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Abstract

The results from a Dalitz plot analysis of the charmless threebody decay

B± → K±K±K∓ are presented. The analysis is carried out using data recorded with

the BABAR detector. The data sample has an integrated luminosity of 210.6 fb−1,

corresponding to 231.8 million BB pairs.

Branching fractions and CP asymmetries are presented for significant contributions

to the mode B± → K±K±K∓. Modes found to be not significant, have an upper limit

placed on their branching fraction.

No significant CP asymmetries are observed. The measured branching fractions

and upper limits are:

B(B± → K±K±K∓ inclusive) = (35.1 ± 1.3 ± 2.1) × 10−6,

B(B± → K±K±K∓ non-resonant) = (18.6 ± 3.4 ± 1.8) × 10−6,

B(B± → φ(1020)K±, φ(1020) → K+K−) = (4.3 ± 0.6 ± 0.3) × 10−6,

B(B± → f0(980)K±, f0(980) → K+K−) = (8.7 ± 3.1 ± 1.4) × 10−6,

B(B± → (KK)0
0K

±, (KK)0
0 → K+K−) = (3.3 ± 1.1 ± 0.7) × 10−6,

B(B± → χc0K
±, χc0 → K+K−) < 2.9 × 10−6,

B(B± → φ(1680)K±, φ(1680) → K+K−) < 1.5 × 10−6,

B(B± → f2(1270)K±, f2(1270) → K+K−) < 1.1 × 10−6,

B(B± → f ′
2(1525)K±, f ′

2(1525) → K+K−) < 2.4 × 10−6,

B(B± → f0(1710)K±, f0(1710) → K+K−) < 3.3 × 10−6.
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Chapter 1

Introduction

This chapter includes a brief overview of the Standard Model, and the particles that

incorporate it, as an introduction to the theory of B mesons in chapter 2. An overview

of the analysis described in this thesis concludes this short chapter.

1.1 The Standard Model

The study of the universe has uncovered increasingly smaller building blocks that

make up the matter that is observed — the initial observation of the existence of

the atom, was followed by the discovery of a much smaller nucleus, and then to the

realisation that the nucleus itself was not fundamental, but composed of yet smaller

particles called quarks, which thus far appear to be elementary. The other component

of the atom, the electron also appears to be fundamental. It is one of a family of

particles that share similar properties to the electron — the leptons. Together with

these particles of matter, a number of forces have been discovered, which govern the

interactions between these particles, holding them together, or pushing them apart.

The current best theory to explain the nature of these particles and forces is called

the Standard Model (SM) of particle physics.

The matter particles — the quarks and the leptons — are found to obey Fermi–

Dirac statistics, and are Fermions. The properties of the leptons are given in table 1.1;
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Table 1.1: Properties of the leptons [1].

Particle Name Particle Symbol Spin (~) Charge (e) Mass ( MeV/c2) Antiparticle

electron e− 1
2

−1 0.511 e+ (positron)

electron neutrino νe
1
2

0 < 3 × 10−6 ν̄e

muon µ− 1
2

−1 106 µ+

muon neutrino νµ
1
2

0 < 0.19 ν̄µ

tau τ− 1
2

−1 1780 τ+

tau neutrino ντ
1
2

0 < 18.2 ν̄τ

the values are taken from [1]. In addition to the six leptons there are also six antimatter

equivalents of the leptons — the anti-leptons. Antimatter particles have identical

masses to matter particles, but they have opposite charges and quantum numbers. The

first antimatter particle to be discovered was the positron, the antimatter counterpart

of the electron.

Like the leptons, quarks have been discovered with six distinct types or flavours.

The properties of the quarks are given in table 1.2. For each quark there is also a

corresponding antiquark. The antiquarks are denoted with a bar over the equivalent

quark’s symbol, e.g. u and ū. The most important difference between the quarks and

the leptons is that the leptons are unaffected by the strong nuclear force, whereas the

quarks do interact via this force. In addition to an electrical charge, quarks have a

strong “colour” charge, which is analogous to the electrical charge, except, that there

are three charge states (usually called red(r), green(g), and blue(b)), as opposed to

one. Antiquarks carry anticolour charges; anti-red(r̄), anti-green(ḡ) and anti-blue(b̄).

These are occasionally referred to as cyan, magenta, and yellow.

No observations of free quarks have been made [2], and thus it is conjectured that

quarks can only exist in bound states. Because of this, measurement of the properties

of individual quarks, such as the mass, is difficult and subject to large uncertainties.

Quarks can only exist in colour neutral composite states. These are states where
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Table 1.2: Properties of the quarks [1].

Particle Name Particle Symbol Spin (~) Charge (e) Mass ( GeV/c2)

Down d 1
2

−1
3

0.004 to 0.008

Up u 1
2

+2
3

0.0015 to 0.004

Strange s 1
2

−1
3

0.080 to 0.130

Charm c 1
2

+2
3

1.150 to 1.350

Bottom b 1
2

−1
3

4.100 to 4.400

Top t 1
2

+2
3

178.1+10.4
−8.3

either three quarks of different colours are bound together (rgb), such particles are

called baryons, or there are particles consisting of quarks and antiquarks, where the

colour and anticolour cancel out, e.g. (rr̄), such particles are called mesons — de-

tails of mesons that contain a b quark are given in section 2.2.1. The third type of

conglomeration is the anti-baryon, made of three anti-quarks.

The forces of nature are found to act as just a handful of fundamental forces —

Electromagnetism, Gravity, the Weak Nuclear Force, and the Strong Nuclear Force.

At high energies the Weak and the Electromagnetic forces act as a single force — the

Electroweak force. It is possible that all four forces are just low energy manifestations

of a single unified force, that is only evident at energies much higher than those that

can currently be studied. Forces in the Standard Model are mediated by the (virtual)

particles known as Bosons (they obey Bose–Einstein statistics). The properties of the

force carrying bosons are given in Table 1.3.

The electromagnetic force is mediated by the photon, whereas the weak force is

mediated by three particles, the W+, W−, and Z0. There are eight types of gluon

which govern the strong force; like quarks the gluons carry colour charge, and the eight

distinct gluons each have differing combinations of colour/anticolour. The boson that

transmits the force of gravity has been named the Graviton, but has as yet not been

discovered.
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Table 1.3: Properties of bosons [1]. The Higgs boson and Graviton have not (yet)

been discovered, and thus there are no measurements of their properties — the values

in parentheses are Standard Model predictions.

Particle Name Particle Symbol Spin (~) Charge (e) Mass ( GeV/c2)

Photon γ 1 0 < 6 × 10−26

Gluon g 1 0 0 (predicted)

W W± 1 ±1 80.425 ± 0.038

Z Z0 1 0 91.188 ± 0.002

Higgs H0, H±? (0) (0, ±1) ?

Graviton G (2) (0) ?

In addition to these forces, there remains a phenomenon that does not fit naturally

into this scheme of particle/force field interactions, that being that the particles have

masses, whereas the theory only works for massless particles. The Higgs mechanism

[3] is suggested to be the answer to this quandary. It proposes spontaneous symmetry

breaking, together with a coupling to a new boson, the Higgs boson, which would

couple more strongly to the particles observed with the highest masses. The Higgs

boson has not yet been discovered, but searches using future experiments should reveal

whether this particle does exist, and if so what properties it has.

There is another important observation about the nature of the universe which

should also be discussed. This relates to the baryon asymmetry of the universe. Fol-

lowing the Big Bang, equal quantities of matter and antimatter should have been

created from the energy of the fireball. As the universe cooled this matter and anti-

matter should have annihilated back to energy, leaving the universe rich with energy,

but depopulated of (anti-)matter. However, the universe today shows an excess of

matter, and no evidence for antimatter being present on macroscopic scales. As most

of the visible matter in the universe is made up of baryons, there must have been

some mechanism in the early universe that allowed this baryon asymmetry to develop.
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Three conditions for this to occur were proposed by Andrei Dmitrievich Sakharov [4].

These conditions are:

• Baryon number non-conservation;

• CP -violation occurs;

• Universal departure from thermodynamic equilibrium.

The second of these criteria, that of CP -violation is discussed in greater detail in

section 2.3. It can be noted however that the amount of CP -violation that is measured

in the SM is insufficient to account for the observed universe [5]. This could imply that

the current understanding of CP -violation is incomplete, and that there are sources

of CP -violation that exist in new physics, beyond the Standard Model. Evidence of

neutrino masses could suggest that CP -violation occurs in the lepton sector, which

could account for part of the discrepancy.

The standard model is a very involved and complex set of theories, built up over

many decades of research in the field of particle physics by worldwide collaborations

of scientists, and as such the full details of the Standard Model are well beyond the

scope of this document.

1.2 Overview of this Thesis

This thesis covers the analysis of the decay of a charged B meson into three charged

kaons. This section serves to outline how the content of the thesis is presented in each

of the chapters.

Chapter 2 of this thesis covers theoretical concepts associated with the analysis.

The physics of B mesons is first shown, the combined symmetry CP is formally defined,

and its manifestations in the study of B meson decays are noted. The CKM matrix is

the mechanism by which CP violation is introduced into the Standard Model, and its

assumed unitary nature leads to The Unitarity Triangle, measuring the parameters of
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which is a major goal of B physics. Current measurements and constraints of Unitarity

Triangle parameters are reported.

The motivation behind the study of the mode B± → K±K±K∓ is highlighted,

and some processes contributing to this interaction are shown. The analysis is car-

ried out using the Dalitz plot technique. This technique allows for the determination

of any intermediate stages in the decay, due to the presence of short lived or “reso-

nance” particles, such as the φ(1020), which would appear in the B meson decay as

B± → φ(1020)K±, φ(1020) → K+K−.

Chapter 3 showcases the BABAR detector, and the PEP-II storage ring. The detec-

tor consists of a number of subdetectors, each of which has its own objectives. The

detector triggering and data acquisition systems are also covered.

Chapter 4 covers the reconstruction of tracks and energy clusters, and the identi-

fication of particles. The criteria that are applied to data taken from the detector in

order to produce data that can be used in this analysis are reported.

Chapter 5 details the analysis method itself. It covers the modelling of reconstruc-

tion efficiency across the Dalitz plot, the determination of expertimental backgrounds,

from both continuum (light quark) production, and from decays of B mesons to states

other than three charged kaons. Fitting the events that populate the Dalitz plot is

described, together with factors that affect the fitting such as multiple solutions. A

study attempting to model detector resolution effects within the fit is documented.

Chapter 6 details the results of the analysis. A model for the resonances that

contribute to decay B± → K±K±K∓ is determined, and consists of:

• φ(1020),

• χc0,

• f0(980),

• (KK)0
0, a resonant structure with a mass of ∼ 1.5 GeV/c2,

• φ(1680),
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• Non-resonant B± → K±K±K∓.

Other resonances, such as f ′
2(1525), and f0(1710) are also considered, and found not

to be significant contributions. The fit is carried out separately for events arising from

the decay of a B+, and of a B−. The total branching fraction for B± → K±K±K∓

is calculated. For each of the significant resonances a branching fraction and CP

asymmetry are calculated. For less significant resonances a branching fraction upper

limit is calculated.

Chapter 7 summarises the results and reviews them, with a comparison with other

analyses of B± → K±K±K∓ that have been carried out. The thesis is concluded by

a discussion of what has been achieved in this analysis, and what could potentially be

achieved in a future analysis of B± → K±K±K∓.
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Chapter 2

Theory

2.1 The Symmetries C, P and T

The development of physics has been aided by the realisation of the presence of certain

symmetries in nature. The presence of a symmetry also implies the presence of a

conserved quantity within a system. Two important symmetries in particle physics

are those of parity (P ) and charge conjugation (C). The effect of the operation of

parity on a wavefunction is to reverse the spatial co-ordinates r → −r. Momentum is

also reversed p → −p, while angular momentum, which is an axial-vector (L = r × p)

is unchanged by the operation. Thus the intrinsic angular momentum of a particle,

its spin, σ, is unchanged under parity, but the particle’s helicity (λ = σ.p/|p|) will

change sign. Since a repeated application of parity yields the initial state, parity can

only take the eigenvalues ηP = ±1.

P |f(p)〉 = ηP |f(−p)〉. (2.1)

Charge conjugation acts on a wavefunction by interchanging particles with an-

tiparticles, whilst leaving their physical properties such as momentum unchanged.

Like parity, states which are eigenstates of charge conjugation can only take eigen-

values ηc = ±1. Because the operation of charge conjugation changes the particles

involved only particles, or particle combinations, which have zero overall charge can
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be eigenstates of C.

C|f(p)〉 = ηC |f(p)〉. (2.2)

Parity was thought to be always conserved, and is observed to be conserved in

strong and electromagnetic interactions. However observations made on the decays of

Cobalt-60 nuclei in 1956/7 showed that parity was not conserved in weak interactions

[6], and is in fact maximally violated.

It was then supposed that the combined operation CP was conserved in these

decays.

CP |f(p)〉 = ηCP |f(−p)〉. (2.3)

States which have an eigenvalue of CP of +1 are referred to as CP -even, and states

with an eigenvalue of CP of −1 are referred to as CP -odd.

There is a third symmetry, that of time reversal T , which transforms t → −t.

T |f(p)〉 = ηT |f(−p)〉∗. (2.4)

One of the predictions of quantum field theories is that the combined symmetry CPT

is always conserved [7], thus if CP is violated, then T must also be violated, such that

the overall CPT symmetry is preserved. Searches have been conducted to see whether

CPT is violated, such as trying to find a difference between the masses of particles

and their antiparticles, but no evidence of such has been found.

In 1964 the phenomenon of CP violation was observed in the decays of neutral

kaons [8], and has since been observed in the decays of B mesons [9].

2.2 B Meson Physics

2.2.1 B mesons

The primary goal of the BABAR experiment is to study the properties of B mesons.

There are eight distinct meson states that can be formed containing unique combi-

nations of a b quark or b̄ antiquark and a lighter (anti)quark. These are detailed in

9



Table 2.1: Complete family of weakly decaying B mesons. Higher B∗ mesons omitted.

