2 θBmom
= 1− cos2 θBmom

. For con-

tinuum events, in contrast, kinematically appropriate B candidates can only be formed

from random combinations of tracks (often referred to as combinatoric background)

and as a consequence, cos θBmom
will also take random values. Hence, the distribution
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Figure 4.3: Distributions of | cos θBmom
| and | cos θBthrust

| for non-resonant

B0 → K0
S
π+π− signal MC (blue, solid) and off-peak data (red, dashed). The shapes

seen in the figure on the right differ somewhat from those discussed in the text due to

detector acceptance effects.

is expected to be uniform (see Figure 4.3).

Thrust Axis variables

The thrust axis of a collection of particles is defined as the direction in which the sum

of the projections of the momenta of the particles is maximized:

thrust axis n̂ : max
∑

i

|n̂ · ~pi|, |n̂| = 1 , (4.24)

where the i index runs over all the particles in the collection. Given the spherical nature

of B decays, the thrust axis of a true B candidate is essentially random. For continuum

events, however, which are strongly collimated, the above definition ensures that the

thrust axis approximates the direction along which the pair of quarks was emitted,

even when the tracks are selected artificially to form a kinematical B candidate.

Several variables can be defined employing the thrust axis, such as the cosine of

the angle between the thrust axis of the B candidate and the z axis, cos θBthrust
, or

the cosine of the angle between the thrust axes of the B candidate and the rest of

the event (Figure 4.3). Comprehensive studies [79] showed the latter to be strongly
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correlated with the variables described in the following subsection, so only cos θBthrust

is used in this analysis.

The ROE and Legendre polynomials

We can take further advantage of the marked differences in the angular distributions of

the momentum flow in signal events (∝ sin2 θ) and continuum events (∝ 1+ cos2 θ) to

refine the selection criteria. Since our analysis explores the whole allowed phase space

of a three-body decay, we cannot make use of the signal-side angular information on

that aspect without biasing our sample, but we can exploit the fact that the other B

in the event behaves statistically, but independently, in the same way. Furthermore,

a good way of characterizing the angular correlations of the rest of the event is to

calculate the components of the momentum distribution in the basis formed by the

Legendre polynomials.

Indeed, a calculation of the expectation values of the Legendre polynomials for the

signal and background momentum distributions enables us to identify the order of the

polynomials with the largest separation power. These turn out to be the zeroth and

the second order, whose expectation values are non-zero and different. The remaining

orders have vanishing expectation values (see Figure 4.4). They are defined as follows:

L0 =
ROE
∑

i

pi (4.25)

L1 =
ROE
∑

i

pi cos θi (4.26)

L2 =
ROE
∑

i

pi
1

2

(

3 cos2 θi − 1
)

(4.27)

where pi and θi are the momentum and the angle with respect to the beam axis of the

i-th track or neutral object in the rest of the event. The ratio of the two polynomials,

L2/L0, is used, instead of their individual values separately, as suggested by the studies

performed in [79].

It should be noted that the intrinsic symmetry inherent to continuum events, due
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to their jet-like structure, leads to correlations between the values of their ROE and

signal-side quantities. Since the signal side state is completely characterized by giving

its Dalitz-plot coordinates, correlations between these and some discriminating vari-

ables, such as the Legendre polynomials evaluated from the ROE, should be expected

for these events.
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Figure 4.4: Distributions of the zeroth, first and second order components in the

Legendre polynomials of the momentum flow in the rest of the event. The plot in the

bottom, right-hand corner shows the distribution of the ratio of the second-order to

the zeroth-order polynomials. Non-resonant B0 → K0
S
π+π− signal MC is displayed in

blue (solid) and off-peak data in red (dashed). It can be seen that the expectation

value of L1 is zero for both species.
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4.5.3 Fisher discriminant

If several discriminating variables are used, they are likely to be correlated to some

degree, especially if they exploit different aspects of the same physical principle, such

as those mentioned above. Cutting on one of them will then imply a cut on the others,

making it hard to find the optimal combined set of cuts. Instead, a unique variable

may be defined which takes full advantage of all the discriminating variables and their

correlations to maximize the separation power. The Fisher discriminant (F) [80] is

designed to do precisely that, although the maximization is only guaranteed in the

case in which the two populations can be separated by means of a linear boundary. It

is defined as a linear combination of the variables xi under consideration:

F =
∑

i

aixi = ~aT~x , (4.28)

where the coefficients ~a are found by maximizing the separation between the signal

and background distributions. This is defined to be

D(~a) =
(F̄S − F̄B)

2

σ2S + σ2B
, (4.29)

F̄ j being the means of the distributions, and σ2
j the variances. Writing these in terms

of the means ~µj and covariance matrices Ej of the variables,

F̄ j = ~aT~µj, σ2j = ~aTEj~a , (4.30)

we get

D(~a) =
~aT (~µS − ~µB)(~µS − ~µB)T~a

~aT (ES + EB)~a
, (4.31)

which we can maximize by differentiating and equating to zero, giving

~a = (ES + EB)
−1(~µS − ~µB). (4.32)

Thus, by using signal and background control samples, such as signal MC and off-

resonance data, for example, the coefficients ~a can be calculated.
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Studies were carried out to find the optimal choice of background discriminating

variables. The purpose was two-fold: firstly, to identify the optimal set of variables;

and secondly, to establish whether a linear or a non-linear method would perform

better. During the course of those studies, a number of additional variables were

tried (more event-shape variables, the cosine of the angle between the thrust axes of

the B candidate and the rest of the event, CLEO cones [81]) and rejected in favour of

cos θBmom
, cos θBthrust

and L2/L0 (see Figures 4.3 and 4.4 for the chosen input variables,

and Figure 4.5 for F) due to strong correlations among the variables themselves or

with the Dalitz-plot position. Comparisons between the Fisher discriminant, a Neural

Net [82] and a configuration of Boosted Decision Trees [83] were also made. The

performance of the Fisher was seen to be similar to that of the Neural Net, and both

of them were superior to the Boosted Decision Trees, although a smaller number of

configurations of the tunable parameters were explored in the last two approaches.

4.6 Maximum Likelihood fits

Maximum likelihood fitting is a powerful method to estimate the parameters that

characterize a given statistical distribution from a data sample representing it. A

more complete discussion can be found in [84] and [82], for example.

The distribution taken by the outcomes of a sampling experiment (i.e. the values

of a random variable x) can usually be described by a functional form P(x,~a) whose
shape is determined by some parameters ~a. If the function P(x,~a) is normalized, it is

said to be a Probability Density Function (PDF) for x. Given a set of N measurements

of the random variable, the problem consists of having the best possible estimations for

the values of the parameters ~a that charaterize the PDF. The estimations provided by

the maximum likelihood method are attained by seeking the values of ~a that maximize

the so-called likelihood function:

L (~a) =
N
∏

i=1

P (xi,~a) . (4.33)
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Figure 4.5: Normalized distributions of the Fisher discriminant for signal (blue, solid)

and continuum background (red, dashed). The variables from which it is constructed

are | cos θBmom
|, | cos θBthrust

| and L2/L0. As stated in Section 5.4, a cut is applied on

the discriminant (F > −0.365) that retains 90.0% of the signal.

Intuitively, the likelihood function represents the probability of drawing the N mea-

surements of the random variable given a certain set of values for the parameters ~a, so

optimizing this probability should yield the parameter values that best describe the

sample. In the simple case in which the data follow gaussian distributions, it can be

proved that the methods of maximum likelihood and the time-honoured least squares

are equivalent. The former, though, is not limited to binned distributions.

The PDFs can be quite complicated, reflecting several hypotheses for the source

of the measurement (e.g. whether it is signal or background), or the fact that the
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outcome of the experiment requires several random variables to be described:

P (i,~a) =
M
∑

j=1

Pj (xi, yi;~a) =
M
∑

j=1

Qj (xi;~aQ)Rj (yi;~aR) (4.34)

where M is the number of hypotheses, xi and yi are the outcomes of the i-th experi-

ment and in the last equality it has been assumed that the two random variables are

uncorrelated and, therefore, that their joint PDF P can be written as a product of

their individual PDFs Q and R.
A crucial point to the maximum likelihood method is the assumption that the PDFs

are normalized. If this were not the case, the results would be distorted or meaningless,

since changes to the parameters could increase the normalization without increasing

the probability, leading the optimization process to converge on incorrect values, or

even pushing the global maximum to infinity. Therefore, recalculation of the norms of

the PDFs is often necessary on each iteration of the fit.

Eq. (4.33) is not usually applied as such, but with a slight modification to ease its

computation. Taking logarithms, it can be rewritten as

` = − logL = −
N
∑

i=1

logP (xi,~a) , (4.35)

where the sum of logarithms is far more manageable in terms of machine precision than

the previous product. The minus sign has been introduced so that the optimization of

the likelihood function is performed by minimizing `. In our likelihood fitting package,

Laura++ [85], this is carried out numerically via an interface to Minuit [86, 87] through

ROOT [88].

4.6.1 Extended Maximum Likelihood fits

In particle physics, the number of events observed in an experiment is often unknown

a priori and can be considered to be one of the outcomes of the measurement. In that

case, the likelihood function must be appropriately modified to include the probability,

given by the Poisson distribution, of having N occurrences when ν is the expected
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value:

L (ν,~a) = e−ννN

N !

N
∏

i=1

P (xi,~a) =
e−ν

N !

N
∏

i=1

νP (xi,~a) , (4.36)

which, dropping constant factors, is generalized for M species or hypotheses by

L (~n,~a) = e−
∑M

k=1 nk

N
∏

i=1

(

M
∑

j=1

njPj (xi,~a)
)

, (4.37)

where nj is the number of events for the hypothesis j.

4.6.2 Error estimation

There are several ways of calculating the errors on the estimations of parameters

returned by a maximum likelihood fit, each of them involving different assumptions.

Usually, the standard deviation σ, calculated as the square-root of the variance, is

taken as the error on a parameter. In the large sample limit, the covariance matrix,

and hence the errors, can be computed by inverting the matrix of the second derivatives

of the likelihood function with respect to the parameters evaluated at the maximum:

(

V −1
)

ij
= − ∂2 logL

∂ai∂aj

∣

∣

∣

∣

~a=~a0

(4.38)

where ~a0 are the values returned by the fit.

Another method consists of defining the errors σi by the points a0i ± σi in which

the logarithm of the likelihood drops by 1/2:

`
(

a0i ± σi
)

= `
(

a0i
)

+ 1
2
= `max +

1
2
. (4.39)

This prescription is inspired by the fact that, when the second derivatives of the

likelihood can be considered constant in the range given by a0i ± σi, the shape of the

function at the minimum is well approximated by a gaussian, as can easily be seen by

making a Taylor expansion of `. The definition of the error then reduces to that of

the width of the gaussian.

Finally, an assumption-free procedure consists of generating a large sample of MC

experiments using the values returned from the fit, fitting them again, and calculating

the standard deviation of the results for the estimated parameter.
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4.6.3 Toy Monte Carlo

A good way to identify and assess potential problems in the maximum likelihood fit is

to generate a large number of MC experiments with given PDFs, and fit them using

the same PDFs, in line with the procedure described at the end of the previous section.

That simple check enables us to evaluate any bias due to low statistics, a defective

likelihood or a mistake in the calculations, and to correct it in the latter cases.

This toy MC (see Section 4.2) is generated using Von Neumann’s acceptance-

rejection method [82] with our fitting package Laura++ [85] and should result in gaus-

sian distributions around the true value. Furthermore, the so-called pull distribution

can be constructed by evaluating

pull =
atruei − afiti

σfiti

, (4.40)

where the numerator is referred to as the “residual”. These pull distributions should

be gaussian in shape, centred around zero, and with a unit width.
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Chapter 5

Analysis

The next two chapters discuss the time-dependent amplitude analysis ofB0 → K0
S
π+π−

in detail. This chapter revolves around the construction of the likelihood, and develops

the methodology. A careful examination of all the species of events and ways of char-

acterizing them is made, as well as of all the variables used to differentiate them. The

following chapter presents the tests performed to ensure that the complex fit is han-

dled correctly, describes how the model for the Dalitz structure is explored, and finally

comments on the results obtained, comparing them with previous measurements.