Particle Quark content Charge (e) Mass ( GeV/c2) Studied at BABAR

B0 b̄d 0 5.279 Yes

B0 bd̄ 0 5.279 Yes

B+ b̄u +1 5.279 Yes

B− bū −1 5.279 Yes

B0
s b̄s 0 5.370 No

B0
s bs̄ 0 5.370 No

B+
c b̄c +1 6.4 No

B−
c bc̄ −1 6.4 No

table 2.1. In addition, there are further excited states of B mesons, usually labelled

B∗, that exist at higher energies(masses) but with identical quark content.

Those combinations that contain an s or c (anti)quark are too heavy to be produced

at the operational beam energy used during the running of the BABAR experiment.

Thus only the combinations involving the two lightest quarks can be studied.

It should also be noted that the neutral particles listed here are the flavour eigen-

states of the strong Hamiltonian. The weak/mass eigenstates are not the same, and

will be discussed in the next section.

2.2.2 Mixing of Neutral B mesons

The phenomenon of mixing in neutral mesons was first observed in the decays of

neutral kaons. These are created in strong interactions in two varieties — K0 and

K0. However they decay via the weak interaction as either K0
S

or K0
L
, which have

quite different lifetimes and preferentially decay via different modes. As the K0 and

K0 contain s̄ and s quarks respectively they react differently when interacting with

normal (baryonic) matter. For example when colliding a π beam with a stationary

target, the threshold beam energy is lower for creating a K0, than for creating a K0
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Figure 2.1: Oscillations between B0 and B0 (and vice versa) mesons via box diagrams.

(due to the fact that strangeness −1 baryons can be created, but not strangeness +1).

Thus it is possible to create a pure beam of K0. However studying this beam at a later

time reveals it to contain components of both K0 and K0. Thus some of the neutral

kaons have oscillated from one form into another during transit.

Such a phenomenon has not been observed with neutral D mesons, and the effect

is predicted to be small.

The mixing for neutral B mesons is a measurable effect. Oscillations are possible

for both B0 and B0
s mesons and each will have a different oscillation frequency. Only

B0 mesons are studied at BABAR, so only oscillations of these particles are discussed.

The mixing of neutral B mesons takes place via box diagrams. Two possible

orientations of the box diagram are shown in figure 2.1. The box diagrams consist

of two sides which have the propagation of a virtual W boson, and two sides which

consist of one of the charge +2
3
e virtual u-type quarks. The two box diagrams shown

correspond to either the W bosons or the u-type quarks being exchanged, between the

b and d (anti)quarks. The total matrix element for this process has contributions from

both diagrams, and also from all three of the u-type quarks. However, calculation

leads to the amplitude of each contribution being proportional to the mass of the u-

type quark, and thus the overall rate is dominated by the contribution of the t quark
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boxes.

The B0 and B0 mesons shown in the box diagrams are flavour eigenstates. However,

when a B meson decays it is via a weak interaction, and the mass eigenstates need to

be considered. It can be supposed that the mass eigenstates are linear combinations

of the flavour eigenstates.

Taking a general particle state, that can be expressed as a superposition of two

neutral B states, i.e.

|Ψ〉 = α|B0〉 + β|B0〉, (2.5)

then the behaviour of this state is governed by the Schrödinger equation in its time

dependent form:

i
∂

∂t
Ψ = HΨ, (2.6)

and the Hamiltonian, H, is given by:

H = M − i
Γ

2
, (2.7)

where H is a 2×2 Hermitian matrix, as are M and Γ. The property of CPT invariance

will ensure that H11 = H22, and if CP invariance is assumed (the consequences of CP

non-invariance in mixing processes are described in section 2.3.3) then H12 = H21. The

solution of the Schrödinger equation is then specified by two coupled modes, which

can be expressed in terms of:

|Ψ1〉 =

√

1

2
(|B0〉 + |B0〉), (2.8)

|Ψ2〉 =

√

1

2
(|B0〉 − |B0〉). (2.9)

These states are in fact eigenstates of the CP operator:

CP |Ψ1〉 = +1|Ψ1〉, (2.10)

CP |Ψ2〉 = −1|Ψ2〉. (2.11)

The coupled equations are then:

i
∂

∂t
Ψ1,2 = M1,2|Ψ1,2〉 − i

Γ1,2

2
|Ψ1,2〉, (2.12)
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to which the general solution can be written as:

|Ψ1,2(t)〉 = |Ψ1,2(0)〉e−iM1,2te−Γ1,2t/2, (2.13)

where the terms for mass, M , and width, Γ, are as follows:

M1,2 = Re(H11 ± H21), (2.14)

Γ1,2/2 = Im(H11 ± H21). (2.15)

A state which is created initially to consist purely of B0 mesons, would at some

later time be a mixture of both B0 and B0 mesons. The differences in masses and

widths of the two states can be defined as:

∆m = |M1 − M2| (2.16)

∆Γ = |Γ1 − Γ2| (2.17)

Since the two states have different masses but similar widths, it is common to use a

mass comparative naming scheme, thus |Ψ2〉 ≈ |BH〉 and |Ψ1〉 ≈ |BL〉, where the H and

the L stand for Heavy and Light, and by definition mBH
> mBL

. The approximation

symbol is used here because the treatment of the states Ψ1,2 does not take into account

any CP Violation in the mixing.

2.3 CP -Violation

2.3.1 CP Violation in B Meson Decays

There are three methods by which CP violation can manifest itself in the B meson

sector. All three can be observed (at least in theory) in the behaviour of neutral

B mesons, but only direct CP violation can occur in the decays of charge carrying

mesons.

The three types are:

• Direct CP violation;
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• CP violation in mixing;

• CP violation in interference between decay and mixing.

Decay amplitudes for the decay of an arbitrary B meson, or its CP conjugate B̄,

to final state f or f̄ , which are arbitrary CP eigenstates, can be defined as follows:

Af = 〈f |H|B〉, (2.18)

Āf = 〈f |H|B̄〉, (2.19)

Af̄ = 〈f̄ |H|B〉, (2.20)

Āf̄ = 〈f̄ |H|B̄〉. (2.21)

The states BH and BL, first introduced in section 2.2.2, can be described by an

arbitrary superposition of B0 and B0 mesons, thus:

|BH〉 = p|B0〉 − q|B0〉, (2.22)

|BL〉 = p|B0〉 + q|B0〉, (2.23)

where p and q are subject to the normalisation condition |p|2 + |q|2 = 1.

2.3.2 Direct CP Violation

Direct CP violation takes the form of a difference in the branching fraction of a B

meson to a final state f , compared to the charge conjugate decay, that of a B̄ to the

final state f̄ . (The state f should not be accessible to decays of the B̄, and the state f̄

should likewise not be accessible to decays of the B if direct CP violation is the only

one of the three to occur).

Therefore the definition of direct CP violation is:
∣

∣

∣

∣

Āf̄

Af

∣

∣

∣

∣

6= 1. (2.24)

Because the CP violation is only related to the decay of the B mesons, direct CP

violation is also known as CP violation in the decay. As stated previously direct CP
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violation can occur for both charged and neutral B mesons, and it is the only type

that can occur for charged B mesons, as the other two types of CP violation require

that the meson be capable of oscillation between different flavour eigenstates.

The amount of direct CP violation in a particular decay channel can be parametrised

as:

ACP =
Γ(B̄ → f̄) − Γ(B → f)

Γ(B̄ → f̄) + Γ(B → f)
. (2.25)

2.3.3 CP Violation in Mixing

In section 2.2.2 the discussion of mixing assumed that the matrix H had the property

that H21 = H12, and that the superposition states given in equations (2.8) and (2.9)

contained equal contributions from B0 and B0. In general this is not the case, and the

consequence is CP violation during the mixing of the neutral B mesons.

From equations (2.6) and (2.7), and equations (2.22) and (2.23):

|q|2
|p|2 =

|M∗
12 − i

2
Γ∗

12|
|M12 − i

2
Γ12|

. (2.26)

Since CP conservation requires that M12 = M∗
12 and that Γ12 = Γ∗

12, then it can be

seen that a condition for CP violation to occur is:
∣

∣

∣

∣

q

p

∣

∣

∣

∣

6= 1. (2.27)

Sometimes this type of CP violation is called indirect CP violation.

2.3.4 CP Violation in the Interference between Decays and

Mixing

This final type of CP violation can occur only in decays of neutral mesons, where both

the state B, and its conjugate B̄, can decay to the same final state f . Then there are

two decay paths by which a particle B could decay to that final state:

• Directly: B → f

15



• Indirectly: B → B̄ → f

The quantity λ is defined such that:

λ =
q

p

Āf

Af

. (2.28)

The parameter λ has a physically significant phase that is independent of any particular

chosen phase convention. If λ 6= ±1 then CP violation is observed. The conditions

for direct and indirect CP violation are enough to ensure that λ can be different from

unity. However, if CP violation has occurred in the interference between the decay

path without mixing, and the decay path with mixing, then:

Im(λ) 6= 0. (2.29)

If |q/p| = 1, and ∆Γ = 0, which is a good approximation in B decays, then ACP

can be written in a useful way:

ACP =
2Imλ

1 + |λ|2 sin(∆mt) − 1 − |λ|2
1 + |λ|2 cos(∆mt), (2.30)

or

ACP = SCP sin(∆mt) − CCP cos(∆mt). (2.31)

SCP and CCP are very commonly quoted parameters in CP violation measurements

in neutral B decays.

2.3.5 The CKM matrix

The flavour eigenstates of the quarks — those involved in strong and electromagnetic

decays — are not the same as the weak eigenstates, which are involved in weak decays,

the only decays that can change the flavour of the quarks. In the simplified case of four

quark flavours the relationship between the flavour eigenstates and weak eigenstates,

can be represented by the Cabibbo matrix:




d′

s′



 =





cos θc sin θc

− sin θc cos θc









d

s



 . (2.32)
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In this case the mixing between the states is defined by a single parameter — the

Cabibbo angle θc [10]. The fact that the mixing is described to occur between the

d and s quarks rather than the u and c quarks is an arbitrary choice, and purely a

matter of convention.

The two-generation case was extended to three generations by Kobayashi and

Maskawa [11], and is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix:









d′

s′

b′









=









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

















d

s

b









. (2.33)

In general a matrix with n rows and n columns will possess n(n − 1)/2 real pa-

rameters, and (n − 1)(n − 2)/2 phase parameters. So a 3 × 3 matrix will have 3 + 1

parameters, whereas a 2× 2 matrix will have just 1 (1 + 0) parameter. The CKM ma-

trix indeed has four free parameters, rather than just one (θc) for the Cabibbo matrix,

and these can vary, depending on which representation is chosen.

The CKM matrix can be parametrised in a number of ways. The parametrisation

favoured by the PDG is [12]:

V =









1 0 0

0 c23 s23

0 −s23 c23

















c13 0 s13e
−iδ13

0 1 0

−s13e
iδ13 0 c13

















c12 s12 0

−s12 c12 0

0 0 1









=









c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13









.

(2.34)

where the shorthand notations cij = cos θij and sij = sin θij are used. The angles

are θ13, θ12, and θ23 which describe the couplings between two different generations of

quarks, and the phase δ13. This parametrisation is favoured, since for the case where

the third generation is decoupled, i.e. θ13 = 0 and θ23 = 0, the matrix simply becomes

the Cabbibo matrix, as given in equation (2.32).

A parametrisation of the CKM matrix that is particularly used in B physics is that
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first suggested by Wolfenstein [13]. This parametrisation is chosen to emphasise the

hierarchy of terms within the matrix.

The Wolfenstein parametrisation is as follows:

V =









1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1









+ O(λ4). (2.35)

It expands the terms of the CKM matrix in terms of the parameter λ (a different

parameter to that used in equation (2.28)), which is equal to the magnitude of Vus,

or alternatively λ = sin(θc) = 0.22. The parameters A, ρ, and η are all real numbers,

that were each intended to be of order one. As λ is small, the diagonal elements of

the matrix are all of order unity.

Current values from the Particle Data Group [14] give the magnitudes of the CKM

matrix elements as:

VCKM =









0.9739 → 0.9751 0.221 → 0.227 0.0029 → 0.0045

0.221 → 0.227 0.9730 → 0.9744 0.039 → 0.044

0.0048 → 0.014 0.037 → 0.043 0.9990 → 0.9992









. (2.36)

These values are calculated based on only tree-level contributions (see section 2.5),

and are quoted at the 90% confidence level.

2.3.6 The Unitarity Triangle

The CKM matrix should be unitary, and by enforcing the unitarity condition, certain

constraints are forced onto the elements Vij of the matrix. Taking products of different

rows and columns in the unitarity condition equation V †V = I (where I is the identity

matrix), gives nine relations among the elements of the matrix, of the form:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 (2.37)
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or

VudV
∗
ud + VusV

∗
us + VubV

∗
ub = 1. (2.38)

Six of these contain three complex numbers summing to zero and can hence be

represented as triangles in the complex plane. Most of the triangles that can be

formed are very narrow, involving angles close to 180◦ and 0◦. However:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (2.39)

is predicted to have sides of the same order magnitude. This can be demonstrated by

expanding the equation in terms of λ from the Wolfenstein parametrisation given in

equation (2.35). This equation is very important in B physics. When plotting this

equation as the sum of three numbers in the complex plane, the resulting triangle

formed is known as The Unitarity Triangle — this is shown in figure 2.2

It is common to plot The Unitarity Triange in the ρ̄ − η̄ plane, where ρ̄ and η̄ are

defined as:

ρ̄ = ρ(1 − λ2/2),

η̄ = η(1 − λ2/2),
(2.40)

and to normalise the length of the bottom edge of the triangle to 1, by dividing all the

sides, by the length of this side. The apex of The Unitarity Triangle is given by (ρ̄, η̄)

There are five properties of the triangle that are of interest, the lengths of the two

other sides, and the angles. With the bottom side defined as 1, then the remaining

two sides are given by the ratios:

VudV
∗
ub

|VcdV ∗
cb|

,
VtdV

∗
tb

|VcdV ∗
cb|

. (2.41)

The three angles are conventionally given the names α, β, and γ, and are defined

as follows:

α ≡ arg

[

− VtdV
∗
tb

VudV ∗
ub

]

, (2.42)

β ≡ arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

, (2.43)

γ ≡ arg

[

−VudV
∗
ub

VcdV ∗
cb

]

. (2.44)
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Figure 2.2: The Unitarity Triangle. Some of the decay modes which can be used to

determine α, β, and γ are listed by each of the angles.
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Many decay modes are sensitive to one of the angles of The Unitarity Triangle,

such as the decay B0 → J/ψK0
S
, which is used to measure β. Analyses of these

modes cannot unambiguously measure the value of the angles, but instead measure

such quantities as sin 2β, or sin 2α, etc. It is only when combining such measurements

with other constraints that the angles themselves can be established.

It is important to note that the CKM matrix, and hence The Unitarity Triangle,

only describes Standard Model physics. Thus if the sides and angles of the Unitarity

Triangle are all measured and do not form a triangle then this is a sign of physics

beyond the Standard Model.

2.3.7 Current constraints on the Unitarity Triangle

The CKMfitter group [15] has produced a software package that performs a combined

fit to results relating to measurements of CKM matrix parameters. They produce plots

showing the current world-best constraints on the parameters, which are updated

following major conferences. The plots in the ρ̄ − η̄ plane demonstrate how well

experimental measurements agree with each other and with the expectations of the

unitarity triangle. The results given in this section are those updated following the

FPCP 06 conference, held in Vancouver, Canada.

The Unitarity Triangle in the ρ̄−η̄ plane together with these constraints is shown in

figure 2.3. Figure 2.4 shows the same information as the previous figure, but focuses on

the area immediately surrounding the Unitarity triangle, and allows for more detailed

inspection of the permitted region of the vertex at which the angle α lies.

The inputs to the fit are a series of measurements, and parameters associated

with the CKM matrix are extracted. The chosen inputs and results are periodically

updated, and the following values are taken from the latest online version.

Firstly the bounds on some of the input parameters are shown in the diagrams:

• The oscillation frequency for B0 mesons: ∆md = 0.502 ± 0.006ps−1 — this

constraint is shown as a yellow annulus.
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Figure 2.3: Constraints on The Unitarity Triangle produced by the CKMfitter group

[16].
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Figure 2.4: Constraints on The Unitarity Triangle, focusing on the α vertex in the

ρ̄ − η̄ plane [17].

• The oscillation frequency for B0
s mesons: ∆ms: The input for this parameter uses

the amplitude spectrum and CDF experiments likelihood fit. A measured value

of this parameter has now been published by the CDF and D0 collaborations

[18]. The constraint is shown as an orange annulus.

• |ǫK | = (2.221 ± 0.008) × 10−3 — CP -violation parameter in the kaon system.

The constraint is shown as light green bands in complex plane diagram.

• sin 2β = 0.687 ± 0.032 — where this value is taken solely from B decay modes

to charmonium final states.

• |Vub| = (4.45 ± 0.23 ± 0.39) × 10−3 from inclusive measurements and |Vub| =

(3.94 ± 0.28 ± 0.51) × 10−3 from exclusive measurements. These are measured

from semileptonic B decays. For the inclusive measurement, the process b → uℓν̄

is used, measuring the lepton energy spectrum above the b → cℓν̄ end point. The

exclusive measurements look at specific modes such as B → πℓν̄ or B → ρℓν̄

• |Vcb| = (41.70 ± 0.70) × 10−3 from inclusive measurements, and |Vcb| = (41.18 ±
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1.71) × 10−3 from exclusive measurements. Exclusive measurements are based

on studying the decays B → D(∗)ℓν̄. Inclusive measurements are based on the

semileptonic width, which requires both B lifetimes and the branching fraction

B(B → Xcℓν̄) to be measured.

The major sources for the input parameters are the Particle Data Group (PDG),

and the Heavy Flavour Averaging Group (HFAG) [19].

There are a number of different parameters given in the results, corresponding

to different parametrisations of the CKM matrix, and to the angles of The Unitar-

ity Triangle. Firstly, in the Wolfenstein parametrisation, fit results for the four free

parameters are given:

• λ = 0.2272+0.0010
−0.0010

• A = 0.809+0.014
−0.014

• ρ̄ = 0.197+0.026
−0.030

• η̄ = 0.339+0.019
−0.018.

The Unitarity Triangle has its angles fitted in a constrained fit, and also its area (J/2)

is measured to be J = 3.05+0.18
−0.18×10−5. The Jarlskog parameter, J , [20] is proportional

to the area of all SM unitarity triangles (including The Unitarity Triangle), and its

value is also a measure of the magnitude of CP -violation that exists in the SM.

The relevant measurements for the angles are:

• sin 2α = −0.25+0.17
−0.15

• sin 2β = 0.716+0.024
−0.024

• α = (97.3+4.5
−5.0)

◦

• β = (22.86+1.00
−1.00)

◦

• γ = (59.8+4.9
−4.1)

◦.
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These values are those returned from the constrained fit, and the calculated uncer-

tainties on the values are lower than the uncertainties on the angles from any direct

measurements. The aim of all these tests is to overconstrain the unitarity triangle,

and thus establish any deviation from the unitarity condition, which would show that

the CP -violation observed in the associated processes is at least partially derived from

sources beyond the standard model. The measurements of the angles of the triangle are

constrained to 180◦ in the fit, and still still have large associated errors. But current

fit results are good, and are consistent with the unitarity condition being fulfilled.

2.4 Weak and Strong Phases in Meson Decays

The decay amplitude Af as defined in section 2.3.1 is a sum of complex quantities each

consisting of a magnitude and a phase. The phase however can be further split into

two, and Af may be written as:

Af =
∑

i

Aie
i(δi+φi), (2.45)

where Ai is the amplitude of each component to Af , δi is the strong phase, and φi the

weak phase for each component. The CP conjugate of Af is given by:

Āf̄ =
∑

i

Aie
i(δi−φi). (2.46)

Any complex parameters of a Lagrangian [21] that contribute to the amplitude will

appear as their complex conjugates in the CP conjugate amplitude, and thus the

sign of the phase will be reversed. Such phases occur only in weak decays (which

incorporate the CKM matrix), and are thus referred to as “weak phases”. The second

type of phase occurs with decays which are described by a real Lagrangian. There is

no change of sign when operated on by CP , and thus they appear the same in both

Af and Āf̄ . The dominant source of these phases is strong interactions, and thus they

are called “strong phases”.
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Equation (2.24) can be written in terms of the decay amplitudes of equations (2.45)

and (2.46) thus:
∣

∣

∣

∣

Āf̄

Af

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

i Aie
i(δi−φi)

∑

i Aiei(δi+φi)

∣

∣

∣

∣

. (2.47)

Therefore the condition for direct CP -violation, that this quantity is not equal to

unity, is fulfilled by having different weak phases. However, writing the difference

between the amplitudes squared for the decay and the conjugate decay gives:

|A|2 − |Ā|2 = −2
∑

i,j

AiAj sin (φi − φj) sin (δi − δj). (2.48)

Thus at least two terms with different weak phases must also have different strong

phases in order for CP -violation to occur.

The value of weak and strong phases is dependent on how they and related terms

are defined. The difference between two phases though is independent of the definition

of terms, and thus has some physical meaning. It is the phase differences rather than

the actual phases that will be measured in experiments.

The separation of weak and strong phases is experimentally challenging in charm-

less decays due to the low branching fractions for these processes. The analysis de-

scribed in this document makes no attempt to separate these phases, and measures

only a single combined phase for each component. It would be a goal of a future

analysis of this type with a much larger number of signal events to try to separate

these two types of phase.

2.5 Trees and Penguins

It is possible to divide particle decays into two categories based on their Feynman

diagram topology. These categories are:

• Tree Diagrams — For weak deacys, these are processes where a quark emits a

virtual W± boson, converting into a lighter quark in the process, and the W±

then decays to two new particles. Tree diagrams involve no internal loops.
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Figure 2.5: Two Feynman Diagrams for the decay B+ → f0K
+. The left hand diagram

shows a tree level decay, and the right hand diagram shows a penguin decay.

• Penguin Diagrams — these processes involve an internal loop in which a virtual

W± boson splits from and then reconnects with a quark line. In order to conserve

energy/momentum a particle must be emitted from the loop. If this is a gluon,

the penguin is called a gluonic penguin; if the particle is a photon or a virtual

Z0 boson, the penguin is called an electroweak penguin.

Figure 2.5 shows an example of a tree level process and a penguin level process.

Both are shown for the decay B+ → f0K
+. Both tree and penguin diagrams can con-

tribute to the decay process B± → K±K±K∓. Further discussion of the importance

of these processes in decays of this type can be found in section 2.6.

2.6 The Decay B± → K±K±K∓

Due to its high mass, and hence large phase space for decays, there are a plethora of

final states to which a B meson can decay. These many decay channels are subdivided

into several general categories sharing similar characteristics — such categories may

be: charmless decays, charmed decays, charmonium decays; or two-body decays, quasi-

two-body decays, etc. Subdividing in this way allows physicists working on similar

analyses, to share knowledge and resources as part of analysis working groups. Similar
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modes of decay also share physics goals, and are often sensitive to the same physical

parameters, such as an angle of The Unitarity Triangle.

The analysis reported in this thesis is of a charmless three-body decay of a B

meson. The following section details why charmless three-body decays are of interest,

and what can (potentially) be learned from them. The section will then examine what

features the charmless three body decay B± → K±K±K∓ has that are interesting,

and what the motivation to study this decay mode is.

2.6.1 Charmless Decays

The most dominant decays of B mesons are those to charmed states, such as D mesons,

where the heavy b quark decays to the next heaviest c quark. Such a decay is a tree

level process. The b quark can also decay at tree level to a u quark, however as can be

seen from the elements of the CKM matrix (equation (2.36)) this is highly suppressed

relative to the b → c transition. Decays of the b quark to s and d quarks can only take

place via penguin loop diagrams, such as those shown in figure 2.7. These processes

are also far less frequent than the tree level b → c decay. Hence charmless decays

are much less frequent than charmed or charmonium decays, and can have branching

fractions of 10−4 to 10−6 or even less.

Charmless decays can be dominated by penguin decays; for example the decay

B± → φ(1020)K± is dominated by the contribution from b → ss̄s penguin diagrams.

This provides the opportunity to study penguin processes, which can lead to new

insight. Greater knowledge of penguins may aid in the analysis of “penguin polluted”

decays — those in which the relative amounts of tree and penguin contributions are

unknown. It is also possible with many more data that new contributions to penguin

diagrams may be observed, which could be a signature of new physics occurring in the

loops, such as new heavy bosons, or supersymmetric particles in place of the W± and

quarks of established penguin processes.

The angle β of the unitarity triangle was the first to be measured, in the measure-

ment of sin 2β from the channel B0 → J/ψK0
S
. New analyses are being carried out of
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sin 2β from charmless decays, such as B0 → φK0
S
, to determine whether the value of

sin 2β is the same in charmless decays as it is in charmonium decays. Early results

were inconclusive. Some charmless decays are also sensitive to sin 2α, because they

depend on the CKM matrix element Vub.

2.6.2 Three-body decays

There are a large number of three-body states into which a B meson can decay, more

so than two-body states. The analysis of a three-body decay allows a full treatment of

interference effects between different decay paths (as explained in section 2.8), which

can allow the extraction of phases between the different decays (section 2.4 goes into

more detail of phases). Analyses in terms of (quasi-)two-body decay modes are un-

able to measure interference phases, and have to treat the effects of interference on

amplitude or branching fraction measurements as a systematic uncertainty.

2.6.3 Possible Contributions to the mode B± → K±K±K∓

Figure 2.6 shows some possible Feynman diagrams for the process B± → K±K±K∓,

and figure 2.7 shows some Feynman diagrams for the decay B± → φ(1020)K±, which

can result in a three charged kaon final state upon the further decay φ → K+K−.

In figure 2.6, the top left subfigure shows an annihilation diagram, where the

constituent quarks of the meson annihilate to form a W , which decays back into

two quarks, which then hadronise into three kaons. (The formation of intermediate

resonant states would also be possible in an annihilation diagram.) The top right

subfigure shows a non-resonant tree diagram, whereby the decay leads directly to three

kaons with no resonant substructure; the bottom left subfigure shows the formation

of a resonant state, which is composed of u and ū quarks, that then decays to two

kaons; the bottom right diagram is a more speculative process showing the possible

formation of a glueball (a hypothetical exotic particle composed only of gluons), that

decays to two kaons.
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Figure 2.6: Four possible Feynman diagrams for the process B± → K±K±K∓ — clock-

wise from top left — Annihilation diagram; Non-resonant tree diagram; Speculative

process involving a glueball (labelled gb); Tree level decay of a uū meson.
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Figure 2.7 shows possible diagrams for the decay B± → φ(1020)K± — the top

left subfigure shows an internal penguin diagram; the top right subfigure shows an

electroweak penguin diagram, with a photon or Z0; the bottom left subfigure shows

a flavour singlet penguin diagram; the bottom right subfigure shows a rescattering

diagram, where a uū meson is formed, but undergoes an internal interaction that

converts it to an ss̄ state.

2.6.4 Other Analyses of B± → K±K±K∓

The first BABAR analysis of the decay mode B± → K±K±K∓ [22] was based on

81.8 fb−1 of data. It did not include a full amplitude analysis of the Dalitz plot.

The interference between different components was not modelled, but was accounted

for as a systematic uncertainty. The φ(1020) was the only resonance noted (the χc0

region was vetoed, as well as the D0 region). The measured branching fraction from

this analysis was:

B(B± → K±K±K∓) = (29.6 ± 2.1 ± 1.6) × 10−6. (2.49)

The results also included a CP asymmetry for this decay mode. This was measured

to be:

ACP (B± → K±K±K∓) = 0.02 ± 0.07 ± 0.03. (2.50)

The BABAR collaboration has also published papers detailing the measurements

of the two body branching fractions for the modes B± → φ(1020)K± [23] [24] and

B± → χc0K
± [25].