5.1 Overview

A Dalitz or amplitude analysis aims to extract the relative magnitudes and phases of

all the structures contributing to a three-body decay. In this analysis, it is achieved

by performing an unbinned (extended) maximum likelihood fit to the data sample

with the Laura++ software package [85]. The likelihood function for a signal event

is rather similar to the expected decay rate for signal, Eq. (2.19), although with the

normalization and the dependence of the ∆t resolution and the dilutions on the tagging
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category accounted for (see Section 2.2.2 for a reminder on the notation):

L
(

m2
K0

Sπ
+ ,m

2
K0

Sπ
− ,∆t, qtag

)

=
1

N
∑

c

fc
e−|∆t|/τ

B0

4τB0

× (5.1)

[

(

|A|2 + |A|2
)

(

1 + qtag
∆Dc

2

)

− qtag〈D〉c
(

|A|2 − |A|2
)

cos (∆md∆t)

+ qtag〈D〉c2Im
[

AA∗e−iφmix
]

sin (∆md∆t)

]

⊗Rc
sig(δt, σ∆t),

N =

∫

DP

(

|A|2 + |A|2
)

dm2
K0

Sπ
+ dm

2
K0

Sπ
− , (5.2)

where c labels the tagging categories, fc are the fractions of each of them and

A
(

m2
K0

Sπ
+ ,m

2
K0

Sπ
−

)

=
N
∑

j=1

cjFj

(

m2
K0

Sπ
+ ,m

2
K0

Sπ
−

)

(5.3)

Ā
(

m2
K0

Sπ
+ ,m

2
K0

Sπ
−

)

=
N
∑

j=1

c̄jFj

(

m2
K0

Sπ
+ ,m

2
K0

Sπ
−

)

(5.4)

are the B0 and B0 amplitudes, the sum is over all the resonances included in the model,

whose Dalitz plot PDF shapes are described by the Fj (essentially Breit-Wigners, see

Section 2.5.3), and cj and φmix are the parameters that characterize the signal model

and whose values we intend to extract from the fit. The number of these parameters

(22 in this analysis) is a good indication of the complexity of the fit. From now on,

we adopt the notation m2
K0

S
π+ ≡ x and m2

K0
S
π−
≡ y, unless clarity advises otherwise.

The analysis was performed on an integrated luminosity of 349.0 fb−1, which trans-

lates into a data sample of (383.6±4.2)×106 BB pairs. A further 36.8 fb−1 of off-peak

data were used for background characterization purposes.

Events are selected if the candidates found in them satisfy a number of deliber-

ately moderately loose kinematic and event-shape requirements. Essentially, they are
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demanded to have a mass close to that of the B0 meson, decay in a rather isotropic

way, and pass some loose PID requirements (Section 5.4).

The efficiency of these selection criteria and of the reconstruction process is mod-

elled carefully, as it varies over the Dalitz plot and thus distorts the observed shapes

of any structures.

Another reconstruction effect, the migration of the recorded position of badly re-

constructed signal events over the Dalitz plot, is examined in Section 5.5. Its impor-

tance grows in the corners, where the resonances overlap and hence where most of

the sensitivity to the relative phases between resonances lie. In an attempt to par-

tially recover the lost information, simulated signal events are used to characterize the

misreconstruction and statistically track down their point of origin (Section 5.6).

Of course, there are background events in addition to signal in our sample, and they

need to be accounted for. To that end, a detailed study of the number of background

events and their distributions in the Dalitz plot, ∆t and all other variables has been

carried out (Section 5.7, Section 5.8). Two types of background are considered:

• Continuum events. They are by far the most numerous, in fact outweighing

the signal due to the loose selection criteria. These are, however, very different

kinematically and in shape from signal, and an effective separation between the

two is attained with the help of the Fisher discriminant described in Section 4.5.3.

• BB background. By this generic name we refer to true BB events decaying

to different channels from K0
S
π+π− that get misreconstructed as signal events.

Their numbers are expected to be only a fraction of those for signal, but they

share many of the characteristics of signal, their distributions peaking close to

or at the same point as that of true B0 → K0
S
π+π− events. In particular, unlike

continuum background, they exhibit a behaviour very akin to that of signal in

the ∆t variable and can represent a real obstacle in correclty retrieving the value

of the mixing angle φmix. A careful modelling is needed, and BB background

events are further split according to their ∆t properties:
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a) charged BB events. As continuum events, they decay with a lifetime of the

same order of magnitude as that of signal, but do not mix.

b) neutral decays to flavour eigenstates. They do oscillate, but their final state

determines the flavour of the B.

c) neutral decays to CP eigenstates. Their ∆t dependence mimics exactly that

of signal.

As mentioned above, to maximize our ability to separate them from signal, and hence

reduce the statistical uncertainty of our measurements, background discriminating

variables are used. Rather than a harsh cut that optimizes the signal significance in

the sample, loose selection requirements were applied with the idea of including the

variables in the fit. As was sketched in Section 4.5.2, correlations between these and the

Dalitz-plot coordinates may appear in background events. Since the construction of

PDFs depends strongly on whether a given set of variables is assumed to be correlated

or uncorrelated, thorough checks are in order (Section 5.2).

5.2 Dependence of the discriminating variables on

the Dalitz-plot coordinates, tag and tagging

category

As mentioned in Section 4.6, the joint PDF for two uncorrelated variables can easily be

constructed as the product of their individual PDFs. If the variables are correlated, the

joint PDF does not factorize, and a more complicated dependence has to be considered.

The distributions for signal and continuum background of the variables mES, ∆E

and F , that do not appear in the signal likelihood Eq. (5.1) but are included in the

fit for background discriminating purposes, were examined for any dependence on the

Dalitz-plot coordinates.

For signal, any dependence of mES was found to be negligible, as can be seen in

Figure 5.1. ∆E, however, exhibited some dependence on the Dalitz-plot position in the
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Figure 5.1: Value of the mean (left) and RMS (right) of the variable mES at each

Dalitz-plot position. Both distributions are extremely uniform, demonstrating the

independence of mES on the Dalitz-plot coordinates, and hence that they are uncor-

related.
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Figure 5.2: On the left, value of the RMS of ∆E at each Dalitz-plot position. On

the right, the normalized ∆E distributions for signal phase space MC (black, dashed,

events generated uniformly across the Dalitz plot), and resonant MC (solid, red, model

in which the Dalitz plot is endowed with a resonant structure similar to that found in

previous measurements [36]). In the latter, the events cluster around the edges of the

Dalitz plot, emphasizing the overall difference in the ∆E distributions.
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Figure 5.3: On the left, value of the RMS of ∆E/σ∆E at each Dalitz-plot position. On

the right, the normalized ∆E/σ∆E distributions for phase space MC (black, dashed),

and resonant MC (solid, red). No dependence on the Dalitz coordinates is observed.

width of its distribution, which was found to be twice as large in the corners as it was in

the centre (see Figure 5.2). This is explained by the difficulty in correctly determining

the energy of the low momentum particles appearing in the corners. The effect is

amplified by the known Dalitz structure of the decay mode (see Section 2.4), that

causes most of the events to lie close to the kinematical boundaries. These arguments

suggest that the deviation from the mean might be quantified by the error on ∆E.

Indeed, the ratio of the variable and its error, the ∆E significance, shows no variation

across the Dalitz plot while retaining all its discriminating power. We therefore adopt

it instead of ∆E (Figure 5.3).

Examination of the mES distribution for continuum events in the off-peak sample

(see Section 5.7) did not show any dependencies either. However, the Fisher distri-

bution was observed to vary significantly for events in the centre of the Dalitz plot

compared to those by the edges. This is expected, as explained in Section 4.5.2: the

event-shape variables used in the Fisher quantify the jet-like structure of the tag side

of the event. In continuum events, both sides of the event are qualitatively expected

to be “jetty”. Three-body kinematics imply that the “jettier” an event is, the closer

it is to the boundary of the Dalitz plot (Section 2.5.2). Hence, significant changes in
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the Fisher discriminant across the Dalitz plot are seen. These changes translate into

an observed dependence of the mean and the width of the gaussian-like shape of the

Fisher distribution on the distance of the event to the centre of the Dalitz plot. How-

ever, our selection criteria include a cut on the Fisher that rejects the main body of

the gaussian, keeping only the right tail. The resulting distribution is far less sensitive

to the dependence on the Dalitz coordinates (see Figure 5.4 and Figure 5.5), although

it is still accounted for in our model to avoid the systematic uncertainties associated

with neglecting it 1.

As reasoned in Section 4.5.2, a dependence of F on the Dalitz plot position is not

found in signal MC, although different shapes are required for each tagging category

(see Figure 5.6). This is yet another consequence of the event-shape variables being

evaluated on the tag-side of the event, since assigning a tag and a tagging category

to a given event is a statement about the type of the decay of the tagging B meson.

A different parameterization is therefore employed for each tagging category in the

signal hypothesis.

Finally, it is worth noting that no tag-dependence was found in the shapes of the

distributions of the discriminating variables, neither for signal nor for the different

kinds of backgrounds. Therefore, identical PDFs are used to model mES, ∆E/σ∆E

and F for both tags in each species.

5.3 Total likelihood and the background discrimi-

nating variables

Previous studies have shown that the mES and ∆E variables are mostly uncorre-

lated [78]. Under the additional assumption that they are also uncorrelated with the

1Figure 5.5 also suggests another posible, and simpler, treatment that would be statistically indis-

tinguishable: since it is only the bin corresponding to the Dalitz plot centre that has a value markedly

different from the rest, a two-bin histogram, composed of the central bin and another bin representing

the rest of the Dalitz plot, could be used to model the Dalitz dependence of the Fisher.
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Figure 5.4: Continuum background Fisher shape dependence on the distance from the

centre of the Dalitz plot. In red, events contained in the centre of the Dalitz plot,

defined as m2
ij > 2GeV/c2 for all three pairs of particles. In black, events outside that

region. The red points tend to lie below the black ones towards the left of the picture.

The difference in the trends is rather small and played down by the low number of

continuum events in the centre of the Dalitz plot.

Dalitz-plot coordinates, including them in the likelihood is trivial, as the joint PDF

simply factorizes. Thus, for BB events (both signal and background):

PBB (x, y,∆t,mES,∆E/σ∆E ,F) = P (x, y,∆t)P (mES)P (∆E/σ∆E)P (F) (5.5)

where P (x, y,∆t) is the joint PDF for the Dalitz coordinates and the time difference

∆t. For the continuum background, a joint DP-F PDF is employed to account for the

dependence of the Fisher on the Dalitz coordinates:

Pqq (x, y,∆t,mES,∆E/σ∆E ,F) = P (x, y,F)P (∆t)P (mES)P (∆E/σ∆E) (5.6)
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Figure 5.5: Dependence of the mean (left) and width (right) of the continuum Fisher

distribution on the distance to the centre of the Dalitz plot, assumed to be linear. The

correlation is rather weak, as can be deduced from the fitted slopes: −0.041 ± 0.015

for the mean, and 0.007± 0.005 for the width.

since in this case the DP and ∆t PDFs do factorize (see Section 5.7). In these con-

ditions, then, including the mES and ∆E/σ∆E variables in the fit simply requires

obtaining the PDFs for those variables and including a (trivial) multiplication in the

calculation of the likelihood. These are shown in Figure 5.7 for signal. With the pre-

vious expressions for the likelihoods of the signal and background species in mind, the

total likelihood is trivially constructed (recall Eq. (5.7)):

L (~n,~a) = e−(nsig+nqq+nB+B−+nBflav
+nBCP

)
N
∏

e=1

Lce , (5.7)

Lce being

Lce = nsigf
c
sigPsig,e (5.8)

+nqqf
c
qqPqq,e +

nB
+B−

class
∑

j=1

njf
c
jPB+B−,j,e +

n
Bflav
class
∑

k=1

nkf
c
kPBflav ,k,e +

n
BCP
class
∑

l=1

nlf
c
l PBCP ,l,e ,

where c is the tagging category, the ni represent the numbers of events of each species

and the sums for each of the three types of BB background run over the different
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Figure 5.6: Fisher distributions for signal MC split by tagging categories, black being

untagged events, and red those with leptonic tags. A separate parameterization for

each tagging category is used to evaluate the Fisher PDF in our software package.

classes of background channels within that type. After a careful exposition of the

selection criteria, we revisit the signal likelihood (Section 5.6), and proceed to discuss

the form of the likelihoods for the background species (Sections 5.7, 5.8).

5.4 Event selection

The selection criteria are applied to the data in several stages. In the first stage, B

candidates are formed by requiring two oppositely charged particles belonging to the

GoodTracksLoose list and a K0
S
candidate as described in Section 4.3.1. They are

asked to pass three very basic cuts:

• mES > 5.2GeV/c2,
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Figure 5.7: Signal mES (left) and ∆E/σ∆E (right) PDFs, extracted from MC, in the

signal region (see Section 5.4). Since these variables are uncorrelated among themselves

or with the Dalitz-plot coordinates, including their discriminating power in the fit is

as straightforward as multiplying the Dalitz-plot PDF by their PDFs. The absence of

any bias is then easily checked with toy MC studies.

• 4.99 < E∗ < 5.59 GeV (see Section 4.3.4),

• total energy of the event ETOTAL < 20.0 GeV.

In the following stage, the PID likelihoods for the tracks, some K0
S
-quality related

variables and the background discriminating variables are calculated and the following

cuts are applied:

• The K0
S
lifetime significance, τK0

S
/στ

K0
S

is required to be greater than 5.0, thus

rejecting combinatorial background.

• The cosine of the angle between the momentum of the K0
S
and the line that joins

its decay vertex with that of the B candidate must be greater than 0.999.