The measured branching fraction for B± → φ(1020)K± was:

B(B± → φ(1020)K±) = (10.0+0.9
−0.8 ± 0.5) × 10−6, (2.51)

and the asymmetry on this mode was:

ACP (B± → φ(1020)K±) = 0.04 ± 0.09 ± 0.01. (2.52)
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The analysis of B± → χc0K
± calculates a branching fraction for the case where

the χc0 decays to two charged kaons:

B(B± → χc0K
±) × B(χc0 → K+K−) = (1.49+0.36

−0.34 ± 0.11) × 10−6. (2.53)

Dalitz Analyses

More recent analyses have been full Dalitz plot analyses. These have been carried out

by the BABAR [26] and Belle [27] collaborations. A comparison of these publications

with the results of this analysis is carried out in section 7.2.

2.6.5 Other Analyses Related to B± → K±K±K∓

The Decay B± → K±π±π∓

The BABAR analysis [28] of this mode was carried out using a similar method to

that described in this thesis, using the Laura++ fitting package (section 5.1). Of

particular note is the treatment and measurement of the f0(980) resonance. This

resonance can decay to both π+π− and K+K−, and is seen in both B± → K±π±π∓

and B± → K±K±K∓ channels. The mass of the f0(980) resonance is slightly less than

the mass of a pair of kaons, which distorts the lineshape to a Flatté or coupled channel

Breit–Wigner form (section 2.9.3). The shape of the f0(980) is more like a conventional

Breit–Wigner in the decay B± → K±π±π∓, and it is easier to distinguish the resonant

structure in the plot (allowing for overlap from the ρ). The Flatté parameters could

thus be tested in this mode, and were found to be in broad agreement with those

measured by the BES collaboration [29]. The observation of this resonance in the

B± → K±π±π∓ Dalitz plot was a useful guide in determining the presence of the

f0(980) resonance in the B± → K±K±K∓ Dalitz plot.

The Decay B0 → K0
S
K±K∓

This mode featuring three kaons, has a lower branching fraction than

B± → K±K±K∓, and it is more difficult to reconstruct the K0
S

compared to a charged
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kaon. Consequently, the BABAR analysis of B0 → K0
S
K±K∓ [30] had fewer signal

events than the mode containing three charged kaons, despite using a larger data

sample.

A resonant structure is observed at ∼ 1.5 GeV/c2 in B± → K±K±K∓ analyses, and

is also seen in the K+K− invariant mass spectrum of B0 → K0
S
K±K∓. However no

such structure is observed in the K0
S
K+ or K0

S
K− spectra, which would indicate that

the resonance has no charged counterparts, and therefore favours an (isospin = 0) f

resonance designation, as opposed to an (isospin = 1) a resonance designation. Thus

this resonant structure cannot be identified with the established a0(1450) resonance.

The observation of such a resonant structure in this analysis is noted in section 6.1.1.

2.7 Nature of Resonant Components

The analysis detailed in this thesis involves modelling the potential resonant content

in the decay mode B± → K±K±K∓. Whilst many resonances are well established

particles, there remains a lot of uncertainty about the identification of some other

resonances, and in the scalar resonance sector in particular it is often not possible to

identify distinct resonances.

Even resonances that are well established, seen in several experiments with different

techniques, can still have uncertainties surrounding their composition. Mesons that

are formed from states other than qq̄ have been postulated. Scalar resonances which

overlap and interfere with each other lead to the situation where it has not been

possible to determine the quark composition of these particles, even within the qq̄

regime.

Two resonances that are modelled in this analysis are examples of the confusion

of scalar resonances that exists — the f0(980), and a scalar resonance with a mass of

∼ 1.5 GeV/c2, which is referred to as (KK)0
0 (the reasons for this arbitrary resonance

being studied are given in section 6.1).

Studies by the LASS collaboration [31] on the K0
S
K0

S
system in the reaction K−p →
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K0
S
K0

S
Λ showed the f ′

2(1525) to be the major contribution to the resonant spectrum.

However they also presented some evidence for an s-wave structure lying in the region

of 1.5 to 1.6 GeV/c2, and a similar structure is seen in an analysis that replaces the

K0
S
K0

S
pair with a K+K− pair. Though the uncertainties of the LASS analysis are

large, their s-wave fits are at least four standard deviations different from a zero s-

wave hypothesis. They conclude that the structure they see “may correspond to a 0++

mainly ss̄ state approximately degenerate with the f ′
2(1525)”.

2.7.1 Theoretical predictions of (possible) resonant contribu-

tions in the K+K− Spectrum

Some theoretical papers make predictions about resonances that may occur decaying

to K+K− pairs. Some of these are considered in this section.

The paper of Furman, Kamiński, Leśniak, and Loiseau [32] looks at ππ and KK̄

pairs interacting in an isospin zero s-wave state, at energies up to 1.2 GeV. It is noted

that some theoretical predictions for B(B± → f0(980)K±) are much too small, due to

penguin amplitudes interfering destructively.

Long range contributions from “charming penguins” are considered, which are con-

structions with enhanced charm quark loops, such as B decays to intermediate D
(∗)
s D(∗)

where cc̄ annihilations lead to a final state of f0(980)K. These contributions act as

an enhancement to predictions that are too low, to bring them closer to experimental

results.

The two models presented make predictions of (1.8±0.4)×10−6 and (1.7±0.7)×10−6

for the branching fraction B± → (K+K−)SK±, where the S signifies the kaons are in

an s-wave state. The predictions are in better agreement with experimental results,

and agree well with Belle results [27], but are still below measurements from BABAR

[26].

The paper by Cheng, Chua, and Yang [33] looks at the nature of light scalar mesons,

arising from the study of charmless hadronic B decays. They include a section on the
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B− → f0(980)K− decay. There are several different predictions for the composition of

the f0(980) resonance discussed: the two quark predictions are ss̄ or a superposition

of ss̄ and (uū + dd̄)/
√

2, and a four quark prediction is |f0(980)〉 = |ss̄(uū + dd̄)/
√

2〉,
though further four-quark possibilities arising from mixing with a four-quark σ reso-

nance are also suggested.

It is noted from measurements of the decays J/ψ → f0ω and J/ψ → f0φ that the

f0 clearly has both strange and non-strange content.

The predictions of the authors based on QCD factorisation give a branching fraction

of order 10−5 for B− → f0K
−, based on a two quark model. Extending this to a four

quark model would result in a lower branching fraction based on extending the penguin

diagrams for the two quark states to four quark states. However there are two extra

diagrams for four quark states, which are nonfactorisable, and thus the calculation

of a predicted branching fraction cannot be performed. Thus, the observation of the

branching fraction for B− → f0K
− cannot be used to distinguish between a two quark

and a four quark assignment.

Minkowski and Ochs [34] look at the decays of B mesons into light scalars and

glueballs, motivated by the search for the lightest glueball. This glueball is ex-

pected to be a scalar with JPC = 0++. Some predictions of its mass give a range of

1000-1800 MeV/c2.

They discuss different classifications for the light scalar mesons to highlight where

such a glueball may appear. The f0(980) could occur as the lightest member of a nonet

comprising particles such as the f0(1500) and K∗
0(1430). Or it could be the heaviest

member of a nonet featuring such particles as the κ and σ; such an arrangement could

lead to two nonets below 1.8 GeV/c2.

They also comment on the observation of the f0(1500) resonance in

B± → K±K±K∓, but not in B± → K±π±π∓. They construct a model attributing

this observation to the constructive and destructive interference in these modes with

a broad glueball state. The presence and possible identification of the f0(1500) in the

analysis of B± → K±K±K∓ detailed in this thesis are discussed in section 6.1.
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2.8 Kinematics of three body decays

In the decay of a particle of mass M and momentum P into three daughter particles

with momenta and masses (p1,m1), (p2,m2), (p3,m3), and with the invariant masses

of the three possible pairs of particles:

m2
ij = p2

ij = (pi + pj)
2 (2.54)

for i, j = 1, 2, 3; then:

M2 + m2
1 + m2

2 + m2
3 = m2

12 + m2
13 + m2

23. (2.55)

Since the squares of the invariant masses of the three pairs of particles are linearly

dependent, any choice of two pairs can be used to specify the kinematics of a decay.

It can be shown that the decay rate, dΓ, is proportional to [35]:

dΓ ∝ ¯|M|2dm2
13dm2

23 (2.56)

where M is the matrix element for the decay process. The general form M̄ is averaged

over spin states for the decaying particle. Thus for a decay with constant ¯|M|2 then

the decay events will be distributed uniformly across phase space (within a certain

kinematic boundary).

A scatter plot of m2
13 against m2

23 is called a Dalitz plot. When M is not con-

stant across phase space then features of interest may appear within the Dalitz plot.

This can arise when a three body decay proceeds via an intermediate resonance, for

example B± → φ(1020)K±, φ(1020) → K+K−. In this case M is enhanced for values

m2
ij = m2

resonance, leading to the formation of resonance bands within the plot.

Where there are multiple resonances present it is possible for interference to occur,

as the individual contributions to the matrix element are summed before the matrix

element is squared leading to cross/interference terms.

Figure 2.8 shows an example of a Dalitz plot for the decay B± → K±K±K∓ com-

posed of simulated events. (The generation of simulated or Monte Carlo events is

discussed in section 4.1.1). This plot contains several generated resonances that could
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Figure 2.8: Toy Monte Carlo simulation of B± → K±K±K∓.

contribute to the overall decay mode, which have been highlighted to demonstrate the

way in which individual resonance bands populate the Dalitz plot. Note — in order

to keep the resonance assignment of each generated event unambiguous, interference

effects were not modelled for the purposes of this plot.

Each resonance in the Dalitz plot is represented by both a dynamical term (related

to the lineshape, described in section 2.9), and an angular distribution, T , which is

defined in terms of Zemach Tensors [36] [37] as follows:

L = 0 : T = 1 (2.57)

L = 1 : T = −2~p.~q (2.58)

L = 2 : T =
4

3

[

3(~p.~q)2 − (|~p||~q|)2
]

(2.59)

where the terms are used for the decay of a spin 0 particle, and L is the orbital angular

momentum between daughter particles. The vectors ~p and ~q are measured in the rest
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frame of the decaying resonance, and are the momentum of the bachelor particle (the

particle that was created from the decay of the B meson, i.e. not involved in the

decay of the intermediate resonance), and the momentum of the daughter particle of

the resonance with an electric charge identical to that of the bachelor particle.

The angular distribution above can be observed as a function of a helicity angle,

which can be defined for each of the pairs of particles in a three body decay, in a

similar way to the definition of invariant masses. The helicity angle, θij can be defined

in terms of the invariant mass of another pair of particles as:

θij =
(m2

jk)max + (m2
jk)min − 2m2

jk

(m2
jk)max − (m2

jk)min

. (2.60)

The resonance bands in a Dalitz plot show information about the spin of the reso-

nance involved, in terms of the helicity angle, a spin zero resonance (e.g. χc0) will

be flat across the Dalitz plot band; a spin one resonance (e.g. φ(1020)) will be dis-

tributed according to cos2 θij; and a spin two resonance (e.g. f ′
2(1525)) distributed by

|3 cos2 θij − 1|2. This can be seen in the resonance bands in figure 2.8. These distribu-

tions are contained within the Zemach Tensor formalism.

2.8.1 Kinematic boundaries of a Dalitz plot

The area of the Dalitz plot is determined by the available phase space, and the bound-

aries of the plot are determined by the kinematic constraint on the particles, that is,

when one of the particles has no momentum, in the decay rest frame.

The boundary of the Dalitz plot is described in terms of two of the Dalitz plot

coordinates. It can be plotted from two curves for the upper and lower edges, as there

are two possible values of the boundary for every permitted value of the abscissa.

Using m2
12 as the abscissa, and m2

23 as the ordinate, the value of the upper and

lower boundaries can be specified as [35]:

(m2
23)max = (E∗

2 + E∗
3)

2 −
(

√

E∗2
2 − m2

2 −
√

E∗2
3 − m2

3

)2

(2.61)
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(m2
23)min = (E∗

2 + E∗
3)

2 −
(

√

E∗2
2 − m2

2 +
√

E∗2
3 − m2

3

)2

, (2.62)

where E∗
2 and E∗

3 are the energies of particles 2 and 3, and the ∗ signifies that they

are given in the m12 rest frame, as follows:

E∗
2 =

m2
12 − m2

1 + m2
2

2m12

(2.63)

E∗
3 =

M2 − m2
12 − m2

3

2m12

. (2.64)

The absolute minimum value that can be taken for m2
12 is (m1 + m2)

2, and the

maximum value is (M −m3)
2. For m2

23 the corresponding values are (m2 + m3)
2, and

(M − m1)
2.

In the case of B± → K±K±K∓ these expressions simplify to a minimum of

(mK + mK)2 = 4m2
K = 0.975 GeV2/c4 and a maximum of (mB −mK)2 = 22.9 GeV2/c4

in both cases.

2.9 Lineshapes

This section describes the shapes of resonance phenomena in the invariant mass spec-

tra. These parametrisations are used to define the resonances when fitting the Dalitz

plot.

2.9.1 Breit–Wigner

The Breit–Wigner lineshape is the most common used for parametrising resonance

shapes. Further details can be found in, for example [38]. The time dependent wave

function of a particle, R, of mass mR and width ΓR can be written as:

ψ(t) = ψ(0)e−imRte−ΓRt/2. (2.65)

Taking the Fourier transform of this wave function leads to an expression for the

amplitude of this particle state as a function of energy, E:

χ(E) =

∫

ψ(t)eiEtdt ∝ 1

E − mR + iΓR/2
. (2.66)
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To find the cross section for observing the decay of such a particle, then the square of

the amplitude is taken:

σ(E) = χ∗(E)χ(E) ∝ 1

(E − mR)2 + Γ2
R/4

. (2.67)

This equation is known as the Breit–Wigner formula.

2.9.2 Relativistic Breit–Wigner

The Breit–Wigner formula can be extended in order to make it relativistically invari-

ant. In this form, the cross section is expressed in terms of the relativistic variable s,

which is the square of the centre of mass energy. The form of the relativistic Breit–

Wigner is as follows:

σ(s) ∝ 1

(s − m2
R)2 + Γ2

Rm2
R

. (2.68)

An additional relativistic consideration is that the width of the resonance is expected

not to be a constant, but instead to vary as a function of energy. This can be accounted

for using the Blatt–Weisskopf parametrisation [39], which is given as:

ΓR(s) = ΓR(m2
R)

(

q

q0

)2j+1
mR√

s

F 2
j (q)

F 2
j (q0)

. (2.69)

Here q represents the momentum of one of the daughter particles of the decay, mea-

sured in the rest frame of the particle R. The parameter q0 is the value of q at

s = m2
R. The function Fj(q) describes the variation of the width due to the spin of

the resonance, and is given for particles of spin 0, 1, and 2 as:

F0(q) = 1 (2.70)

F1(q) =

√

1

R2
bq

2 + 1
(2.71)

F2(q) =

√

1

R4
bq

4 + 3R2
bq

2 + 9
(2.72)

The barrier radius, Rb, is taken to have a value of 4.0( GeV/c)−1.
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2.9.3 Flatté — Coupled Channel Breit Wigner

The Flatté lineshape [40] is used to represent resonances that occur near the threshold

for a particular decay mode. Of particular interest for this analysis is the decay of the

f0(980), which has two notable decay modes:

• f0(980) → π+π−,

• f0(980) → K+K−.

The nominal mass of the f0(980) is slightly less than the mass of a pair of charged

kaons. The Flatté distribution takes into account both the π+π− decay and the opening

of the K+K− decay, thus:

χ(s) ∝ 1

m2
R − s − imR(Γππ + ΓKK)

. (2.73)

The two width terms describe the contributions from the two decay channels, and are

given hence:

Γππ = gπ

√

s − 4m2
π (2.74)

ΓKK = gK

√

s − 4m2
K . (2.75)

Accordingly for s < 4m2
K , the width parameter ΓKK will be imaginary, and so the

term imRΓKK will contribute to the real part of the denominator.

This parametrisation of the Flatté distribution is that favoured by the BES collab-

oration, and the values of the parameters are also taken from those published by this

collaboration [29]. The particular parameter values used in this analysis are:

• gπ = 0.138 ± 0.010,

• gK/gπ = 4.45 ± 0.25.

2.9.4 Non-Resonant

Any decays that do not proceed via an intermediate resonance are termed non-resonant.

If these events are distributed according to the phase space distribution then they
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should uniformly populate the Dalitz plot. However it is possible that any variations

in the matrix element will lead to a non uniform non-resonant component. Some res-

onant components may be included in the non-resonant contribution where resonant

behaviour is not observed. Examples include very wide scalar resonances, and virtual

resonances which exist outside the kinematic limits of the Dalitz plot.

There are theoretical predictions as to the nature of a non uniform non-resonant

component. Experimentally it may be very difficult to distinguish between these mod-

els given the limited amount of data available, and simple parametrisations of the

non-resonant component have been suggested to attempt to model any non-uniformity.

The Belle collaboration [27] suggested this parametrisation for the amplitude of

the non-resonant component:

ANR ∝ e−αs + e−αt (2.76)

where α is a parameter to be determined, and s and t are the conventionally defined

Mandelstam variables. An alternative parametrisation was suggested by a BABAR

physicist [41], motivated by taking a Taylor expansion of a theoretical model, with

only a linear term retained. This leads to the following parametrisation:

ANR ∝ 1 + α
(s + t)

m2
B

(2.77)

where again the parameter α is used to represent a free parameter in the fit, and s

and t are defined as before. The inclusion of the mass of a B meson, mB, ensures that

α is a dimensionless quantity.

Both of these parametrisations were investigated in this analysis.
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Chapter 3

BABAR and PEP-II

The Stanford Linear Accelerator Center (SLAC), the home of the BABAR experiment,

was founded in 1962, near Stanford University in Menlo Park, California, USA. The

linear accelerator which gives SLAC its name is about 3km long and started running

in 1966 [42].

The Positron Electron Project (PEP) which commenced operations in 1980 was a

symmetric e+e− storage ring, which is about 800m in diameter, or 2200m in circum-

ference [43] , where amongst other research, early measurements of the B-lifetime were

made.

In 1993 the collaboration which was to become BABAR was created. Part of the

design proposal for the new b-factory called for the existing PEP ring to become an

asymmetric ring, colliding electrons and positrons at energies of 9.0 and 3.1 GeV

respectively. This iteration of the storage rings was known as PEP-II.

PEP-II collides electron and positron beams together at a single interaction region,

which is where the BABAR detector is situated. The PEP-II ring and the BABAR detector

are described in detail in this chapter.
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Table 3.1: Cross sections at a centre of mass energy of 10.58 GeV, corresponding to

the mass of the Υ (4S) [44].

Mode Cross-section e+e− → mode / nb

BB 1.05

qq 3.2

(q = u, d, s, c)

τ+τ− 0.94

µ+µ− 1.16

e+e− ∼ 40

3.1 B-Factories and the Υ (4S) resonance

B mesons provide a useful tool to study CP violation, and can also give hints of new

physics. But in order to investigate B mesons, and their decays (some of which may

have branching fractions of the order 10−6or less), then these particles will need to be

produced in large quantities.

The idea of a machine able to produce a large number of B mesons is made possible

due to the useful properties of the Υ (4S) resonance. The Υ (4S) is a meson composed

of a b quark, and the anti-quark b. It has a mass of 10.58 GeV/c2. Its mass is just

above the threshold for the production of B and B mesons (produced as either B+

and B− or as B0 and B0, in an approximate 50:50 ratio). A consequence of this is

that at least 96% of decays of the Υ (4S) are to BB pairs [1].

By tuning the energy of the electron-positron collisions to the mass of the Υ (4S)

the production of BB pairs can be optimised. A machine operating at such an energy

is termed a B factory. Table 3.1 shows the cross-sections for selected e+e− channels

at a centre of mass energy of 10.58 GeV. Thus B factories offer an ideal chance to

study B mesons, with relatively low backgrounds from light quark production, and

additionally allow for the study of charmed particles (such as D mesons) and the τ

lepton.
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Because the energy in the beams is only just above the threshold for production of

BB pairs, these mesons are produced almost at rest in the centre of mass frame. In

order to have the B mesons move a measurable distance in the detector, the beams

are chosen to be asymmetric. An approximate ratio of 3:1 was found to be optimal,

and the high energy beam (e−) has an energy of 9.0 GeV and the low energy beam

(e+) has an energy of 3.1 GeV to give the required centre of mass energy of 10.58 GeV.

This gives a relativistic boost in the laboratory frame of βγ = 0.56.

3.2 PEP-II

The Linear Accelerator (Linac) at SLAC is used to provide electrons and positrons.

Firstly electrons are fired from an electron gun down the linac, and accelerated to

energies of 9.0 GeV before being injected into the PEP-II High Energy Ring (HER).

Additionally some electrons are diverted from the linac, and are collided with a station-

ary target. From the products of these collisions, a magnetic field is used to separate

positrons. Bunches of positrons thus formed are then accelerated by the Linac to en-

ergies of 3.1 GeV before they in turn are injected into the Low Energy Ring (LER). A

schematic view of the linac and the PEP-II ring is shown in Figure 3.1.

Once the electrons and positrons have been injected, the PEP-II ring acts as two

storage rings, one for the electrons and the other for the positrons. These maintain

the particles at their injected energies as they traverse their circular paths. At one

point in the ring – the Interaction Region (IR), the HER and LER beams are brought

together, so that electrons and positrons within the bunches may collide. A diagram

of the interaction region is shown in Figure 3.2. The beams pass each other with no

crossing angle, and thus the beams have to be brought to colinearity, allowed to cross,

and then moved back to different paths before collisions between bunches one bunch

removed from the colliding bunch can occur.

All of the magnets labelled as QD or QF are quadrupole magnets. Two sets
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Figure 3.1: The Linear Accelerator and PEP-II
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Figure 3.2: The Interaction Region
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of quadrupoles are responsible for focusing the higher energy beam, these are QF5

and QD4, whereas only a single set of quadrupoles, QF2, perform the equivalent

focusing for the lower energy beam. The final quadrupole is within the magnetic field

of the detector, and this implements final focusing for both beams. The final bringing

together of the beams is obtained using a dipole magnet, labelled B1.

One of the advantages of an electron positron collider as operated at PEP-II, as

compared to the Tevatron at Fermilab (a proton/antiproton collider) or the future

Large Hadron Collider (LHC) at CERN (a proton/proton collider) is that e+e− colli-

sions have a much lower background than colliding (anti-)protons which are composite

particles. This arises as there are many quarks and gluons around the interaction area

that can produce large hadronic backgrounds for events of interest, and can greatly

reduce the efficiency for reconstructing events.

Some relevant performance indicators for BB events produced at PEP-II are [44]:

• Final states involving photons and π0s can be fully reconstructed.

• The signal to background ratio is high — σbb̄/σTOT ≈ 0.28.

• The charged particle multiplicity is ≈ 11.

• A low rate of ∼ 10Hz for recording physics events.

3.2.1 Trickle Injection

When the experiment started running, the method used to obtain usable beams was

that the storage rings were filled with electrons and positrons, until the desired beam

current was reached. These beams would slowly diminish in current during a period of

data taking. After some time (several hours typically) data taking would be suspended,

and more electrons and positrons would be injected, to bring the beams back to full

currents. Data taking would then resume.

In order to remove this “dead time”, when no data taking was possible, a new

system was implemented called Trickle Injection. This involves small quantities of
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Table 3.2: PEP-II performance

Design Best Achieved

HER current (A) 0.75 1.9

LER current (A) 2.14 2.995

Bunches 1658 1722

Luminosity (1033cm−2s−1) 3 12.069

positrons and electrons being continually injected into the beams to keep them at or

about full current during a data taking period.

3.2.2 PEP-II performance

PEP-II has been supplying electron and positron beams for the BABAR detector since

1999. During this time there have been 5 data taking periods, called “Runs”. Between

Runs the detector has been shut down to allow for maintenance and upgrades.

Figure 3.3 shows the total integrated luminosity delivered by PEP-II during Runs

1-5, together with the integrated luminosity recorded by the BABAR detector, and

integrated luminosity taken during off-peak running.

Table 3.2 shows the design parameters of PEP-II and BABAR, together with the

best achieved to date. The figures are correct at the end of Run 5 in August 2006. The

peak luminosity of 12.069×1033cm−2s−1 was achieved with 1722 bunches, and beam

currents of 2900mA in the LER and 1875mA in the HER.

3.3 The BABAR Detector

A full description of the BABAR detector is given in [46]. The BABAR detector is

designed to make precision measurements of the decays of B mesons and associated

daughter particles, and also particles such as τ leptons, and charmed particles such as

D mesons. The detector covers the whole 4π solid angle around the interaction point
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(excepting the beam line). Due to the asymmetric nature of the beams, the detector

itself is asymmetric in design. The BABAR detector must meet a number of design

goals in order to reach the physics potential for which it was intended. A number of

these design goals are:

• For charged particles: Good momentum resolution in the range 60 MeV/c to

4 GeV/c.

• For neutral particles: Good angular resolution, and good energy resolution in

the range 20 MeV to 4 GeV.

• Excellent separation of particle identities, particularly for e±, µ±, K±, π±, p, p̄,

covering a large range of momenta.

• Vertex resolution must be able to measure differences in the B decay times. This

is also required for vertexing τ and charm events.

• A triggering system is required that will select important physics events, and thus

reduce the rate of events that need to be recorded by discarding uninteresting

events.

• The detector must be able to operate under conditions of high radiation without

detriment to performance.

• The large amount of data which is taken by the detector must be rapidly read

out and stored, with little dead time.

The detectors actual performance in quantitative terms is discussed in later sections

of this chapter.

The BABAR detector is shown in Figure 3.4.

The detector is made up of a number of subdetectors, which are:

• SVT — Silicon Vertex Tracker: Used for vertexing short lived particles such as

B mesons.
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Figure 3.4: The BABAR detector [46].
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• DCH — Drift Chamber: The primary tracking system.

• DIRC — Detector of Internally Reflected Cherenkov radiation: Used for particle

identification.

• EMC — Electromagnetic Calorimeter: Used for particle energy determination.

• 1.5T Magnet. Used to curve the path of charged particles, allowing for momen-

tum based particle identification.

• IFR — Instrumented Flux Return: Used for detecting muons and neutral hadrons.

Each of these subdetectors are described in detail in the subsequent sections. The

terms used to name and describe the subsystems involve a lot of three letter acronyms.

Appendix A provides a glossary of these and other related terms.

3.3.1 The BABAR Coordinate System

The BABAR detector has a well defined coordinate system. Firstly, the z axis is defined

as the direction of the drift chamber axis. This is very slightly different from the

direction of the electron beam, by 20mrad. The y axis points upwards, and the x axis

is horizontal, with the positive x direction being defined as that which points away

from the PEP-II ring.

When describing the asymmetric nature of the detector, the forward region is that

which lies in the +z direction, and the backward region that which lies in the −z

direction.

When discussing particle tracks within the detector, there are five parameters used

to characterise them. Each parameter is calculated at the point of closest approach to

the z axis:

• z0 - the distance between the track and the origin along the z axis,

• d0 - the distance between the origin and the track in the x − y plane,
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• φ0 - the azimuthal angle of the track,

• ω - the track curvature, which in terms of the component of the track momentum

transverse to the z axis is given by ω = 1/pT ,

• tan λ - The dip angle, λ, is measured with respect to the x − y plane.

The reconstruction of tracks is detailed in section 4.3.1.

3.4 SVT - Silicon Vertex Tracker

The Silicon Vertex tracker is the innermost of the detector subsystems. It is the only

subsystem capable of vertexing the tracks originating from the decays of short lived

particles, most notably B mesons, but also D mesons and τ leptons. For particles

with momenta less than 120 MeV/c, the SVT provides the only tracking information

available, as such particles cannot be reliably recorded with any other subdetectors.