• The mass requirement on the K0
S
candidate is tightened to |mπ+π− − mK0

S
| <

15MeV/c2.
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• The charged tracks are demanded to satisfy the PiLoose requirements (Sec-

tion 4.3.3), since a study [79] showed that such a choice maximizes the signal

sensitivity. Also, candidates likely to be electrons are rejected.

• Very loose cuts on ∆t and its error are applied, following the standard time-

dependent analyses: |∆t| < 20 ps and σ∆t < 2.5 ps.

• The Fisher variable is calculated and required to be F > −0.365, thereby re-

ducing the continuum background to 30% of its original size and decreasing the

number of signal events by only around 10% (see Figure 4.5 and Section 5.7).

• Cuts on the kinematical variables mES and ∆E/σ∆E are applied to select the

three regions of interest in the mES-∆E/σ∆E plane (see Figure 5.8):

a) the signal region, where true B0 → K0
S
π+π− decays are expected, is defined

as a three-standard deviation window around the mES and ∆E/σ∆E peaks,

5.272 < mES < 5.286 GeV/c2 and −3.0 < ∆E/σ∆E < 3.0,

b) the grand sideband, 5.20 < mES < 5.26 GeV/c2 and −3.0 < ∆E/σ∆E < 3.0,

c) the upper sideband, 5.2 < mES < 5.286 GeV/c2 and 4.0 < ∆E/σ∆E < 15.0,

of which the last two are used to characterize the continuum distributions (see

Section 5.7).

• Events are rejected (vetoed) if they lie inside one of four narrow strips that are

heavily populated by BB backgrounds originating from charmed and charmo-

nium resonances (see Section 5.8 for more details).

The efficiency of each of these cuts, as well as the overall efficiency, have been evaluated

from phase space and resonant MC, and are shown in Table 5.1.

Among the events from the on-peak data sample that presented at least one candi-

date satisfying the above selection requirements, about 6% had more than one. In this

case, the candidate with the highest B-vertex probability was chosen. This procedure

was shown not to bias any physical quantity.
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Table 5.1: Summary of cut efficiencies evaluated from MC with no structure across the

Dalitz Plot (left) and with a resonant structure taken from [36] (right). The efficiency

for each selection criterion is calculated relative to the sample of events passing the

previous requirement. The last three lines show the absolute efficiency for the three

regions of interest in the mES-∆E/σ∆E plane. Note that the overall efficiency depends

on the resonant content of the Dalitz plot, which is only known after the fit to data is

performed, so the uncertainty quoted is merely indicative of the statistical uncertainties

due to the size of the samples involved in its evaluation.

Efficiency (%) for B0 → K0
S
π+π−

Selection requirement Phase space MC Resonant MC

First stage selection, vertexing and reconstruction 39.9 40.9

Pion PID requirements 93.8 93.9

Electron veto 97.1 97.2

Etot < 20GeV 99.2 99.1

Fisher > −0.365 90.1 89.8

|mπ+π− −mK0
S
| < 15MeV/c2 95.8 96.2

τK0
S
/στ

K0
S

> 5 91.2 92.0

cosαK0
S
> 0.999 98.3 98.3

|∆t| < 20 ps 97.7 97.7

σ∆t < 2.5 ps 97.7 97.7

5.20 < mES < 5.286GeV/c2 99.1 99.1

−3.0 < ∆E/σ∆E < 15.0 93.2 93.0

Veto D, J/ψ and ψ(2S) 84.0 86.4

Signal Region: 19.200 18.651

± statistical uncertainty 0.012 0.026

Upper Sideband: 0.654 1.719

± statistical uncertainty 0.003 0.009

Grand Sideband: 0.223 0.437

± statistical uncertainty 0.001 0.005

115



)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

E∆σ
E

/
∆

-5

0

5

10

15

Upper Sideband

Grand Sideband
Signal

Region

Figure 5.8: Signal region (blue), grand sideband (green) and upper sideband (red).

The first is from where the events are drawn for the full time-dependent amplitude fit,

whereas the last two are used to extract the continuum distributions in the variables

included in the fit. A lower sideband (corresponding to ∆E/σ∆E < −4.0) is avoided,
as it is heavily contaminated by BB backgrounds.

5.5 Efficiency and migration

The efficiency, defined as the fraction of signal events that are reconstructed and

selected, varies across the Dalitz plot due to the very different kinematical properties

of the three final state particles for different areas of the phase space. In particular,

as noted in Section 2.5.2, at each of the corners of the Dalitz plot one of the three

particles is slow. Low momentum tracks are less likely to be reconstructed, since they

either do not reach the Drift Chamber and must be formed from their SVT hits only,

or they only partially traverse the DCH. Hence, low efficiencies are expected at the
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Figure 5.9: Efficiency (left) and self cross feed fraction (right) as a function of the

Dalitz coordinates. Note the drop of efficiency in the three corners. The fraction of

self cross feed is rather high in the slow pion corners (m2
K0

Sπ
± > 20GeV/c2), although

not as much in the slow K0
S
corner. This, and the depletion in efficiency in the same

area, is due to the selection requirement on the K0
S
lifetime significance, which reduces

the combinatorial background (and hence the self cross feed), and the probability of

reconstructing a slow K0
S
, since the distance travelled will be small compared to the

uncertainty in the measured vertex position.

corners of the Dalitz plot. Such a trend can be clearly observed in Figure 5.9.

A related effect, which is a consequence of the necessity to have low momentum

tracks at the Dalitz plot corners, is that events are likely to be misreconstructed. Slow

particles may be reconstructed, but the poor quality with which they are determined

increases the probability of them being assigned to the wrong B candidate. The

reason is that the large uncertainties on the track parameters prevent the χ2 of the

fit for the B candidate vertex from revealing the mistake. That can either make a

background event match the K0
S
π+π− final state, and hence be selected as signal (see

Section 5.8), or alter the properties of a true B0 → K0
S
π+π− event. In the latter case,

the assignment of an incorrect track to the candidate will change the balance of energy

and momentum among the three particles in the final state, leading to differences

between the reconstructed Dalitz plot position and the true one. Such an effect, called
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migration, is characteristic of misreconstructed signal, which we will refer to as self

cross feed. The fraction of this kind of event, calculated across the Dalitz plot and

defined as the number of events that are reconstructed as self cross feed divided by

the total number of events that are reconstructed, is plotted in Figure 5.9.

Figure 5.9 shows rapidly falling signal efficiencies and rising self cross feed fractions

on the areas most sensitive to the interference between resonances, the corners of the

Dalitz plot. This promptly raises the question of whether the phases between the

resonant components are rendered impossible to measure by the two reconstruction

effects. Fits to MC simulated events, reconstructed in exactly the same way as real

data, show without any doubt that the extraction of the phases is possible, and allow us

to discard any important systematic effect in the treatment of the difficulties brought

about by the reconstruction process (Section 6.2).

The total fraction of self cross feed events in resonant MC after the selection criteria

is 2.8%. These can either be treated as background to the properly reconstructed signal

events, or used to extract the physics information still available by statistically tracing

their true positions. The method developed to achieve the latter is described in the

next section.

5.6 Treatment of Self Cross Feed

5.6.1 Operational definition of Self Cross Feed

For a given process, such as B0 → K0
S
π+π−, the true distributions of events in certain

variables as dictated by the laws of Nature, P true, are modified by detector and re-

construction effects such as efficiency, migration and experimental resolution, as seen

in the previous sections. These can be described by convolving the true distribution

with a “detector response function”, R:

Pobserved = P true ⊗Rtotal . (5.9)
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The different contributions to R are conventionally separated:

Rtotal = ε (x, y)RmigrationR∆t , (5.10)

where ε represents the (Dalitz plot-dependent) efficiency, as defined in Section 5.5, and

R∆t has been described in detail for signal in Section 4.4.

In Dalitz analyses where, apart from the time dependence, an event is completely

characterized by its position in the Dalitz plane, it is convenient to split signal events

further according to whether their migration plays a significant role (self cross feed)

or not (truth-matched). Rather than identifying the different mechanisms at work in

the (mis)reconstruction of events, and classifying them as truth-matched or self cross

feed according to that, our approach adopts an operational definition: a given event

is defined to be self cross feed if the difference between the true and reconstructed

momentum of one of the daughters divided by the error of its reconstruction is greater

than a certain value (Figure 5.10):

∣

∣

∣

∣

∣

preco
K0

S
− ptrue

K0
S

σreco
K0

S

∣

∣

∣

∣

∣

> 30 , (5.11)

∣

∣

∣

∣

∣

precoπ± − ptrueπ±

σrecoπ±

∣

∣

∣

∣

∣

> 20 . (5.12)

. These inequalities ensure that en event classified as self cross feed migrates sig-

nificantly over the Dalitz plot. Those events in which migration can be neglected

(truth-matched), are assumed to have been reconstructed with perfect experimental

resolution in the Dalitz plot coordinates. This assumption is valid as long as the

distances between their true and reconstructed positions are small compared to the

typical widths of the Dalitz plot structures. In our case, the narrowest resonance is

the K∗(892), with a width of 50.8(9)MeV/c2 [22], and the previous assumption on the

resolution is guaranteed to hold by the above inequalities (Figure 5.11). An effective

separation between the two signal species is also attained, as can be seen Figure 5.12.
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Figure 5.10: Plots showing the ratio of reconstructed minus true momentum over the

reconstruction error for the pion candidates: on the left, the whole range and on the

right, a zoom in the central region, where it can be seen that for most pions, the

absolute value of the ratio is below 20.
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Figure 5.11: Average distance between the reconstructed and the true position of

truth-matched (left) and self cross feed (right) events, plotted at the reconstructed

position. For the former it is rather small, demonstrating the validity of neglecting

the experimental resolution. For the latter, however, it takes on average values around

1−2GeV2/c4 for events originating in the corners, occassionally reaching∼ 10GeV2/c4.
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Figure 5.12: ∆E/σ∆E (left) and mES (right) distributions for self cross feed events.

The latter peaks at 5.28GeV/c2, as signal should, but presents a long tail due to the

misreconstruction. ∆E/σ∆E exhibits an even more combinatorial profile, and shows

no enhancement at the origin, thus demonstrating the correct separation of the two

signal species.

5.6.2 Formalism

Once the self cross feed and the truth-matched events have been separated, further

simplification of Rmigration can be attained:

Rmigration (xreco, yreco;xtrue, ytrue) = (1− fSCF (xtrue, ytrue)) δ (xreco − xtrue) δ (yreco − ytrue)

+fSCF (xtrue, ytrue)RSCF (xreco, yreco;xtrue, ytrue) (5.13)

where fSCF is the fraction of self cross feed events defined in Section 5.5, and the quan-

tity RSCF (xreco, yreco;xtrue, ytrue) represents the probability for an event originally at

(xtrue, ytrue) to migrate to (xreco, yreco) (Figure 5.13). Assuming the same ∆t resolution

model for truth-matched and self cross feed, Eq. (5.9) implies

Pobserved (xreco, yreco,∆t) =
ε (1− fSCF)P true +

∫∫

DP
P trueεfSCFRSCFdxtruedytrue

∫∫

DP,∆t,qtag Pdxdy
(5.14)
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where P true is the likelihood written in Eq. (5.1) without the normalization N , which

now reduces to
∫∫

DP,∆t,qtag
P dxreco dyreco =

∫∫

DP,qtag
εP true dxtrue dytrue =

∫∫

DP

ε
(

|A|2 + |A|2
)

dx dy

since the ∆t part is already normalized and the smearing of P true in Eq. (5.14) only

redistributes the total probability, i.e.
∫∫

DP

RSCF (xreco, yreco;xtrue, ytrue) dxrecodyreco = 1 . (5.15)
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Figure 5.13: Fraction of self cross feed depicted in the square Dalitz plot (left), and

probability of migration RSCF (right). Observe that the fraction of self cross feed

events rises to nearly one at the tips of the slow pion corners. RSCF can be thought

of as a 4 × 4 matrix, or as a 2 × 2 matrix of 2D histograms. On the right, one of

these histograms is plotted, depicting the probability of migration for a single bin.

The number in a bin on the top right corner is the number of self cross feed events

found in the MC originating at that bin. (i.e. xtrue, ytrue). The coloured bins around

it represent the probability for those events to migrate to each of the bins.

Eq. (5.14) requires a further modification if, as has been done in this analysis, the

efficiency, self cross feed fraction and migration are modelled by 2D histograms in the

square Dalitz plot variables m′ ≡ x′ and θ′ ≡ y′, and the true distributions of events

depend on the usual Dalitz plot coordinates, m2
K0

S
π+ ≡ x and m2

K0
S
π−
≡ y. As noted
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in Section 2.5.7, jacobians must be introduced due to the change of variable in the

integration of the numerator:

∫∫

DP

(

εfSCFP true
)

(xtrue, ytrue)RSCF (xreco, yreco;xtrue, ytrue) dxtruedytrue

x,y 7→x′,y′

−−−−−−→ (5.16)

1

| det Jreco|

∫∫

DP

(

εfSCFP true
)

(xtrue, ytrue)RSCF (x′reco, y
′
reco;x

′
true, y

′
true) | det Jtrue|dx′truedy′true

where xtrue = xtrue (x
′
true, y

′
true) and ytrue = ytrue (x

′
true, y

′
true). The jacobian at the front

is needed to convert RSCF (x′reco, y
′
reco;x

′
true, y

′
true) dx

′
truedy

′
true, which is a density in the

square DP variables x′, y′, into a density in the usual Dalitz coordinates x and y.