The presence of the beam pipe, bending magnets, and cooling systems limits the

coverage of the SVT. In terms of the polar angle, it is restricted to between 20.1◦ and

150.2◦, with the better coverage in the forward region. The SVT has to be built of

minimal material, to allow particles to pass through to subsequent detectors, whilst

still providing excellent tracking. The SVT must also be very radiation hard, as it will

be exposed to a lot of radiation, when the machine is operating at high luminosities.

Five layers of silicon strips comprise the SVT. These are shown in Figure 3.5.

Each of the silicon strip detectors is double sided, with the strips on opposite sides

running perpendicular to each other, in order to allow measurement of both the φ

angle, and the z-position. The outer strips of each layer run parallel to the direction

of the beam, and it is these that are used for φ determination, whilst the inner strips

are used to determine z.

The first three layers are each organised into six modules. The two outer layers

have more modules. The fourth layer has sixteen modules, and layer five has the most,

with eighteen modules. Furthermore, these two outer layers are divided into a and b
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sections, as shown in the figure. These have slightly different radii, and are designed

to overlap to cover the maximum solid angle available.

A view of the SVT viewed from the x-axis of the BABAR detector is shown in Figure

3.6.

The alignment of the SVT is very important, because of the precision measurements

that need to be made. This is carried out by aligning tracks from dimuon events with

the tracks produced in other subsystems, particularly the Drift Chamber. Alignments

are also carried out using cosmic rays during global calibration.

In order to study time-dependent CP -violation, precise measurements of the B-

vertex need to be made. The resolution required on such measurements was determined

to be 80µm from Monte Carlo studies [44]. The actual resolution in the detector is

better than 70µm.

The information from the SVT and the DCH are together used for tracking. Track-

ing performance for both subdetectors is discussed in the following section. Track

reconstruction is discussed in section 4.3.1.

3.5 DCH - Drift Chamber

The drift chamber is the principal tracking system for charged particles of the BABAR

detector. The tracking data from the drift chamber can be combined with that of the

SVT to yield extra information on particle tracks. The DCH can also aid with particle

identification by yielding energy loss (dE/dx) information.

The drift chamber is situated outside the SVT. It forms a cylinder of length 2.8m

and radius 0.809m, the inner radius (in which the SVT sits) is 0.236m. The cross

section of the drift chamber is shown in Figure 3.7. The centre of the cylindrical

volume that the drift chamber occupies does not correspond with the interaction point.

This is due to the asymmetric nature of the beams, and the drift chamber is shifted

in the direction of the beam boost (in the positive z direction).

It is made up of 40 hexagonal cell layers providing spatial and ionisation information
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Figure 3.9: Equal drift time contours in the DCH. Contours correspond to 100ns

intervals [46].

on charged particles. These can provide up to 40 spatial measurements per track. It

contains wires placed at small angles relative to the z-axis, in 24 of the 40 cells, in

order to provide longitudinal information.

The 40 layers are divided into 10 superlayers, each consisting of 4 layers. The layers

are shown in Figure 3.8(a). The different types of superlayers are axial (A), and stereo

(U and V), which are ordered AUVAUVAUVA as shown. Figure 3.8(b) shows the first

four of the superlayers in more detail. Here it can be seen that the wires in superlayers

2 and 3 are at a small angle, whereas those in (axial) superlayers 1 and 4 are not. The

stereo angle of the wires is shown in the right hand column of numbers, and given in

mrad. The stereo angles increase in magnitude from ±45 mrad in superlayer two, up

to ±76 mrad in the ninth superlayer.

The drift chamber itself is filled with a gas of helium-isobutane, with a 4:1 compo-

sition ratio. This mixture has a very long radiation length (the whole system of both

gas mixture and wires gives an aggregate 0.28% of a radiation length for normally

incident particles), which helps to prevent multiple scattering. In addition a small
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Figure 3.11: Tracking performance as a function of transverse momentum [46]. The left

hand plot shows the resolution of z0 and d0; the right hand plot shows the resolution

of pT .

amount of water vapour (amounting to about 0.3%) is included in this mixture — this

will help to increase the active lifetime of the drift chamber.

The hexagonal cells that make up each layer are shown in Figure 3.9. They consist

of a sense wire in the centre, which is surrounded by six field wires, which are grounded.

The sense wires are 20µm in diameter, and are made of a gold plated tungsten-rhenium

compound. The field wires have diameters of either 80µm or 120µm, and they are

composed of gold plated aluminium. The sense wires carry a high voltage — typically

1960V.

Upon passage of a charge carrying particle through the gas, ionisation is caused.

The electrons liberated are then accelerated towards the sense wire by the field, which

in turn creates an avalanche of charge. At an operating voltage of 1960V the gain is

of the order of 5× 104. The leading edge of the charge avalanche is used to determine

the drift time, which has a resolution of 1ns, and this can be used to extract position

information. In addition the total charge deposited on the sense wires is used to
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determine the energy loss (dE/dx) as the particles traverse the drift chamber.

Figure 3.10 shows the dE/dx distributions for various particles traversing the drift

chamber. This plot also has the expected Bethe–Bloch [1] functions plotted. Of

particular note is the excellent separation of kaons and pions at lower momenta.

Calibration of the exact relation between drift times and particle properties is deter-

mined from dimuon events, and also electron-positron events. The average resolution

that can be achieved with a single cell is about 125µm.

The DCH and SVT combine to form the tracking system for BABAR. Figure 3.11

shows the resolutions that can be obtained from this tracking system, as a function of

particle transverse momentum (pT ). The left hand plot shows the resolution on the

track parameters, z0 and d0, and the right hand plot shows the resolution of pT . This

is calculated from tracks from cosmic ray muons which traverse both the DCH and

SVT.

3.6 DIRC - Detector of Internally Reflected Cherenkov

radiation

The main function of the DIRC is in particle identification (PID). It is particularly

important in identifying charged hadrons, and provides excellent separation between

kaons and pions.

Cherenkov radiation is produced by particles moving faster than the speed of light

in a particular medium. The velocity of a particle may be expressed in terms of the

standard relativistic variable β = p/E. For a material with refractive index n, the

condition for emission of Cherenkov radiation becomes β > 1/n. The Cherenkov

radiation is emitted at an angle to the momentum vector of the superluminal particle.

The cosine of this angle is given by cos θC = 1/βn. As many individual photons are

emitted from a single particle, these build up a cone of Cherenkov light around the

direction the particle traversed.

A cross sectional view of the DIRC is shown in Figure 3.12. The material chosen
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Figure 3.12: Cross sectional view of the DIRC [46]. Lengths are given in mm.
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Figure 3.13: Diagram showing DIRC principles of operation [46].

as the medium in which Cherenkov photons will be produced is synthetic fused silica

quartz, which has a refractive index n = 1.472. A total of 144 bars of this quartz

are used, and they are arranged into a dodecagonal barrel surrounding the DCH. The

overall thickness of the DIRC resides in only 8cm of radial space between the DCH

and the EMC. This corresponds to approximately 17% of a radiation length.

Advantage was taken of the asymmetric nature of the detector, by only placing

photodetectors at one end of the detector, this being the backward end of the detector,

as this end has less occupancy from other subdetector systems.

Cherenkov light is totally internally reflected within the quartz bars, and thus

propagates along the bars to arrive at the detection apparatus. Light which propagates

in the forward direction is reflected back by a mirror. Consequently all light will

proceed to the DIRC detector, at the backward end of the detector.

When the light has completed its journey through the quartz it enters the Stand
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Off Box (SOB). This is filled with 6,000 litres of ultra-pure water. The water has a

refractive index which is close enough to that of the quartz to ameliorate any com-

plication from internal reflection at the interface. Within the water is a fused silica

wedge. This will reflect photons which enter the SOB at large angles, and thus reduce

the area that needs to be instrumented.

Figure 3.13 shows a schematic view of the DIRC, together with an illustrative path

for a typical photon.

The far surface of the SOB is lined with an array of Photomultiplier Tubes (PMTs).

These are able to detect photons in the visible and near-UV spectra. Each PMT has

a hexagonal light catcher in front of it, to increase the effective active surface area

to approximately 90%. Each of the twelve regions of the DIRC contains 896 PMTs,

totalling 10752 PMTs in the whole subdetector. Each PMT has diameter of 28.2mm.

Between the SOB, and the main detector body, there is a bucking coil. This is

composed of a ten-layered coil of copper, which is water cooled. This, combined with

a steel shield that surrounds the SOB, curtails the magnetic field around the PMTs.

The Cherenkov angle information is preserved during the photons’ passage, and

can be calculated from the signal that is detected by the PMTs (to within a sixteen-

fold ambiguity). This information can then be combined with particle tracks, and

momentum information, to yield the particle mass. Figure 3.14 shows the separation

that can be achieved between kaons and pions using the DIRC. This is dependent on

the momentum of the particle, but it can be seen that at momenta of around 3 GeV/c

a separation of 4 standard deviations (σ) is achieved. The important role played by

the DIRC in particle identification (PID) is outlined in section 4.4.

3.7 EMC - Electromagnetic Calorimeter

It is necessary for BABAR to measure the energy of photons over a very large range of

energies. Many interactions will involve π0s, which can decay into low energy photons.

There are also processes such as e+e− → e+e−γ which involve photons with high
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energies. For these reasons the Electromagnetic Calorimeter (EMC) was designed to

be sensitive to photon energies over the large range from 20 MeV up to 9 GeV. The

calorimeter is also used for electron identification and measurements.

The EMC is made from 6580 Thallium doped Caesium Iodide crystals, CsI(Tl).

The choice of CsI(Tl) was made because it has a small Molière radius, and also a high

light yield, which are ideal for providing the necessary resolution. The layout of these

crystals is shown in Figure 3.15. The crystals form a barrel section, and also a forward

endcap — no backward endcap is used, or required, due to the asymmetric nature of

the colliding beams.

The barrel consists of 5760 crystals, which are arranged in 48 rings, each comprising

120 individual crystals. The end cap is made up of 8 rings. These vary in size from

120 crystals in the outer 3 rings, 100 in the next two, and finally 80 crystals in the

innermost 2 rings, to account for the remaining 820 crystals. Figure 3.16 shows how

the crystals in the barrel fit together.

The structure of the crystals themselves is shown in Figure 3.17. The crystals

vary in height between 29.6cm and 32.4cm, corresponding to between 16 and 17.5
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Figure 3.16: EMC structure [46].

radiation lengths, so that an electromagnetic shower will be mostly contained within

the crystals. The crystals have silicon diodes at the top which read out the signal, and

pass it on to further electronics.

Most electromagnetic showers will cover several crystals, as many charged particles

make up an electromagnetic shower. The crystals scintillate upon passage of charged

particles. The signals from crystals are added together to form clusters, marking the

energy deposition from a single shower. Crystals must have an energy deposition of

greater than 1 MeV to be included in the clustering algorithms.

Clusters can then be related to tracks recorded in the inner subdetectors, with

those clusters that do not correspond to any of the observed tracks assumed to arise

from the passage of neutral particles.

The calibration of the energy measurements and resolution is done using 16N, which

is a radioactive element that emits photons with an energy of 6.1 MeV. Bhabha events

are used to provide the calibration at higher energies.

It is usual to parametrise the energy resolution via the function:
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Figure 3.17: Schematic diagram of a CsI(Tl) crystal [46].
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E
=

a
4
√

E
⊕ b (3.1)

where a = (2.32 ± 0.30)%, b = (1.85 ± 0.12)%, and the quantities are added in

quadrature. The energy is measured in GeV.

In addition the angular resolution is modelled as:

σθ = σφ =
c√
E

+ d (3.2)

where c = 3.87 ± 0.07 mrad, and d = 0.00 ± 0.04 mrad, and E is again measured in

GeV.

Figure 3.18 shows the energy and angular resolutions of the EMC, as a function of

photon energy, measured using π0 → γγ, and other processes. The solid curves are the

the fits to the above equations, and the dashed curves are MC. The energy resolution

plot also has curves representing the RMS of the fit.
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Figure 3.18: EMC performance as a function of photon energy [46]. The left hand

plot shows the energy resolution; the right hand plot shows the angular resolution.

3.8 Solenoid

Between the EMC and the Instrumented Flux Return is a superconducting solenoidal

magnet. This is used to produce a 1.5T magnetic field along the z axis. It is required for

particle identification and momentum measurements, due to the curvature it induces

in the paths of charged particles.

3.9 IFR - Instrumented Flux Return

Sitting outside the magnet, the IFR is the outermost of the detector subsystems. In

addition to its particle detection mandate, it serves as a flux return for the Solenoid,

and also forms part of the BABAR support structure.

The IFR is the primary detector for identifying muons, which play an important

role in identifying decays such as B0 → J/ψK0
S
, where the J/ψ decays to µ+µ−. The

IFR is also used to identify neutral hadrons, such as K0
L
.

The structure of the IFR is shown in Figure 3.19. The particle detection in the IFR
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Figure 3.19: IFR structure [46]. FW is the forward end door, and BW is the backward

end door. Lengths are given in mm.

is performed by Resistive Plate Chambers (RPCs). Differently shaped RPCs are used

in different places around the IFR, which forms a barrel, and forward and backward

endcaps.

There are 18 layers of RPCs in the endcaps. In the barrel there are 19 RPC layers,

plus there are two supplementary layers of RPCs placed between the EMC and the

magnet — these aid in matching tracks between the EMC and the IFR itself.

Figure 3.20 shows the layout of one of the RPCs. There are two graphite electrodes,

one of which if held at a voltage of 8kV, whilst the other is grounded. Inside these

there are two 2mm thick sheets of Bakelite, and between these there is a 2mm thick

volume, filled with a gas mixture, comprising 57% Argon, 39% Freon-134a, and 4%

Isobutane, which is non-flammable.

Figure 3.21 shows the IFR performance, in terms of muon detection efficiency and

the probability of misidentification of pions as muons. This is shown as a function

of particle momentum, and of polar angle. The performance of the IFR is measured
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Figure 3.20: Structure of one of the IFR RPCs, and the high voltage (HV) connection

[46].

using muons originating from cosmic rays. The initial performance of the RPCs was

very good with most achieving efficiencies of over 90%. However the performance of

the RPCs has deteriorated over time, with many of the RPCs now being classified as

dead (efficiency less than 10%).