5.6.3 Tests on MC and conclusion

The formalism described above was implemented in our fitting package Laura++, and

tested with toy MC studies first (see Section 6.1 and Figure 5.14), and later by fit-

ting signal MC (as in Section 6.2, but without the backgrounds) with and without

accounting for self cross feed. Improvements were observed in the non-gaussian tails

of the distibutions, which were clearly reduced. The means and especially the widths

of the pull plots of about half of the variables (K∗(892) ∆X, ρ0(770) Y , ρ0(770) ∆X

and f0(980) X) were reasonably improved when the self cross feed treatment described

before was enabled. In particular, non-gaussian tails were consistently reduced. The

rest of the variables showed pull plots as good in both scenarios. As can be seen in

Table 5.2, the overall gain was modest.

The small sensitivity to self cross feed effects that was found is consistent with the

fact that it affects only ∼ 3% of the signal events, and that the statistical uncertainties

on the fitted parameters cj are far greater than that figure (see, e.g. Table 6.2).

Therefore, in view of the large increase in computing time compared to the rather

small improvement to the fit, it was decided not to treat self cross feed and truth-

matched events separately for the present iteration of the B0 → K0
S
π+π− analysis.
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Figure 5.14: Self cross feed events in full MC (left) and in toy MC generated by

our implementation of the procedure described in the text (right). There is a good

agreement between them.

5.7 Continuum Background

Continuum events are by far the most prominent source of backgrounds. Excluding

the cut on the Fisher discriminant, about 28100 of them are estimated to satisfy

the selection criteria described in Section 5.4. In contrast, only around 1710 signal

events are expected. To mildly enrich the sample in signal events, and for reasons of

computational expediency and stability of the fit, a loose cut on the Fisher, designed

to retain 90.0% of the signal, is applied. This additional requirement reduces the

expected number of events to 1530 for signal and 8070 for continuum. Clearly, an

accurate determination and modelling of the distributions of the latter is essential,

given the signal-to-background ratio.

The off-peak sample is ideal to characterize this kind of background, since events

collected below the Υ (4S) resonance can only be composed of the light quarks u, d, s, c

that make up the continuum events. However, the small size of the sample gives a

poor estimation of the shapes of its distributions. The grand and upper sidebands are

therefore used to ameloriate the problem (see Figure 5.15). However, previous studies

have shown that those regions of the mES-∆E/σ∆E plane are not exempt from BB
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Table 5.2: Comparison between fits to full MC with and without separating self cross

feed (SCF) and truth-matched events. The MC was generated according to a three

resonance model: K∗±(892)π∓, ρ0(770)K0
S
and f0(980)K

0
S
. The means and widths of

the pull plots for each of those resonance parameters and the mixing phase are shown.

Parameter µ (neglect SCF) µ (with SCF) σ (neglect SCF) σ (with SCF)

K∗(892) ∆X -1.14 -0.91 1.86 1.58

K∗(892) ∆Y -0.44 -0.51 0.86 0.83

ρ0(770) X -0.95 -1.18 1.20 1.11

ρ0(770) Y 1.32 1.23 1.83 1.64

ρ0(770) ∆X 0.65 0.52 1.17 1.07

ρ0(770) ∆Y -0.65 -0.53 1.04 1.05

f0(980) X -1.74 -1.51 2.18 1.95

f0(980) Y -1.44 -1.56 1.35 1.28

φmix -0.15 -0.13 1.01 0.98

background contamination. This contamination is studied simultaneously in the three

areas of interest (the two sidebands and the signal box), as described in Section 5.8,

and histograms are formed detailing its distributions in the Dalitz coordinates, mES,

∆E/σ∆E and F . These are then employed to “subtract” the BB presence in the

sidebands, either literally, thus forming a histogram with the continuum distribution

in a given variable, or via a fit, in which the BB histograms are used as the PDF for

the undesired contamination. The first method applied to the grand sideband yields

the Dalitz distribution of continuum events. The second is employed to extract the

continuum shapes in the ∆E/σ∆E and F variables from the grand sideband, and in

the mES variable from the upper sideband (Figure 5.16).

The two dimensional histograms describing the Dalitz distribution of continuum

events, in principle one for each tag qtag and tagging category c, are then normalized
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Figure 5.15: Projections on the three invariant masses of the Dalitz plot distributions

of off-peak data (red) and on-peak sidebands (black). Since a good agreement is

observed, both samples are used in the extraction of the continuum PDFs.

and used to build the ∆t-Dalitz plot PDF:

Pqq =
P
c,qtag
qq (x, y)

∫ ∫

DP
P
c,qtag
qq (x, y) dxdy

×
(

fpromptδ(∆ttrue) + (1− fprompt)
e−|∆ttrue|/τqq

2τqq

)

⊗R,

where the ∆t behaviour is modelled as consisting of two components, with zero

(prompt) and non-zero lifetimes, convolved with a customized resolution function R
extracted from off-peak data and consisting of three gaussians (see Eq. (4.9) and Fig-

ure 5.17).

For a given tag flavour, the Dalitz distributions were observed to be similar for all

tagging categories except for the untagged events, so a combined PDF was used for

those tagging categories (see Figure 5.18). Events that are deemed to lack reliable
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Figure 5.16: Continuum mES (left) and ∆E/σ∆E (right) distributions extracted from

the upper sideband and the grand sideband, respectively. The black points represent

the data, and the red line, a high statistics toy MC sample generated from the fitted

values. The combinatorial mES profile of the continuum background is parameterized

with the empirically motivated “Argus” function [89] (x
√
1− x2 exp−ξ(1− x2) where

x = mES/5.29GeV/c2 and ξ determines the curvature of the profile), whereas ∆E/σ∆E

is assumed to be distributed according to a linear PDF.

tagging information (“untagged”) also displayed a 29% asymmetry in the number

of events assigned to each of the tags, whereas the other tagging categories showed

no statistically significant difference. A tagging category-dependent asymmetry was

introduced to account for that:

Pqq =
1

2

(

1 + qtagA
c
qq

)

Pqq (x, y,∆t) (5.17)

5.8 BB Background

Although not as abundant as the continuum background, BB background still rep-

resents a significant fraction of events after all the selection cuts: as many as 1/3 of

the estimated number of signal events. It is at this point that one of those selection
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Figure 5.17: Off-peak data are used to extract a resolution function in ∆t for con-

tinuum events, as well as the fraction of events that have a non-negligible lifetime

and the value of that lifetime. A measurable fraction is expected, since charmed

resonances are produced in the continuum with lifetimes similar to those of the B

meson (e.g. τD± = 1.04(7) ps). They are found to be 1 − fprompt = 0.11 ± 0.01 and

τqq = (1.37± 0.12) ps.

criteria is justified.

The raison d’être of the vetoes, mentioned in passing in Section 5.4, is to avoid very

high numbers of BB background events concentrating in small areas of the Dalitz plot,

since their sheer numbers could cause any small discrepancies between our modelling

of them and their behaviour in data to pull the signal quantities dramatically in the

fit. The charmed mode B0 → D− (→ K0
S
π−)π+, for instance, has a branching fraction

greater than that of signal (∼ 1.1 times larger [22]), and essentially the same efficiency,

so it contributes to the on-peak sample with around 2000 events. In addition, other

decays of the D meson are likely to be misreconstructed as signal through a variety
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Figure 5.18: Continuum Dalitz-plot distributions split by tag (B0 left column, B0 right

column) and tagging category (untagged events, top row; tagged events, bottom). For

B0 (B0) tagged events, the K∗+ (K∗−) band is more populated. In untagged events

such an asymmetry is not observed; instead, a significant asymmetry in the total

number of events assigned to each tag is found, demonstrating that for such events

any tag assignment is an artefact rather than a statement on the underlying physical

processes.

of mechanisms, such as particle misidentification or losing one of its daughters, most

often a neutral particle or a low momentum track. It is probable that these events

have an invariant mass close to the true D meson mass, and will therefore appear

near the events of the specific decay channel discussed before. Thus, this channel

and the charmonium modes B0 → J/ψ (→ `+`−)K0
S
and B0 → ψ(2S) (→ `+`−)K0

S
,

reconstructed by misidentification of the leptons as pions, are rejected by excluding
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all events from narrow strips on the Dalitz plot comprising a ±3σ window around the

peak of these distributions. The numerical values of such cuts are shown in Table 5.3,

and plots of the peaks in the excluded areas, in Figure 5.19.
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Figure 5.19: Plots showing the mK0
Sπ

+ and mπ+π− ranges in which vetoes are applied.

Hatched areas represent the excluded ranges. The first and most prominent one shows

the D veto, that contains 2790± 280 BB events; the second one is the J/ψ veto, and

the last one, the ψ(2S) veto.

The method employed to identify the remaining BB modes that cause backgrounds

to this analysis is based on the study of large generic B0-B0 and B+-B− MC samples
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Table 5.3: Regions of the Dalitz plot excluded (vetoed) to remove the most prominent

BB backgrounds.

Decay Mode Veto Definition (GeV/c2)

D± → K0
S
π± 1.744 < mK0

Sπ
± < 1.944

J/ψ → `+`− 3.037 < mπ+π− < 3.157

ψ(2S)→ `+`− 3.626 < mπ+π− < 3.746

(their sizes being roughly equivalent to 2.5 times the analyzed on-peak data sample).

All modes contributing more than one event were studied in more detail with the help

of exclusive MC samples, from which all the mES, ∆E/σ∆E , F , Dalitz-plot and ∆t

PDFs were extracted. A specific analytical model is needed for the latter depending

on the nature of the background mode; the rest of the variables, including the Dalitz

plot, were modelled using histograms. The remaining background events are grouped

together forming a rather combinatoric-like contribution, without much structure in

any of the variables (see Figure 5.23 and text below).

The background modes were divided into three categories that reflect their DP-∆t

behaviour:

• B+B− backgrounds. Their ∆t dependence follows the usual expression for par-

ticles with a lifetime that do not mix. These events are composed of true B

mesons, and the tagging information is mostly accurate. Thus, the Dalitz-plot

distributions for the two tags are expected to be roughly mirror images of each

other (recall how a CP transformation acts on the Dalitz plot Section 2.5.6).

The complete expression for their likelihood is:

PB+B− =

[

(

1− qtagAj

2

)

ωc
PB+B−(−qtag;x, y)

∫ ∫

DP
PB+B−(−qtag;x, y) dxdy

(5.18)

+

(

1 + qtagAj

2

)

(1− ωc) PB+B−(qtag;x, y)
∫ ∫

DP
PB+B−(qtag;x, y) dxdy

]

× e−|∆ttrue|/τj

2τj
⊗Rc

B+B−
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Figure 5.20: Dalitz plot distributions of the charmed B± decays for the B0 (left)

and B0 tag (right). The events lie mostly on the slow K0
S
corner, but also sketch

the D± bands, running close to both edges, and the slow pion corners. Note the

slight asymmetry in the population of these, and how the pattern is reversed for the

opposite tag. The distributions in the mES and ∆E/σ∆E variables do not exhibit

peaking structures.

where the mistag fractions ωc are extracted from MC truth, and a specific ∆t

resolution model, taken from the sin2β analyses [24], is used for B+B− modes.

Misreconstruction effects cause the (effective) lifetimes τj to be mode-dependent

and mildly different from the nominal value for charged B mesons.

The main contributors to this kind of background are charmed decays of the B+

meson, with only a handful of events coming from charmless modes (see Table 5.4

for a complete list with their estimated numbers of events). In some of them, the

K0
S
π+π− final state is attained through the loss of a photon or a π0 during the

reconstruction, but the major misreconstruction mechanism is the incorporation

into the B candidate of low momentum (and therefore poorly determined) tracks

arising in the corners of the Dalitz plot from the other side of the event. For

instance, the reconstruction of B+ → π0π+K0
S
as K0

S
π+π− involves losing the

π0 and adding a low momentum pion from the other side. Note that the large

number of events expected in this channel is only due to the uncertainty on its
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Figure 5.21: Dalitz plot distributions for the B0 → (flavour eigenstate) background

modeB0 → D−π+ withD− → X, separated by the flavour of the signal meson (B0 left,

B0 right), as required by the likelihood expression. Note that the events spread widely

around theD± vetoes. For this channel, themES and ∆E/σ∆E distributions are rather

featureless, due to the many different decay modes of the D∓ meson comprised, and

hence the very different mechanisms at work in their (mis)reconstruction processes.

branching fraction, for which only an upper limit exists.

• B0 → (flavour eigenstate). In this case, the effect that determines the ∆t

distribution is the mixing of the neutral B mesons before decaying to a final state

that uniquely identifies the flavour of the parent particle. In a Dalitz analysis,

the final state of the background mode being a flavour eigenstate translates

into opposite regions of the Dalitz plot for each flavour, typically the bands

corresponding to the D± mass. Hence, rather than using a histogram to model

the DP distribution of each tag flavour, the appropriate treatment consists of

utilising a histogram for each signal B flavour, which is inferred from MC truth.
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Thus, the likelihood expression for such backgrounds is (c.f. Eq. (2.20)):

PBflav
=
e−|∆t|/τj

4τj

[

(

1 + qtag
∆Dj
2

+ 〈Dj〉 cos (∆md,j∆t)

)

(5.19)

× PBflav
(qsig = −qtag;x, y)

∫ ∫

DP
PBflav

(qsig = −qtag;x, y) dxdy
(5.20)

+

(

1 + qtag
∆Dj
2
− 〈Dj〉 cos (∆md,j∆t)

)

(5.21)

× PBflav
(qsig = +qtag;x, y)

∫ ∫

DP
PBflav

(qsig = +qtag;x, y) dxdy
(5.22)

]

⊗ Rc
Bflav

(5.23)

where qsig = 1(−1) when Brec = B0(B0), Dj, ∆Dj, τj and ∆md,j represent

mode-dependent, effective dilutions, lifetimes and oscillation frequencies that

may vary from those of correctly reconstructed signal, and the possibility for a

∆t resolution model different from signal has also been considered.

Although the dilutions are heavily distorted by the misreconstruction, the reso-

lution model, lifetimes and oscillation frequency are in general rather similar to

those of signal. In particular, the lifetimes lie in the range 1.3–1.8 ps, and the fre-

quencies are set to that of signal, 0.502 ps−1 for all modes except for B0 → D0K0
S

and B0 → ρ−K∗+, that have values of ∼ 0.30 ps−1 (Figure 5.22).

A complete list of the modes contributing to this kind of background, and the

numbers of events expected for each of them is shown in Table 5.5. As mentioned

above, a moderate fraction of events clusters around the D veto strip, although

gaining prominence in the corners, for identical reasons as for the B+B− modes

(Figure 5.21). All the contributing channels are found to be decays to D and

D∗ states, except for B0 → ρ−K∗+, whose DP dependence on the signal flavour

is exactly the opposite of the one exhibited by decays to charmed mesons.

• B0 → (CP eigenstate). Their expected ∆t behaviour follows Eq. (2.15), al-

though reconstruction effects may lead to effective values for the S and C coeffi-

cients. The effective direct CP violation was found to be consistent with zero for
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all the background modes in this category (Table 5.6), so the following expression

was used for the per-event likelihood:

PBCP
=

∑

c

fc
PBCP

(x, y)
∫ ∫

DP
PBCP

(x, y) dxdy

e−|∆t|/τj

4τj
(5.24)

×
[

(

1 + qtag
∆Dc

2

)

+ qtag〈DSeff〉c sin (∆md,j∆t)

]

⊗ Rc
BCP

where 〈DSeff〉c denotes a tagging category-dependent parameter that accounts

for the time-dependent asymmetry S and the effective dilution at the same time.

A list of the background modes that belong to this category is in Table 5.6. The

most prominent channel, B0 → η′K0
S
with η′ → ρ0γ, is reconstructed as K0

S
π+π−

by losing the photon, which gives it a characteristic ∆E/σ∆E distribution with

the peak shifted to negative values, but leaves the peakingmES and F unaffected.

The neutral combinatoric has been included in the B0 → (CP eigenstate) cat-

egory because it does not exhibit any mixing behaviour. Its time-dependent

asymmetry is also consistent with zero, and is therefore assigned 〈DSeff〉c = 0

for all c. Finally, the mode B0 → K0
S
K0

S
has its ∆t distribution distorted by the

displaced vertices of the two B daughters, and is found to require a tailored ∆t

resolution model (Figure 5.23).

5.9 Control sample

Since we rely heavily on MC to extract the shapes of most PDFs, our assumptions

about the MC describing the data well should be validated. A good way of doing it

consists of using a channel as similar as possible to the one under study in this thesis.

For those purposes, the vetoed B0 → D−π+ with D− → K0
S
π− is ideal, since its final

state is identical to that of the charmless B0 → K0
S
π+π−. The shapes from MC and

data for the mES and ∆E/σ∆E variables can be extracted and compared.

The peaks in mES and ∆E/σ∆E are parameterized by two gaussians. Shifts with

respect to the values obtained in MC are observed in data for the means in both
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variables. They are rather small in mES (∼ 1 and 5MeV/c2), whereas in ∆E/σ∆E one

of the means shows no shift (∼ 0.02± 0.15) and the other one does (∼ 0.7± 0.3). The

latter is expected from the unaccounted BB background. The ratios of the widths for

data and MC are compatible with unity, and any differences are therefore neglected.

In both cases, the slight disagreements in the central values are taken into account in

the systematic uncertainty computations (Section 6.4). The agreement between data

and MC is shown in Figure 5.24.
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Table 5.4: B+B− background modes. The two most prominent channels, B+ → D0π+ with D0 → K+π− and

D0 → K0
S
π+π−, yield a little more than 15 events each. The number of events originating from B+ → π0π+K0

S

has been calculated by using half of the upper limit on the branching fraction with an equal error. The values of the

branching fractions are taken from either [22] or [45]. The errors on the expected numbers of events arise from the

uncertainties on the branching fractions and the statistically limited samples used to evaluate the efficiencies.

Mode (CP conjugate included) Efficiency Branching Fraction Expected events in Signal Region

B+ → D0π+, D0 → K+π− (2.58± 0.19)× 10−4 (1.87± 0.08)× 10−4 18.5± 1.6

B+ → D0π+, D0 → K0
S
π+π− (2.79± 0.22)× 10−4 (1.43± 0.11)× 10−4 15.2± 1.7

B+ → D0π+, D0 → K+π−π0 (3.69± 0.51)× 10−5 (6.94± 0.37)× 10−4 9.8± 1.5

B+ → D∗0π+, D∗0 → D0π0, D0 → K−π+ (1.44± 0.13)× 10−4 (1.08± 0.11)× 10−4 6.0± 0.9

B+ → D0ρ+, D0 → K−π+ (2.85± 0.45)× 10−5 (5.09± 0.69)× 10−4 5.6± 1.2

B+ → D∗0π+, D∗0 → D0γ,D0 → K−π+ (1.35± 0.15)× 10−4 (6.66± 0.78)× 10−5 3.4± 0.6

B+ → D∗0π+, D∗0 → D0π0, D0 → K0
S
π+π− (6.16± 0.59)× 10−5 (8.26± 0.98)× 10−5 1.9± 0.3

B+ → D0ρ+, D0 → K−π+π0 (2.08± 0.85)× 10−6 (1.89± 0.26)× 10−3 1.5± 0.6

B+ → D∗0π+, D∗0 → D0γ,D0 → K0
S
π+π− (7.10± 0.70)× 10−5 (5.08± 0.68)× 10−5 1.4± 0.2

B+ → D∗0π+, D∗0 → D0π0, D0 → K−π+π0 (7.65± 2.31)× 10−6 (4.01± 0.42)× 10−4 1.2± 0.4

B+ → D∗0π+, D∗0 → D0γ,D0 → K−π+π0 (1.18± 0.29)× 10−5 (2.47± 0.30)× 10−4 1.1± 0.3

B+ → π0π+K0
S

(5.60± 0.04)× 10−3 (3.30± 3.30)× 10−5 70.8± 70.8

B+ → K0
S
π+ (7.50± 0.51)× 10−4 (7.99± 0.35)× 10−6 2.3± 0.2

B+ → ρ+ρ0 (Longitudinal) (2.08± 0.27)× 10−4 (1.82± 0.30)× 10−5 1.5± 0.3

B+ → ρ0K∗+, K∗+ → K0
S
π+ (Longitudinal) (3.34± 0.10)× 10−3 (1.05± 1.07)× 10−6 1.3± 1.4

B+ → π+π+π− (1.56± 0.15)× 10−4 (1.62± 0.15)× 10−5 1.0± 0.1

Combinatorics 11.9± 2.7

Total Charged B backgrounds 154.4± 70.9
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Table 5.5: Summary of the B0 → (flavour eigenstate) background modes. All modes involve a D or a D∗ meson

except for the charmless B0 → ρ−K∗+, whose branching fraction has not been measured. Whenever a generic decay,

e.g. D− → X, and some of its subdecays are listed, the latter have been subtracted from the former in the calculation

of the efficiencies and branching fractions.

Mode (CP conjugate included) Efficiency Branching Fraction Expected events in Signal Region

B0 → D−π+, D− → X (9.86± 0.75)× 10−5 (2.78± 0.90)× 10−3 105.0± 34.9

B0 → D−π+, D− → K0
S
π−π0 (2.41± 0.13)× 10−4 (2.38± 0.65)× 10−4 21.9± 6.1

B0 → D∗+π−, D∗+ → D0π+, D0 → X (2.43± 0.23)× 10−5 (1.78± 0.21)× 10−3 16.6± 2.5

B0 → D0K0
S

(1.64± 0.03)× 10−3 (2.50± 0.70)× 10−5 15.7± 4.4

B0 → D+ρ−, D+ → X (5.31± 1.00)× 10−6 (7.39± 1.20)× 10−3 15.0± 3.8

B0 → D−π+, D− → K0
S
π− (6.73± 0.22)× 10−4 (5.00± 1.34)× 10−5 12.9± 3.5

B0 → D∗+π−, D∗+ → D0π+, D0 → K−π+ (3.35± 0.24)× 10−4 (7.10± 0.55)× 10−5 9.1± 1.0

B0 → D∗+π−, D∗+ → D+π0, D+ → X (2.76± 0.28)× 10−5 (8.35± 2.10)× 10−4 8.8± 2.4

B0 → D+ρ−, D+ → K0
S
π+ (1.70± 0.13)× 10−4 (1.10± 0.18)× 10−4 7.2± 1.3

B0 → D−π+, D− → K0
S
K− (1.21± 0.064)× 10−3 (1.01± 0.027)× 10−5 4.7± 1.3

B0 → D−π+, D− → K+π−π− (3.12± 1.01)× 10−5 (3.23± 0.86)× 10−4 3.9± 1.6

B0 → D∗+π−, D∗+ → D0π+, D0 → K0
S
π0 (4.79± 0.18)× 10−4 (2.13± 0.27)× 10−5 3.9± 0.5

B0 → D∗+π−, D∗+ → D+π0, D+ → K0
S
π+ (6.96± 0.22)× 10−4 (1.25± 0.10)× 10−5 3.3± 0.3

B0 → ρ−K∗+, K∗+ → K0
S
π+ (Longitudinal) (1.81± 0.07)× 10−3 (2.0± 2.0)× 10−6 1.4± 1.4

Total Flavour Neutral B backgrounds 229.4± 36.4
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Table 5.6: Summary of B0 → (CP eigenstate) background modes. Although a+1 π
− is not a CP eigenstate, it is not

a flavour eigenstate either, since a−1 π
+ can be reached from a B0 with equal probability to a+1 π

−. However, the sum

of the two can be treated as a CP eigenstate.

Mode Efficiency Branching Fraction Expected events in Signal Region

B0 → η′K0
S
, η′ → ρ0γ (6.55± 0.09)× 10−3 (9.56± 0.59)× 10−6 24.0± 1.5

B0 → K0µ+µ− (1.10± 0.00)× 10−1 (2.00± 1.3)× 10−7 8.4± 5.5

B0 → K0
S
K0

S
(5.39± 0.05)× 10−2 (2.30± 0.50)× 10−7 4.7± 1.0

B0 → a+1 π
− & B0 → a−1 π

+ (2.45± 0.08)× 10−4 (3.97± 0.37)× 10−5 3.7± 0.4

B0 → J/ψK0
S

(1.71± 0.70)× 10−5 (2.71± 0.11)× 10−4 1.8± 0.7

B0 → π+π−π0 (1.37± 0.09)× 10−4 (25.8± 2.6)× 10−6 1.4± 0.2

B0 → a01K
0
S

(1.03± 0.08)× 10−3 (3.50± 3.5)× 10−6 1.4± 1.4

Combinatorics 29.2± 4.0

Total CP Neutral B backgrounds 74.6± 7.2
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Figure 5.22: Distributions for the B0 → (flavour eigenstate) background mode

B0 → D0K0
S
. The channel has very clear peaking structures both in mES and

∆E/σ∆E , the latter showing that some of the D0 daughters have been lost in the

reconstruction. The bottom plot, depicting the ratio of the number of unmixed minus

mixed events over their sum at each point in ∆t, exhibits a profile typical of mixing.