3.9.1 LSTs - Limited Streamer Tubes

Due to the deteriorating performance of the IFR RPCs, replacement was necessary,

as the existing RPCs would not last the lifetime of the experiment. A new system of

Limited Streamer Tubes (LSTs) was designed, and these will eventually replace all the

RPCs. The installation of all the LSTs is planned to be completed during a shut-down

period in the second half of 2006.
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Figure 3.21: IFR muon efficiency (left scale) and pion misidentification probability

(right scale) [46]. These quantities are plotted as functions of: a) momentum in the

laboratory frame; b) polar angle for particles with momentum 1.5 < p < 3.0 GeV/c.
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3.10 Trigger

The BABAR trigger is important for reducing the rate at which data are produced by

the detector to a level where they can all be accurately recorded, whilst at the same

time ensuring that as many events as possible of physical interest are preserved.

There are two aspects to the trigger. The first is the level 1 trigger, which is

hardware based, and the level 3 trigger is based on software.

3.10.1 Level 1 Trigger

The level 1 trigger (L1T) is the first of the BABAR triggers, and its decision making is

enacted by hardware for efficiency reasons. The typical rate of events output by the

L1T is 1kHz. The trigger is divided into several triggers from different subsystems,

these are the Drift Chamber Trigger (DCT), the Electromagnetic Calorimeter Trigger

(EMT), and the IFR Trigger (IFT). Information from the SVT cannot be processed

rapidly enough to be used in this trigger system.

Each of these Triggers will send trigger primitives to a higher level trigger. These

primitives tell higher level triggers if a certain criterion has been passed. For the

DCT there are three trigger criteria: Short tracks with p > 120 MeV/c, reaching DCH

superlayer 5; Long tracks with p > 180 MeV/c reaching DCH superlayer 10; and high

pT tracks: pT > 800 MeV/c. The EMT uses five trigger primitives, these are derived

from towers, which are groups of crystals. The threshold energy for towers to trigger

is adjustable. Two of the triggers relate to specific parts of the detector geometry, one

to the forward endcap, and one to the backward barrel. The IFT is used for triggering

µ+µ− pairs, and for cosmic rays.

The signals from these triggers are combined into a trigger line, by the Global Trig-

ger (GLT). If the GLT receives an accept from a trigger primitive from the subdetector

triggers, then the GLT gives an L1 accept, and the subdetectors output their data to

buffers, where it is available for the level 3 trigger.

The DCT and EMT receive raw data 2 µs after a collision. They take 4-5 µs
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processing the raw data, and GLT takes a further ∼ 3µs of processing time, before it

can send an L1 accept to the readout modules (ROMs), taking 1 µs to reach them.

This all takes place within the 12.8 µs Front End Electronics (FEE) buffer capacity

limit.

It is also possible for L1 accepts to be triggered by the Fast Control and Timing

System (FCTS), which can ensure that a prescaled number of events are passed by the

L1T, and it can also omit individual subdetector triggers from the decision making

process.

3.10.2 Level 3 Trigger

The Level 3 trigger (L3T) further reduces the data rate from 1kHz to around 120Hz,

and any events that pass this trigger are read out and permanently stored for physics

analysis.

Unlike the L1T, the L3T has access to information from all the subdetector systems,

including the output of the L1T processors. Track finding and clustering algorithms

are run, and events can be selected or rejected based on track momenta and/or the

energy of clusters. Some events consistent with Bhabha events may also be rejected,

even if they fulfil other criteria.

The L3T takes an average processing time of 8.5 ms per event per computer used.

The output rate for interesting physics events is 16Hz, which comprises hadronic

events, and τ and µ pair production. Background events arising from, for example,

Bhabha events take the total accepted rate for physics events to 73Hz. The total used

for calibration and diagnostics is 49Hz. These figures are calculated for a luminosity of

2.6×1033cm−2s−1. The total rate is limited to about 120Hz by the processing capacity

and writing data to storage. Events which receive an L3T accept, are written out from

the buffers and stored permanently.
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Figure 3.22: Schematic diagram of the BABAR DAQ system [46].

3.11 DAQ — Data Acquisition

The Data Acquisition (DAQ) system is the means by which the detector, the triggering

system, and the BABAR analysis computing structure are linked.

The organisation of the DAQ is shown in Figure 3.22. The DAQ system starts

with the readouts from the front end electronics, which pass data onto the L1T, and

assuming the trigger is activated, the data pass through the data flow crate buffers to

the L3T, where upon being selected, the data are all written to disk and recorded in

the event store. The DAQ system can also interface with the trigger systems to enable

calibration and testing to take place. The conditions of the detector are also measured

and stored. These can include luminosities and beam currents, gas supply purity, the

status of the high voltage supply, etc. These are stored in the conditions database and

can be associated with the events taken at that time. The conditions are also used in

the generation of Monte Carlo simulated events (section 4.1.1).

3.12 Online Prompt Reconstruction and Data

Quality

The data that are written out to disk are then processed by the Online Prompt Re-

construction (OPR) Software. This takes the raw data, such as subdetector hits, and
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converts them into physical quantities to be used in analysis, such as particle energies

and momenta.

OPR is divided into two stages — the first is Prompt Calibration (PC), and the

second is Event Reconstruction (ER).

PC is the first stage of processing the data go through. There are four computer

farms dedicated to PC, all of which are based at SLAC. ER is the subsequent processing

of the data. Ten computer farms are used in ER, which are split between SLAC, and

Padova, Italy. PC takes a subset of data to reconstruct, to check for any obvious

problems, and calibration is also carried out. The ER process takes longer to complete,

and reconstructs every event in the sample. In both PC and ER, the data quality is

monitored, by the Data Quality Group (DQG). This group consists of experts on each

of the subsystems, who check that the event distributions within each system, such as

mean energy deposition within calorimeter crystals, are within acceptable bounds, and

that data have not been lost due to detector failures, or distorted by high backgrounds,

or other factors. When the BABAR reconstruction software is modified or rewritten the

data are reprocessed in PC and ER, and each processing has to be checked by the

subsystem experts of the DQG. Only data that are passed as Usable For Physics by

the DQG are used in physics analyses.

77



Chapter 4

Particle Identification, Event

Reconstruction and Selection

4.1 Data Sample

The data used in this analysis are those collected during Runs 1-4 of the BABAR

experiment, between 1999 and the summer of 2004. These data amount to an in-

tegrated luminosity of 210.6 fb−1 collected when running at a centre of mass energy

of 10.58 GeV, corresponding to the mass of the Υ (4S). Such data are termed on-

resonance, and contain approximately 232 million pairs of BB mesons [47], amongst

many other particles.

In addition to this, 21.6 fb−1 of data were collected while running at a centre of mass

energy 40 MeV below the Υ (4S) mass. These off-resonance data should not contain

BB pairs, and are thus used for studying the potential backgrounds encountered.

The off-resonance data are composed of events arising from the processes e+e− → qq

(where q = u, d, s, c), e+e− → l+l− (where l = e, µ, τ), and subsequent evolution

of such processes (for example, hadronisation and emission of photons). The on-

resonance data contain all of these processes, but also include the important (for B

physics) process e+e− → Υ (4S) → BB. Backgrounds arising from processes that
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do not involve the Υ (4S) resonance (or equivalently B mesons) are called continuum

backgrounds.

Extensive use is also made of Monte Carlo (MC) event samples. Large samples

of simulated data are generated for generic decays, and also exclusive samples for all

decay modes that have to be examined in any analysis.

4.1.1 Monte Carlo Simulation

In order to test the analysis procedures used by BABAR it is necessary to make use of

simulated or Monte Carlo events. Two types of MC will be discussed in this document:

• Full MC

• Toy MC

Full MC events are generated on a collaboration-wide basis at the many BABAR

computing centres. They include a comprehensive simulation of the physical processes

that take place, and of the detector’s capabilities in recording and reconstructing these

events. To simulate the decays of B mesons the EvtGen package [48] [49] is used, and

JETSET[50] is used for simulation of continuum events. These generators produce

an output in the form of 4-momentum vectors for each simulated particle, and also

include the decay vertices for all particle decays. This output is then used as input into

a GEANT4 [51] simulation, which includes the detector geometry, and the efficiencies of

the various subsystems. This involves modelling how the 4-momentum of a particle

will be transformed by its passage through matter (the detector), and how the kinetic

energy of a particle will be deposited into the various subsystem elements. Thus the

detector simulation will produce an output in the form of hits, and energy deposition

clusters, that can be used as input to reconstruction software, in the same manner as

are data.

The MC events that are reconstructed are stored in exactly the same format as

are data, with the addition that MC events also include “truth” information. This
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includes information from the generator about the properties with which particles were

generated, before the modelling of detector effects.

In order that the detector is accurately modelled during its entire operational pe-

riod the simulation is performed using running conditions and configuration settings

taken from the BABAR detector, which change temporally. A number of working groups

undertake validation tests of the MC [48], comparing it to data, and noting any dis-

crepancies and corrections that should be made.

Toy MC is not a full physics simulation. Instead it uses the distributions expected

to be observed (Gaussian, Breit–Wigner etc) to generate events. Three-body events

are generated as a pair of invariant mass squared values (e.g. m2
13, m2

23) within the

Dalitz plot phase space. An amplitude for such an event is then calculated, from the

lineshapes used, resonances implemented, and background distributions and fractions.

This amplitude will vary depending on the position of the event within the Dalitz

plot, and the values chosen for the magnitudes and phases of each resonant (or non

resonant) contribution.

The generated event is then accepted or rejected based on the comparison of the

calculated amplitude with a maximum amplitude parameter. This parameter can be

tuned for efficiency of generation. If it is lower than the amplitude values that can

arise from generated events, then the toy MC will be biased, and cannot be used. If

it is too high then a very large number of potential events will be rejected, and the

generation is inefficient.

The generation of events continues until a pre-set number of events have been

accepted. Toy MC is significantly faster to generate than Full MC, and thus a wide

range of different models for possible experimental configurations can be tested. Toy

MC is also useful for fit validation and investigation of any potential fit biases.
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4.2 mES and ∆E

Extensive use is made in BABAR analyses of B meson decays of two kinematic variables

that assist in identification of B candidates — they are named the beam energy-

substituted mass (mES) and the energy difference ∆E. These are defined as follows:

mES =

√

s

4
− p∗2B (4.1)

∆E = E∗
B −

√
s

2
(4.2)

where E∗
B is the energy of the B candidate, and p∗B is the momentum of the B candi-

date, both calculated in the centre of mass frame, and
√

s/2 is the beam energy, also

in the centre of mass frame.

For real B events ∆E is expected to peak at 0, and the mES distribution would

be expected to peak around the B mass, mB = 5.279 GeV/c2. There is only a small

correlation between the two variables. Plots of the ∆E-mES plane are useful for demon-

strating the presence of signal events against background events. Such a plot is shown

in section 5.3.

4.3 Track and Cluster Reconstruction

4.3.1 Track Reconstruction

The reconstruction of tracks is performed using information from the two innermost

sub-detectors, the SVT and the DCH. The first track finding algorithm is performed

by the L3T. This is used as an input to the more complex tracking algorithms used

during OPR. There are five parameters used to characterise tracks, listed in section

3.3.1.

Tracks found by the level 3 trigger are refitted in OPR, and more hits in the DCH

that could belong to one of these tracks, can be added at this stage. In addition a

fit is carried out on remaining hits — this is to find tracks which fail to traverse the

width of the DCH, or tracks which do not emanate from the interaction point.
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Following DCH track reconstruction, information from the SVT sub-detector is

used. The extrapolation of DCH tracks into the SVT volume is performed, and any

consistent SVT hits are combined with these tracks. Any tracks from low momentum

particles which did not reach the DCH are found by a final track fit to the remaining

SVT hits.

4.3.2 Energy Cluster Reconstruction

Measurements of the energy of EM particles are made using the EMC. The shower

of particles caused by the passage of a charged particle will deposit energy in many

different detector crystals. The cluster finding algorithms attempt to group the many

individual crystal depositions into clusters of hits deriving from a single shower. The

first stage is to find crystals that have a large amount of energy deposited in them

(over 10 MeV), and then combine these with neighbouring energised crystals. Further

crystals are added until no cluster candidate crystals remain.

An algorithm is then run to find whether a cluster derives from one particle shower,

or could have derived from more than one. Where this is the case, a calculation is made

of the most likely separation of the showers. Energy clusters can then be matched up

with tracks from the SVT and DCH. Any clusters that are not associated with a track

are postulated to have arisen from neutral particles.

4.3.3 Vertexing

Vertexing refers to the process that reconstructs the decay vertex of a particle, from

the properties of the daughter particles. The very short lived particles known as

resonances (such as φ(1020), χc0) do not live long enough to travel a distance that can

be measured, and hence their decay vertices are not distinguishable from the decay

vertices of their parents.

Vertexing is carried out for particles that are stable enough to travel a distance that

can be measured before decay. It is primarily used for B mesons. Charged B mesons
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have a mean lifetime τB± = (1.671±0.018)×10−12 s [1], which gives cτ = 501µm. For

a B meson at rest in the centre of mass frame the relativistic boost in the +z direction

gives βγcτ = 280µm in the lab frame, as an estimate of how far a B meson will travel.

Vertexing is used for other short lived particles, such as D mesons, and for neutral

particles, such as K0
S
, which can travel far enough to decay within the tracking sections

of the detector, but leave no track themselves.

The vertexing algorithms initially estimate the vertex as the primary interaction

point. The algorithms have a convergence radius of a few cm, so this works well for

B decays, but requires refinement for longer lived particles. BABAR uses a vertexing

algorithm called GeoKin [52], which uses a generalised least squares method using the

Lagrange Multiplier technique. GeoKin fits involve both a geometric component, and

a kinematic component, which involves ensuring that tracks arising from the same

vertex, conserve momentum at the vertex.