The dilution can be extracted from it simply as the amplitude of the cosine wave, and

its average over all tagging categories is found to be 〈Deff〉 = 0.385± 0.025 (c.f signal,

〈D〉 ' 0.44). The mixing frequency is seen to be ∆md,eff = 0.327± 0.029, presumably

distorted by the unreconstructed displaced vertex of the D0.
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Figure 5.23: Dalitz plot distributions for the most prominent B0 → (CP eigenstate)

background mode, B0 → η′K0
S
with η′ → ρ0γ (top left), and for the neutral combina-

torics (bottom). On the top right is a plot showing the ∆t distributions of B0 → η′K0
S

(black, dashed), and B0 → K0
S
K0

S
(red, solid). Whereas the signal ∆t resolution model

is perfectly appropriate for the former, the latter requires another one that differs sig-

nificantly from that of signal: score = 2.12, stail = 5.0 and soutlier = 9.0 (c.f. Table 4.2).

With that model, however, the lifetime and the mixing frequency take values close to

those of signal.
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Figure 5.24: Comparisons of the mES (top) and ∆E/σ∆E (bottom) PDF shapes in

MC (left) and data (right) for the control sample. The BB background has been

neglected in both variables, and the continuum background has been modelled as an

Argus function in mES, and a first order polynomial in ∆E/σ∆E . Good agreement

is observed in both cases, making unnecessary any correction of the PDF parameters

extracted from MC.
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Chapter 6

Results and Conclusions

6.1 Toy MC tests

As sketched in Section 4.6, a standard procedure to check the correct behaviour of

the fit is to generate toy MC according to some given PDFs, employ the same PDFs

to fit those toy simulated data, and compare the recovered values with those used to

generate the data by producing pull plots for all the parameters that are estimated by

the fit.

A number of different scenarios were explored in these tests. The resonance content

was varied, and so were the relative magnitudes and phases between the resonances.

Biases were looked for among the fitted parameters, estimated as the difference between

the mean of the distribution of fitted values (which was assumed to be gaussian) and

the true value. It was found that simpler models would either show no biases, or small

ones (∼ 0.2). As the number of resonances increased, so did the biases, for two reasons:

first, by keeping the number of events per experiment constant, the quantity of events

assigned to each resonance diminished; second, strong correlations often appeared

between the cj coefficients of different resonances. However, as we shall see, these

correlations conspire to eliminate most of the biases from the physical observables.

Here we only present the results of a toy MC bias study in which the values of all

parameters used in the simulation have been set to those extracted from data, in order
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to examine in detail the reliability of the fit for the region of interest of the solutions

space. A careful description of the model is given in Section 6.3. Once the decay

model has been established, 250 toy MC samples are generated, each one containing

the amount of continuum background, BB background and signal events expected in

the on-peak sample. These 250 “experiments” must then be fitted, and the results for

each parameter compared to the true values.
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Figure 6.1: Negative Log Likelihood minima attained by 90 fits to a single experiment

with randomized initial values.

Not all the degrees of freedom in the cj are physical, since only relative magni-

tudes and phases can be measured. Hence, one magnitude and one phase are fixed

to reference values, usually chosen as 1.0 and 0.0, respectively. In this analysis, it is

the magnitude and phase of the B0 and B0 average amplitude of a resonance that are

fixed to those values. A further phase has to be fixed to zero, since the quantity φmix

appearing in Eq. (5.1) is just an overall phase difference between B0 and B0, but, like

the latter, it must be a CP -odd phase.

All in all, the number of free parameters in such fits is rather high: 24 in the

case of the fit to data (two of them being the signal and continuum yields, and the
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other 22 being the relative magnitudes and phases of the 6 components of the decay

models for B0 and B0). As a consequence, the landscape of extrema of the likelihood

hypersurface in this high-dimentionality space is rather complex, and the location of

the global maximum turns into a non-trivial task. The fit often does not converge to

the global maximum, so a multitude of fits with randomized initial values is needed

from which the fit with the highest likelihood is selected. Figure 6.1 illustrates this

by showing the different maxima to which the fits converge for a typical experiment.

In this analysis, 90 fits were made to each sample. Plots showing the distribution of

fitted values for the observables from the best of the fits can be seen in Figures 6.2 to

6.6.

6.2 Fully simulated MC tests

Fully simulated MC, as opposed to toy MC, is used to check whether any neglected

effects, such as the experimental resolution, self cross feed or ignored correlations be-

tween variables, are more important than initially estimated and should be accounted

for in the fit. It cannot be used to study the biases of the fit or the expected sizes

of the statistical uncertainties because the actual resonance content of the Dalitz plot

model, and the relative magnitudes and phases are only found from the later fit to

data.

This full MC, in which the B0 → K0
S
π+π− decay is modelled to proceed through

the K∗±(892)π∓, ρ0(770)K0
S
and f0(980)K

0
S
resonances with arbitrary phases but in

roughly the relative fractions expected in data, is used to generate 250 samples, which

are mixed in the appropriate proportions with the continuum and BB background

simulated with the PDFs of the nominal fit to data. Like before, the B0 and B0 average

of the magnitude and phase of K∗±(892)π∓ are kept fixed in the fit. The additional

degrees of freedom fixed in the fit are in this case taken to be the aysmmetry terms in

f0(980)K
0
S
.

Figures 6.7 to 6.9 show the fitted distributions and the values used for the gen-
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Figure 6.2: Pull plots for φmix and the signal and continuum yields. The black curves

are gaussian fits to the pull distributions. The fitted yields are excellent, with both

means and widths of the pull distributions consistent with 0.0 and 1.0, respectively.

For φmix, the mean and width are found to be µ = −0.52± 0.10 and σ = 1.60± 0.08,

indicating a poor performance of the fit. This is due (see Section 6.5) to this parameter

being dominated by a very statistically limited resonance.

eration. Noticeable, but not extremely large, differences between those values are

observed in several of those plots. These are expected to be smaller in the actual fit

to data, since a higher number of resonances implies fewer events per resonance, and

hence less sensitivity to small effects like those mentioned above. Note, in contrast,

the good performance of the fit in recovering φmix. The signal and continuum yields

show biases of ∼ 0.75× σ and ∼ 0.60× σ, which amount to ∼ 38 and ∼ 57 events, re-

spectively. None of the biases are corrected for, and are instead dealt with by assigning
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Figure 6.3: Distributions of fitted values (red points) for the magnitudes of the

K∗±(892)π∓, K∗±
0 (1430)π∓ and ρ0(770)K0

S
components in the B0 and B0 decay mod-

els. The black curves are gaussian fits to the distributions, and the black arrows point

to the true value. No significant bias is observed, although non-gaussian distributions

are found in the first two plots. This is due to the fit configuration, in which one

magnitude must be fixed. In out case, it is the average of the B0 and B0 magnitudes

of the first resonance that is fixed to 1.0.
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Figure 6.4: Distributions of fitted values (red points) for the magnitudes of the

f0(980)K
0
S
, χc0K

0
S
and non-resonant components in the B0 and B0 decay models.

The black curves are gaussian fits to the distributions, and the black arrows point to

the true value. A secondary solution is hinted at in the plots of the middle row, that

correspond to the magnitudes of the resonance with the smallest contribution to the

model. The bottom row shows the distributions of the magnitude for the non-resonant

component, whose B0 component exhibits a noticeable, but manageable, bias.
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Figure 6.5: Distributions of fitted values (red points) in degrees for the phases of

the K∗±(892)π∓, K∗±
0 (1430)π∓ and ρ0(770)K0

S
components in the B0 and B0 decay

models. The black curves are gaussian fits to the distributions, and the black arrows

point to the true value. Phases are generally not as well determined as magnitudes.

In spite of that, no worrying biases are observed. Notice that, the top row exhibits

once more non-gaussian profiles, this time due to the phase of the average of those

components being fixed to 0.
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Figure 6.6: Distributions of fitted values (red points) in degrees for the phases of the

f0(980)K
0
S
, χc0K

0
S
and non-resonant components in the B0 and B0 decay models. The

black curves are gaussian fits to the distributions, and the black arrows point to the

true value. No large biases are observed. Only one parameter is shown for the last

resonance, as the other one is absorbed into φmix.
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appropriate systematic uncertainties (see Section 6.4).

 PullsigN
-4 -3 -2 -1 0 1 2

N
u

m
b

er
 o

f 
ex

p
er

im
en

ts

0

2

4

6

8

10

12

14

16

 PullqqN
-2 -1 0 1 2 3 4

N
u

m
b

er
 o

f 
ex

p
er

im
en

ts

0

2

4

6

8

10

12

 Pull
mix

φ
-3 -2 -1 0 1 2 3 4

N
u

m
b

er
 o

f 
ex

p
er

im
en

ts

0

2

4

6

8

10

12

14

16

18

20

 (rad)
mix

φ
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
u

m
b

er
 o

f 
ex

p
er

im
en

ts

0

2

4

6

8

10

12

14

16

Figure 6.7: Pull plots for φmix and the signal and continuum yields in the full MC tests.

The last two show slight biases, but the recovery of φmix by the fit is excellent, with

the mean and width of the pull plot consistent with 0.0 and 1.0, respectively. Note

that, unlike other time-dependent analyses, we determine φmix rather than sinφmix,

and that the mirror solution (π − 2β) is not observed in the pull plot. This is better

appreciated in the lower right plot, where none of the fits to the 250 experiments is

seen to converge to φmix = π − 2β ' 2.4 rad. This plot demonstrates the capabilities

of Dalitz-plot analyses, boasting an error on φmix of ∼ 0.2 rad ' 11◦.
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Figure 6.8: Distributions of fitted values (red points) for the magnitudes of all the

components in the full MC tests. The black curves are gaussian fits to the distributions,

and the black arrows point to the true value. Non-gaussian tails are observed in all

three components, presumably due to the neglected resolution effects and self cross

feed. Modelling of the latter was shown to improve these tails in Section 5.6.
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Figure 6.9: Distributions of fitted values (red points) in degrees for the phases of

all the components in the full MC tests. The black curves are gaussian fits to the

distributions, and the black arrows point to the true value. Phases have smaller

errors than in Section 6.1 because a lower number of resonances leads to more events

associated to each of them. Significant biases are observed, although the central values

are still within 1σ of the true value.
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6.3 Exploring the Dalitz plot structure

Since the resonant structure of the decays is a priori unknown, a procedure must be

in place to systematically identify and assess in data the significance of each com-

ponent added in the model. Following previous analyses [31, 10], we start from a

minimal model, established by earlier measurements, and include one more resonance

at a time. If small fit fractions are found for any of the resonances in the minimal

model, fits excluding the resonance in question are performed. Either way, estimating

the associated statistical errors requires lengthy toy MC studies (see Sections 6.1, 6.5),

so the approach adopted consists of simply evaluating the difference in the likelihood

calculated in the fit with and without the component under study, and checking that

the results for the well established resonances are consistent in both cases. A spuri-

ous resonance could be assigned large fit fractions by the artefact of extremely large

interferences with other components, thus changing greatly at least one of the well

determined fit fractions.

In B0 → K0
S
π+π−, the minimal model is formed by K∗±(892)π∓, K∗±

0 (1430)π∓,

ρ0(770)K0
S
, f0(980)K

0
S
, χc0K

0
S
and a non-resonant component with a constant magni-

tude and phase over the Dalitz plot (flat). The model is based on BABAR’s findings

from the charged B+ → K+π−π+ [10], which is a cleaner experimental analysis, as well

as Belle’s B0 → K0
S
π+π− and B+ → K+π−π+ results [25]. As for the parameterization

of each component, according to the discussion in Section 2.5.4, the statesK∗±(892)π∓,

ρ0(770)K0
S
and χc0K

0
S
are known to follow closely a relativistic Breit-Wigner lineshape,

whereas f0(980)K
0
S
requires a Flatté propagator. The K∗

0 (1430) states, however are

found not be well described simply by a (relativistic) Breit-Wigner, and a LASS-type

parameterization is preferred by the K+π+π− data. The nature of the non-resonant

component is even less understood than that of the K∗
0 (1430). In the analyses men-

tioned above, fits to larger data samples than the one expected for the present study

of B0 → K0
S
π+π− seem to show slight improvements when non-uniform non-resonant

terms are used. There are, however, no clear guiding principles either theoretical or

empirical that convincingly favour one model over the others. In such a situation, the
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simplest option (flat) is chosen for this analysis, since it is observed to result in smaller

correlations with the other intermediate states in the decay model.

A rather subtle point that needs to be discussed before proceeding, and that was

only mentioned in passing in the previous sections is the conventions followed con-

cerning which parameters are kept fixed in the fit. Clearly, one magnitude and one

phase have to be fixed, since the overall normalization is related to the signal event

yield, nsig, and only relative phases are physically meaningful. Almost any choice will

do, as long as, to avoid statistical limitations, a prominent resonance is selected that

interferes strongly with the other components. The question of which other phase to

fix to make up for the free parameter accounting for the mixing phase, φmix, is not as

straightforward. In principle, the mixing phase is independent of the resonant state

by which the (un)oscillated meson decays. There can be, however, weak phases that

depend on the resonant submode, and these would be indistinguishable from φmix.

B0 → K0
S
π+π− is in fact a very good example, as all the charmless decays to this

final state include a b → u tree contribution carrying the phase γ, as depicted in

Figure 2.7. Furthermore, the level of “contamination”, and hence the effective weak

phase, brought by these diagrams also varies from one resonance to another, as it is

immediately apparent when confronting, for instance, the ρ0(770) and f0(980) states.

Whereas the former couples to uū and dd̄, the latter also has an ss̄ component. Ulti-

mately, φmix can be defined operationally as the weak phase measured in charmonium

decays. Following that spirit, we decide to use the parameterization Eq. (2.49) for the

χc0K
0
S
subchannel and fix its CP -odd phase to zero, thereby forcing φmix to play its

role. This channel is assured to be free from Standard Model contaminations. The

price to pay is the very statistically limited determination of φmix, due to the rather

small expected fit fraction for that channel1.

The fit fractions of all six components have been established to have at least a 3σ

significance in other analyses. Our work, then, consists only of adding new resonances

1Alternatively, the idea of having a global φmix parameter can be given up, and the weak phases

of each resonant channel measured independently.
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and assessing their impact on the description of the decay. Introducing more free

parameters can only improve the fit, which means that the changes in the total likeli-

hood induced by the addition of a new component will have to be moderately large, on

the order of dozens of units of likelihood or more, to be considered significant. Large

asymmetries in the fitted fractions for the resonance under scrutiny can be considered

as circumstantial evidence against its presence, as statistical fluctuations could easily

produce such situations.

The resonant modes tested are: ω(782)K0
S
, K∗±

2 (1430)π∓, f0(1370)K
0
S
, f2(1270)K

0
S

and fX(1300)K
0
S
, the scalar seen by Belle in [55]. Only the last one, for which new

estimations of the mass and width [90] are used instead of Belle’s, is found to induce a

change in the likelihood large enough to suggest that it really appears in the decay. The

difference is still rather small, so it is decided not to include this state in the nominal

model. Table 6.1 shows the changes in the likelihood associated to each resonance,

and their fitted branching fractions.

6.4 Systematic uncertainties

The Dalitz-plot related systematic uncertainties come, in part, from the statistical

uncertainties on the bin contents of the histograms that model the efficiency variation

across the Dalitz plot, the migration of self cross feed events and the distributions of

qq and BB backgrounds. These uncertainties on the bin contents can be understood

as an uncertainty on the shape of the corresponding PDFs. The uncertainty on the

normalization of those PDFs, i.e. the number of expected background events, further

contributes to the systematic error. Other parameters that are kept fixed during

the fit contribute as well, such as those involved in the ∆t resolution model, the

fractions of signal events belonging to each tagging category, or the mES and ∆E/σ∆E

distributions. Fit biases are also taken care of, by assigning systematic errors. Finally,

there are the so-called model errors, which arise from uncertainties in the structure

of the Dalitz Plot and its parameterization. These are the harder to assess, and the
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Table 6.1: Table showing the changes in the likelihood and the fit fractions induced by the addition of further

resonances to the decay model. The first column shows the values of the fit fractions obtained from data for the B0

minimal model. The rest of the columns show their values when additional resonances are introduced in the model.

Only the changes in the likelihood associated to the addition of the fX(1300) seem to indicate something else besides

the expected improvement due to the larger number of free parameters.

Minimal model With ω(782) With f2(1270) With f0(1370) With fX(1300) With K∗0
2 (1430)

∆ logL – 1.14 7.95 11.56 17.43 10.09

K∗±(892)π∓ fraction 9.6% 9.6% 9.5% 9.3% 9.4% 9.7%

K∗±
0 (1430)π∓ fraction 53% 52% 52% 52% 52% 51%

ρ0(770)K0
S
fraction 11% 11% 9.7% 10% 11% 10%

f0(980)K
0
S
fraction 13% 14% 14% 8.8% 11% 13%

χc0K
0
S
fraction 1.7% 1.7% 1.8% 1.7% 1.7% 1.5%

K0
S
π+π− NR fraction 8.7% 8.4% 8.4% 11% 11% 9.6%

Additional submode (B0) – 0.034% 4.9% 1.4% 1.9% 2.4%

Additional submode (B0) – 0.37% 2.2% 3.3% 2.1% 5.0%
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most important in size for some of the most interesting observables, such as the time-

dependent asymmetries.

The calculation of all these uncertainties implies redoing the fit to the data with

a multitude of different values for the fixed parameters or shapes, and is therefore

extremely computationally intensive. For this reason, the actual evaluation of the

errors has not been done. Nevertheless, a careful examination of all the possible sources

of systematic uncertainties and the ways to estimate them follows, giving rough orders

of magnitude as to what those uncertainties would be if extrapolated from similar

analyses.

Clearly, these uncertainties must be calculated before results can be publicly pre-

sented.

6.4.1 PDF parameter fluctuations

All the signal, qq and BB mES, ∆E/σ∆E and Fisher PDF parameters are fixed to

the values fitted from MC or sideband data. For each of these parameters, the fit

is repeated 100 times taking, instead of the nominal value of the parameter, a value

generated from a gaussian whose mean and width are the central value and the error of

the parameter. The RMS of the resulting distribution for each measured parameter is

taken as the associated systematic uncertainty. For signal, the widths of the gaussians

for the mES and ∆E/σ∆E parameters are enlarged to account for the discrepancies

observed between data and MC in the control sample (Section 5.9).

These partial systematic uncertainties on the total branching fraction are expected

to be ∼ 1− 2× 10−6.

6.4.2 ∆t parameter fluctuations

The description of the resolution in ∆t follows that one found in the sin2β charmonium

analyses, as described in Section 4.4.3. These parameters, and the signal tagging

category fractions, are also fluctuated in the manner described above. In addition, the

parameters used to describe the ∆t distributions of the background need to be varied.
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Again, the RMS of the resulting distributions are taken as the systematic errors, and

are expected to be roughly ∼ 1− 2% for S and C, and a few degrees on φmix.

Any systematic uncertainties arising from vertexing and misalignment are ac-

counted for by the rather small errors (∼ 0.1%) found in the charmonium analyses [24].

6.4.3 Tag side interference

A further systematic uncertainty affecting the quantities derived from any time-dependent

analysis must be considered. In the tagging algorithm, the interference between the

decays b → c + ūd and the doubly Cabibbo supressed b̄ → ū + cd̄ is neglected [91].

Such an effect has been shown to be . 1% in the charmonium analyses, as expected

from the ratio of the amplitudes for the two processes, ∼ 0.02.

6.4.4 Histogram fluctuations

A similar procedure is used to estimate the systematic errors associated with the

uncertainty in the shapes of the efficiency, qq and BB histograms. 200 histograms are

generated by fluctuating independently the contents of each bin within their errors

according to a binomial distribution, which are then used to repeat the nominal fit.

These uncertainties are expected to amount to a few percent of the measured

quantities.

6.4.5 BB background yield fluctuations

Although the qq background yield is extracted from the fit and therefore does not con-

tribute to the systematic uncertainties, the numbers of BB background events across

the different categories are fixed from the MC studies. To estimate the associated sys-

tematic uncertainty, these numbers are again fluctuated before being fed into another

100 instances of the otherwise nominal fit. That should result in a ∼ 1% error on the

magnitudes and phases.
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6.4.6 Fit biases

Toy and full MC studies have been performed (see Section 6.1), and used to character-

ize the fit biases. These are not corrected for, and are instead dealt with by assigning

appropriate systematic errors, which are taken to be the differences between the true

and the fitted (biased) values, and are generally rather small.

6.4.7 Reconstruction efficiency systematics and NBB

The branching fraction calculations are affected by uncertainties on the efficiency of

the reconstruction and the selection criteria, and on the number of BB pairs produced

in the experiment. The latter has been estimated to have a 1.1% uncertainty [92].

Efficiency corrections due to the reconstruction of two charged tracks and the K0
S

lead, respectively, to a 1.6% systematic error, as suggested by the BABAR Tracking

Efficiency Task Force [93], and a ∼ 1% uncertainty that depends on the selection

cuts [94]. PID systematics have been estimated before as 2.8% [30].

The MC simulation from which the efficiencies are calculated does not reproduce

completely the behaviour of data. Therefore, a correction factor, that is obtained from

the comparison of the effects of these selection requirements on data and MC for signal

and the control sample, must be applied. The correction has an associated systematic

uncertainty of ∼ 2− 3%, coming from the propagation of the poissonian errors on the

sample sizes.

6.4.8 Model errors

Uncertainties in the masses and widths used to characterize the various resonances,

as well as coupling (Flatté) constants, centrifugal barrier factors and LASS parame-

ters, contribute to a systematic uncertainty in the DP structure. Also, addition and

omission of other resonances to/from the model further increase the uncertainties.

A good example is one of the most important observables, S (f0(980)), which varies

significantly depending on the resonant content in the π+π− spectrum: a value of
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S = −0.84 is obtained when the state fX(1300) is included, in contrast to the value

S = −0.77 yielded by the nominal Dalitz-plot model. Finally, the effect on the results

of different parameterizations for each component in the model must also be taken into

account, such as those resulting from the use of the Gounaris-Sakurai lineshape [95]

instead of the relativistic Breit-Wigner for the ρ0(770), or a non-constant non-resonant

component.

These uncertainties are expected to be dominant in some parameters, and rather

large in others: as much as 0.1 on S, and ∼ 5◦ on the phases, including φmix.

6.5 Results

Once the B0 and B0 decay models have been established (Section 6.3), a fit is per-

formed to data with the B0 lifetime and mixing frequency free to vary in the fit. The

values obtained for these are compared to their world averages [22] in order to vali-

date the ∆t treatment, and an excellent agreement is found: τB0 = 1.59 ± 0.06 and

∆md = 0.50 ± 0.04, where the errors are those returned by Minuit. A final fit is

then performed, with τB0 and ∆md fixed to their world average values, from which the

yields, fit fractions and phase differences are extracted. The sPlots 2 are examined

first, and after checking that there is a good agreement between the fitted distribution

in each variable for signal and continuum events with that inferred from the sPlots
technique (see Figures 6.10 to 6.14), the values obtained from the fit for the param-

eters of interest are finally looked at. These are listed in Table 6.2, the uncertainties

quoted being statistical only. The correlations among the parameters varied in the fit

are showed in Figure 6.16. A few plots concentrating on the areas of interest are also

2The sPlots technique [96] consists of calculating weights from the covariance matrix of a fit to

data in which the yields of the species (e.g. signal, background) are left to vary, and the distributions

in all the variables considered but one are used. These weights give the probability for each individual

event to belong to a given species, and can be used to deduce how the distributions in the excluded

variable should be. A good consistency check is then obtained by comparing these with their assumed

PDFs, as described in the main text.
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Table 6.2: Results from the fit to data. The errors are statistical only. The B0 and B0

average magnitude and phase of K∗±(892)π∓ were fixed to 1.0 and 0.0, respectively,

and the CP -odd phase of χc0K
0
S
was also set to 0.0, constraining the B0 and B0

phases quoted below for this resonance to be equal. In calculating relative phases

between B0 and B0 components, the mixing phase must be substracted from the B0

phase.

Resonance B0 Fit Fraction B0 Phase B0 Fit Fraction B0 Phase

K∗±(892)π∓ (12.5± 1.9)% (−21± 26)◦ (9.4± 1.6)% (24± 27)◦

K∗±
0 (1430)π∓ (48.1± 2.9)% (158± 24)◦ (52.6± 4.8)% (181± 28)◦

ρ0(770)K0
S

(8.4± 2.7)% (−26± 36)◦ (10.6± 2.9)% (22± 40)◦

f0(980)K
0
S

(18.5± 3.1)% (−64± 30)◦ (13.4± 2.5)% (−64± 37)◦

χc0K
0
S

(0.9± 0.9)% (43± 24)◦ (1.7± 0.9)% (43± 24)◦

K0
S
π+π− NR (8.2± 2.4)% (5± 32)◦ (8.7± 2.8)% (60± 50)◦

φmix (52± 57)◦

Signal yield 1719± 52 events

qq yield 8331± 100 events

shown in Figure 6.15.

The estimation of the errors on these is made via toy MC studies, as detailed in

Section 6.1, since the observables of interest (e.g. the fit fractions or the asymmetries)

are highly non-linear functions of the fitted parameters cj, which are often strongly

correlated. Hence, simple error propagation is rendered unfeasible. The values found

from the final fit are fed as the generating values in the toy MC study, and the statistical

uncertainty on each of the parameters of interest is calculated as the width of the

resulting distributions. These distributions are gaussian for most of the obervables,

except for the asymmetries of the χc0K
0
S
for which upper limits are quoted instead of

central values with errors.

A rather large error is obtained on φmix. As explained in Section 6.3, the CP -
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Figure 6.10: sPlots distributions for the signal species given by the three background

discriminating variables included in the fit, mES, ∆E/σ∆E and F , and the Dalitz plot

variables. The points with errors in a given variable represent the signal distribution as

determined from data by a fit in which all the variables but the one plotted are used

to separate signal and backgrounds, and the solid line is the distribution predicted

by the results of the total fit. There is a good agreement between them. Note that

the lower right plot, that shows the Dalitz plot distribution obtained when the three

discriminating variables are used to separate signal from background, shows heavily

populated bands in the mπ+π− and mK0
Sπ

spectra, with hints of vector structures in

each of those.
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Figure 6.11: sPlots distributions for the continuum background species given by the

three background discriminating variables included in the fit, mES, ∆E/σ∆E and F ,
and the Dalitz plot variables. The data points, weighted by the sPlot technique, show
a good agreement with the distributions given by the values extracted from the fit.
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Figure 6.12: Projections on themK0
Sπ

invariant masses of the sPlots Dalitz distribution

for the signal species. Good agreement between the global fit and the prediction on the

Dalitz plot PDF from the fit only to the three discriminating variables mES, ∆E/σ∆E

and F is observed.
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Figure 6.13: Projections on the mπ+π− invariant masses of the sPlots Dalitz distribu-

tion for the signal (top) and continuum background (bottom) species. Good agreement

between the global fit and the prediction on the Dalitz plot PDF from the fit only to

the three discriminating variables mES, ∆E/σ∆E and F is observed. Note the point

at mπ+π− ' 1.4GeV/c2 for signal, showing a hint of an unaccounted component, most

likely the fX(1300).
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Figure 6.14: Projections on themK0
Sπ

invariant masses of the sPlots Dalitz distribution

for the continuum background. There is a good agreement between the global fit and

the prediction on the Dalitz plot PDF from the fit only to the three discriminating

variables mES, ∆E/σ∆E and F , although a slight underestimation of the peaks at

low and high mK0
Sπ

is visible. This is a known feature arising from the use of on-

peak sideband data to model the continuum background, in which resonances from

the continuum are smoothed by the misreconstruction. Indeed, there is a hint at such

behaviour in Figure 5.15, where the off-peak and the on-peak sidebands are compared.
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Figure 6.15: Figures showing the detail of the ρ0(770) (top), K∗+ (middle) and K∗−

regions. The red and green-filled areas represent continuum and BB background,

respectively, and the continuous line is the prediction given by the values extracted

from the fit. Clear peaks are observed for the identified resonances, ρ0(770), f0(980)

and K∗±(892), and an enhancement reveals the presence of K∗±
0 (1430).

168



100 39 32 40 40 33 9 36 19 24 31 29 28 21 33 0 34 41 30 7 22 35 0 0

39 100 84 97 86 24 2 79 53 27 67 68 36 73 82 1 67 72 70 10 28 76 0 0

32 84 100 87 64 4 14 77 31 8 70 70 13 73 72 5 54 59 83 11 2 78 0 0

40 97 87 100 82 26 1 85 44 29 74 74 36 71 81 4 70 77 76 2 27 83 0 0

40 86 64 82 100 36 10 68 64 37 53 55 51 61 75 0 61 69 55 4 49 61 1 2

33 24 4 26 36 100 44 25 10 58 16 17 66 21 16 3 42 47 10 50 65 22 0 0

9 2 14 1 10 44 100 16 11 58 12 0 61 43 5 2 14 18 5 32 53 6 1 0

36 79 77 85 68 25 16 100 10 25 89 84 34 55 67 5 61 69 83 15 23 91 1 1

19 53 31 44 64 10 11 10 100 16 2 3 19 48 48 5 30 30 7 28 28 6 2 5

24 27 8 29 37 58 58 25 16 100 13 14 79 25 19 4 37 51 13 31 68 23 1 0

31 67 70 74 53 16 12 89 2 13 100 84 24 48 57 5 52 58 79 16 10 91 0 1

29 68 70 74 55 17 0 84 3 14 84 100 24 49 58 4 51 54 79 11 14 84 0 1

28 36 13 36 51 66 61 34 19 79 24 24 100 28 26 4 45 58 19 34 82 30 0 0

21 73 73 71 61 21 43 55 48 25 48 49 28 100 67 1 36 34 57 32 24 53 0 1

33 82 72 81 75 16 5 67 48 19 57 58 26 67 100 11 72 60 61 14 16 64 1 1

0 1 5 4 0 3 2 5 5 4 5 4 4 1 11 100 7 7 11 9 3 6 1 1

34 67 54 70 61 42 14 61 30 37 52 51 45 36 72 7 100 66 52 19 39 59 0 1

41 72 59 77 69 47 18 69 30 51 58 54 58 34 60 7 66 100 64 32 48 73 0 1

30 70 83 76 55 10 5 83 7 13 79 79 19 57 61 11 52 64 100 11 2 88 0 0

7 10 11 2 4 50 32 15 28 31 16 11 34 32 14 9 19 32 11 100 52 17 1 0

22 28 2 27 49 65 53 23 28 68 10 14 82 24 16 3 39 48 2 52 100 15 1 1

35 76 78 83 61 22 6 91 6 23 91 84 30 53 64 6 59 73 88 17 15 100 0 0

0 0 0 0 1 0 1 1 2 1 0 0 0 0 1 1 0 0 0 1 1 0 100 21

0 0 0 0 2 0 0 1 5 0 1 1 0 1 1 1 1 1 0 0 1 0 21 100

A0_DeltaX
A0_DeltaY

A1_DeltaX
A1_DeltaY

A1_X
A1_Y

A2_DeltaX
A2_DeltaY

A2_X
A2_Y

A3_DeltaX
A3_DeltaY

A3_X
A3_Y

A4_A
A4_B

A4_Delta
A5_DeltaX

A5_DeltaY
A5_X

A5_Y
phiMix

qqbarEvents

signalEvents

A0_DeltaX
A0_DeltaY
A1_DeltaX
A1_DeltaY

A1_X
A1_Y

A2_DeltaX
A2_DeltaY

A2_X
A2_Y

A3_DeltaX
A3_DeltaY

A3_X
A3_Y
A4_A
A4_B

A4_Delta
A5_DeltaX
A5_DeltaY

A5_X
A5_Y

phiMix
qqbarEvents
signalEvents

0

10

20

30

40

50

60

70

80

90

100

Figure 6.16: Absolute vlaues of the correlations between the parameters varied in

the fit. Those corresponding to a component of the signal model are labelled with

a number, starting from 0 and following the sequence K∗(892), K∗
0 (1430), ρ

0(770),

f0(980), χc0 and non-resonant. It can be seen that the most important correlations

appear between the twoK∗ components themselves and with the rest of the resonances

of the model. Rather high numbers of strongly correlated parameters arise often in

Dalitz analyses.

169



Table 6.3: B0-B0 averaged branching fractions, time-dependent asymmetries and di-

rect CP asymmetries derived from the fit. The errors are statistical only.

Resonant mode B(10−6) S C
Total K0π+π− 45.8± 1.6 – –

K∗±(892)π∓;K∗±(892)→ K0π± 5.1± 0.5 – 0.13± 0.09

K∗±
0 (1430)π∓;K∗±

0 (1430)→ K0π± 23.4± 1.4 – −0.04± 0.07

ρ0(770)K0; ρ0(770)→ π+π− 4.4± 0.6 −0.06± 0.37 −0.12± 0.31

f0(980)K
0; f0(980)→ π+π− 7.4± 0.7 −0.77± 0.21 0.16± 0.16

χc0K
0;χc0 → π+π− < 1.0 at 98%CL < 0.0125 at 90%CL −0.33± 0.58

K0π+π− NR 3.1± 0.8 – −0.40± 0.37

odd phase of χc0K
0
S
dominates the result, and is therefore affected by the statistical

uncertainty on its small contribution. The mirror solution, φmix = π − 2β ' 2.4 rad,

however, is clearly disfavoured (see Figure 6.17).

The branching fractions of each submode, averaged over the two CP conjugate

states, their time-dependent asymmetries S and their direct CP asymmetries ACP −C
have also been calculated, and are shown in Table 6.3.

The correlations observed among the cj parameters floated in the fit are quite

varied. Although typical values are ∼20% or 30%, correlations as high as ∼90% are

observed between the ∆Y components of the K∗(892) and K∗
0 (1430) resonances. More

generally, strong correlations are often found between the parameters of the K∗(892)

and K∗
0 (1430) resonances, and the non-resonant and the K∗

0 (1430), and sometimes

between those of the f0(980) and ρ
0(770)states.

More of the parameters are found to correlate strongly (〉70%) with a few other

parameters, typically another parameter of the same resonance (e.g. X and ∆Y or

∆X and ∆Y components of the K∗
0(1430)), and
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Figure 6.17: Distribution of the mixing phase and the time-dependent asymmety

coefficients S of ρ0(770)K0, f0(980)K
0 and χc0K

0 obtained in the toy MC studies

when the fitted values are used as input to the generation. Due to the low fit fraction

of χc0K
0, the errors on φmix and S(χc0K0) are rather large. In spite of that, the mirror

solution φmix = π − 2β ' 2.4 rad is clearly excluded. The accuracy of S(f0(980)K0)

improves on previous measurements.
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6.6 Conclusions and outlook

The branching fractions of B0 → K0π+π−, B0 → K∗±(892)π∓, B0 → K∗±
0 (1430)π∓,

B0 → ρ0(770)K0, B0 → f0(980)K
0, and B0 → K0π+π− non-resonant have been

measured, finding results compatible with previous measurements and improving on

their statistical accuracy. In particular, the fit fractions are in very good agreement

with those from B+ → K+π−π+ [10].

The results obtained by Belle for the branching ratios of B0 → K∗±
0 (1430)π∓ and

B0 → K0π+π− NR seem to be superficially at odds with our results. These dif-

ferences originate from different parameterizations: Belle parameterize the K∗
0 (1430)

with a relativistic Breit-Wigner, whereas we follow LASS (see Section 2.5.4). This also

explains the difference in the non-resonant branching fraction, since the LASS parame-

terization includes an effective range term that behaves as a non-resonant component.

Belle’s choice of a relativistic Breit-Wigner seems simplistic, as a variety of different

sources (e.g. [65, 10]) have shown that it does not describe well the Kπ spectrum. In

spite of the better performance of the LASS lineshape, it is uncertain whether such

parameterization will be the last word about the form of the K∗
0 (1430) resonance,

making the associated systematic uncertainties difficult to estimate.

Direct CP asymmetries have been measured for all the resonant submodes men-

tioned above, and have been found to be consistent with zero.

Measurements of the mixing phase and the time-dependent asymmetries coefficients

S have also been made. Although the precision on the first one is rather low, the

mirror solution is disfavoured. The measurement of S(f0(980)) is compatible with

BABAR’s previous measurement and slightly improves on the statistical errors. It

is also in excellent agreement with the charmonium measurements of sin2β. The

result obtained for S(ρ0(770)) is compatible with the only previous measurement,

and, interestingly, provides circumstantial evidence for a value rather different from

the charmonium value. This would not be completely unexpected, as the mode B+ →
ρ0(770)K+ exhibits a ∼ 30% asymmetry, indicating a strong interference. Under

isospin symmetry, two of the four diagrams that contribute to the latter are also the

172



ones that make up the amplitude of B0 → ρ0(770)K0: a b → s penguin loop and a

b→ u tree carrying the unitarity triangle phase γ (as in the diagrams for B0 → K∗0π0

in Figure 2.7, but with a K0
S
instead of a K∗0 and a ρ0(770) instead of the π0). If the

tree level diagram were enhanced, and forced to counteract the effect of 2β with its

weak phase, S ' 0 could be obtained. Perhaps in the future this channel alone will

determine γ directly, since the presence of χc0K
0 allows for the measurement of 2β

and ρ0(770)K0 is sensitive to a combination of 2β and γ.

Finally, the relative phase between B0 → K∗±π∓ and B0 → K∗∓π± has also

been found, allowing for a new independent determination of the unitarity angle γ to

be made. Since the method [11] to calculate the angle relies heavily on Dalitz plot

measurements, the error on the new determination is expected to be of the order of the

typical error on a Dalitz-plot measured phase, i.e. ∼ 20◦ − 40◦. Such a measurement

is competitive and genuinely improves the overall knowledge of the angle.

Clearly, given the rich physics harvest that this decay mode yields, the analysis

will be carried out again on the total dataset that BABAR is due to accumulate by

September 2008. This will be done in the light of the knowledge on theKππ Dalitz-plot

resonant structure gained from the newest iterations of the better experimentally suited

B+ → K+π−π+, which will also be redone. Of course, the other channel needed for

the determination of γ, B0 → K+π−π0, will also be studied with the final datasample.

Given the size of the total datasample, twice as large as the one used for the analysis

presented here, it may be then necessary to use, and possibly tune, the author’s

implementation of the self cross feed treatment, since it is only negligible at the moment

because the statistical uncertainty is comparable to the fraction of self cross feed events.
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