The reconstructed properties of daughter particles are affected by the detector’s

resolution. For a three body B meson decay, this can lead to events where the calcu-

lated invariant masses of pairs of daughters lie outside the kinematic boundary (section

2.8.1) of the allowed phase space of the Dalitz plot. This can also be caused by final

state radiation (FSR). To ameliorate this effect, and to improve the resolution, the

vertex fit is run again, with the constraint that the invariant masses must sum to the

mass of a B meson.

4.4 Particle Identification

Particle Identification (PID) is carried out after track and cluster reconstruction. It

uses these sources, together with measurements of dE/dx and information from the

DIRC to identify the most likely identity of a particle. BABAR has physics tools groups

that have developed standard selectors for PID [53]. Five types of particle have asso-

ciated PID selectors, these are: muons, electrons, pions, kaons, and protons.
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The selectors of principal interest in this analysis are the kaon selectors, in partic-

ular KaonSMSSelector [54], for which there are five levels of selection, each of which

has a different efficiency for identifying signal, with lower efficiency selections resulting

in higher purity (better signal to background ratio). The five different selection levels

are VeryTight, Tight, NotAPion, Loose, VeryLoose.

The kaon selectors make use of measurements from the DIRC, SVT, DCH, and

dE/dx. The DIRC is a very important tool for separation of pions and kaons. Use is

made of both the observed Cherenkov angle, and of the number of Cherenkov photons

recorded.

In order for Cherenkov radiation to be emitted due to the passage of a charged

particle, the particle must have a minimum momentum given by:

p >
m√

n2 − 1
, (4.3)

where m is the mass of the particle, and n is the refractive index of the material.

The refractive index of the quartz used in the DIRC is n =1.473, which gives a kaon

threshold momentum of p = 0.46 GeV/c.

The expected number of photons emitted by the passage of a particle is stored in a

look-up table. The number is a function of the type of particle, its charge, momentum

and polar angle, and also through which quartz bar it passed.

The momentum of a particle determines which subdetectors provide the best sep-

aration. The following ranges of momenta are used by the KaonSMSSelector, using

the Tight mode.

• SVT: 0.025 < p < 0.7 GeV/c.

• DCH: 0.090 < p < 0.7 GeV/c.

• DIRC: 0.6 < p < 10 GeV/c.

Thus for low momentum particles dE/dx information from the SVT and DCH is the

only source of PID, and for high momentum particles the DIRC is the source of PID.
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For each particle that passes through the detector a likelihood is calculated for it to

be one of five species (e, µ, π, K, p). The pion likelihood, lπ, and the kaon likelihood,

lK , are of principal use in the criteria for selection in this analysis.

The DIRC likelihood is composed of two parts, which are mostly uncorrelated. The

first part is a Gaussian. The expected Cherenkov angle is known for different species,

and the observed probability density function for a given species is a Gaussian centred

on the expected angle. Thus a probability gi can be calculated for each particle

hypothesis. The ratio of probabilities can then be used as a criterion to separate

species. For example gK/gπ > r would be used to separate kaons and pions, where r

is a parameter to be chosen, to give different purities for the selection.

The second part of the likelihood is a Poisson probability distribution, pi, which

is calculated based on the number of photons observed and the number of photons

expected from the look-up tables. The total likelihood is given by the product of these

two likelihoods: li = gipi/
∑

gjpj, where the sum is over all five species.

The likelihood cuts used by KaonSMSSelector in Tight mode are:

• p < 2.7 GeV/c: lK > lπ.

• p > 2.7 GeV/c: lK > 80lπ.

• 0.5 < p < 0.7 GeV/c: lK > 15lπ.

• Proton likelihood cut: lK > lp.

These criteria are optimised to obtain a mis-identification rate below 5% for particle

momenta up to 4 GeV/c. The kaon-pion separation achieved by the DIRC is shown in

figure 3.14.

4.5 Preselection of Events

The first level of selection for the B± → K±K±K∓ candidates uses very general criteria

to select events of interest.
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Firstly any tracks that may be used to make up an event must pass the predeter-

mined GoodTracksLoose criteria. These are:

• The momentum of the track must be no more than 10 GeV/c.

• The transverse component of the momentum, pT , must be at least 0.1 GeV/c.

• The Distance Of Closest Approach (DOCA) of the track to the z axis, d0, in the

x − y plane of the detector must be no greater than 1.5 cm.

• In the direction of the z−axis the DOCA, z0, must not be in excess of 10.0 cm.

• The number of hits in the drift chamber used in the track reconstruction must

be at least 12.

For each reconstructed candidate for B meson status, these conditions are required:

• The number of tracks in the event must be 4 or greater, which is a necessary and

sufficient condition to ensure that the counterpart B̄ of the candidate B meson,

has at least one track arising from its decay.

• As a very basic check, the total energy of the whole event is required to amount

to less than 20 GeV.

• The value of mES is required to be within 0.1 GeV/c2 of mB.

• The value of ∆E must lie between −0.45 GeV and 0.45 GeV.

• The total charge of the candidate B must equal either +1 or −1.

4.6 Further Selection

The NonCharm3BodyUser [55] package is used to process the preselected events, and

produce data files in a format that can be analysed using the Root [56] analysis pro-

gramme. The output from NonCharm3BodyUser is suitable for analysing all of the
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charged decay modes B± → h±h±h∓, where h = π,K. NonCharm3BodyUser uses

many standard BABAR analysis tools to apply a number of selection criteria:

• ∆E and mES are recalculated following the vertexing of possible candidate B

mesons.

• Vertexing of candidates is then performed for a second time, with the B mass

constraint applied (section 4.3.3).

• PID selectors are run for all tracks. The Kaon selector is explained in section

4.4.

• Parameters based on the topology of the events are calculated — these event

shape variables are discussed in section 5.5.

• The magnitude of ∆E must have a maximum value of 0.35 GeV. This require-

ment is fulfilled if it is true for any candidate in the event.

• A cut is placed on the angle between the B candidate’s thrust axis, and the

thrust axis of the rest of the event (section 5.5). The absolute value of the cosine

of this angle must not be greater than 0.95.

4.7 Final Selection

The output data files from NonCharm3BodyUser are then further refined using the

CharmlessFitter [57] package, a RooFit [58] based fitting package, used to apply the

final selection criteria. This takes data that are general for all B± → h±h±h∓ modes,

and produces data files containing only data for use in the B± → K±K±K∓ analysis.

The selection criteria applied by CharmlessFitter are:

• The candidate must have a valid Kinematic fit for a K±K±K∓ track hypothesis.

• All tracks must pass kaon selectors run in Tight mode.
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• All tracks must fail electron selectors in Tight mode.

• A cut is placed on the thrust angle (section 5.5): | cos θT | < 0.9.

• A cut is placed on the Fisher discriminant (section 5.5.1): F > −0.71.

• The value of mES must be less than the energy of the beam,
√

s/2 = 5.29 GeV.

• A width for the ∆E cut is chosen to be approximately 3σ of the ∆E distribution.

The 3σ window corresponds to ±0.06 GeV. A study was made with a control

sample of B+ → D0π+ events, which found a shift of −8.3 MeV, which is applied

to the selection window to give a ∆E cut of:

−0.0683 < ∆E < 0.0517 GeV.

• If there are multiple candidates for a single event, one is chosen at random.

• The background from the D meson decay; B+ → D0K+, D0 → K+K− is vetoed

by rejecting all events in the invariant mass range:

1.80 < mK+K− < 1.90 GeV/c2.

The data files that are produced by CharmlessFitter are then used for the Dalitz

plot analysis described in chapter 5. During the analysis, the dataset is divided into

two. Events which were reconstructed as three kaon tracks with a total charge of +1

are termed the B+ sample. Those where the combined charge is −1 form the B−

sample.
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Chapter 5

Analysis

5.1 Laura++

Laura++ [59] [60] (Likelihood Analysis Unbinned Reconstruction of Amplitudes) is a

software package designed for the full analysis of Dalitz plots. It is general to any

mother and daughter particles of a three body decay, though it was designed partic-

ularly for the decays of B mesons into kaons and pions (both charged and neutral).

Laura++ is used to both fit sets of data or MC events, and also to generate sets of

toy MC events. The Laura++ programme is implemented in the C++ programming

language, incorporating classes from the Root analysis framework [56] class library.

The fitting aspect is performed using TMinuit, the Root interface to the Minuit [61]

[62] numerical fitting routine. It is carried out by means of a maximum likelihood fit,

whereby the value of the following likelihood function is maximised (the actual fit-

ter minimises the negative natural logarithm of this value to give the same effect) by

varying the values of the free parameters, until the maximum is reached. The values

of these parameters at the maximum value are then taken to be the values that best

represent the data sample.
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The likelihood function is given by:

Ln(x, y) = (1 − fqq̄ − fBB̄)
|∑N

i=1 aigi(x, y)|2ε(x, y)
∫ ∫

DP
|∑N

i=1 aigi(x, y)|2ε(x, y) dxdy
(5.1)

+ fqq̄
Q(x, y)

∫ ∫

DP
Q(x, y) dxdy

+ fBB̄

B(x, y)
∫ ∫

DP
B(x, y) dxdy

.

The three terms represent the signal contributions to the Dalitz plot, the continuum

background, and the backgrounds arising from B related decays.

• The variables x and y refer to the position of the event in the Dalitz plane, i.e.

x = m2
13 and y = m2

23, as defined in section 2.8. The DP appearing as the

integration limit indicates that the integration in these variables is to be carried

out over the entire Dalitz plot space.

• ε(x, y) is the efficiency of reconstruction of events, which is dependent on the

Dalitz plot position.

• N is the number of contributions that are being fitted for in the amplitude fit,

which includes both resonant and non-resonant components.

• ai is the complex coefficient for each contribution. This corresponds to two fitted

parameters — the amplitude and the phase.

• gi refers to the dynamics associated with each of the contributions, including the

choice of lineshape, and the angular distribution, due to the spin of the decaying

resonance.

The continuum background is described by:

• Q(x, y) is the amount of continuum background at the Dalitz plot location of

the event, calculated from a lookup histogram.

• fqq̄ is the fraction of continuum background that is expected to populate the

signal box. The signal box is defined in section 5.3.
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In a similar way the BB background is detailed by:

• B(x, y) is the amount of this background, calculated from its respective his-

togram.

• fBB̄ is the fraction of this background in the signal box.

The Laura++ fitter estimates the values of the complex coefficient ai = cie
iθi ,

where ci is the magnitude for resonance i, and θi is the phase for the same resonance.

Only relative phases can be measured, and similarly without an absolute scale for

magnitude, the fitted magnitudes only have meaning relative to another magnitude.

Since only relative quantities can be measured, one phase and one magnitude are

arbitrary, and can be used for comparison with the other parameters. Typically the

reference magnitude is set to 1, and the reference phase to 0.

The magnitude is convention dependent, and thus not normally comparable be-

tween different analyses using different conventions. In order to allow comparison of

results, amplitudes are not shown in the final results, but instead fit fractions are

presented. The fit fraction is defined as:

Fi =

∫ ∫

DP
|aigi(x, y)|2dxdy

∫ ∫

DP
|∑j ajgj(x, y)|2dxdy

, (5.2)

where the terms are defined as before. Due to interference between overlapping reso-

nances, the sum of all fit fractions need not sum to 100%.

The fit fraction for each resonance can be multiplied by the inclusive branching

fraction for B± → K±K±K∓ to give the partial branching fraction for that resonant

mode. These are presented in section 7.1.

5.2 The Dalitz Plot and Projection Plots

Events which lie within the signal box, defined in section 5.3, are used to form the

Dalitz plot, and as input to the Laura++ fitting package. Figure 5.1 shows all the

signal box events plotted in the Dalitz plot.
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Figure 5.1: The Dalitz plot for B± → K±K±K∓, comprising 2067 events.
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Figure 5.2: Projections of the three kaon mass pairs — a) K+K− lighter mass combi-

nation; b) K+K− higher mass combination; c) like signed kaon combination. In each

plot the red line shows events from the B+ sample, and the dashed black line shows

events from the B− sample.
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Figure 5.2 shows the projections of the data in terms of the invariant masses of the

three possible combinations of pairs of kaons — a) shows the lower mass combination

of the unlike-signed kaons, b) shows the higher mass combination, and finally c) shows

the like-signed kaon combination. For each of these plots the data are split into those

events from the B+ sample, shown as a solid red line, and those from the B− sample,

shown as a dashed black line. It can be seen that the gross structures in the two

samples are consistent, and that differences arise between the samples as a result of

statistical fluctuations.

5.3 Definition of Signal Box and Sideband

The stored B± → K±K±K∓ data have loose restrictions placed on mES and ∆E. The

distribution of these events in the ∆E−mES plane is shown in figure 5.3. Further cuts

on these variables are used to define a signal box, a sideband, and a signal strip.

The signal box is the region from which events are selected to be used in the

final Dalitz plot fit. The sideband is used to characterise the shape of the continuum

background. The signal strip comprises both the signal box and sideband, and the

connecting region — it is used to estimate the fraction of continuum background that

exists in the signal box, by extrapolation from the sideband.

These regions are defined by the following mES cuts:

• Signal box — 5.271 < mES < 5.287 GeV/c2.

• Sideband — 5.200 < mES < 5.260 GeV/c2.

• Signal Strip — 5.200 < mES < 5.287 GeV/c2.

The size of the signal box is approximately chosen to cover a range of ±3σ in

both mES and ∆E. Figure 5.3 shows the distribution of the selected data events for

B± → K±K±K∓. In the figure the signal box is shown bounded by a blue solid line,

and the sideband is shown bounded by a dashed red line. Only events lying within

the signal strip are plotted.
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Figure 5.3: Distribution of events in the signal strip in the ∆E − mES plane. Solid

blue line — signal box; dashed red line — sideband.

95



)
2

 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )2
E

ve
nt

s 
/ (

 0
.0

00
9 

G
eV

/c

0

20

40

60

80

100

120

140

)
2

 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )2
E

ve
nt

s 
/ (

 0
.0

00
9 

G
eV

/c

0

20

40

60

80

100

120

140

)
2

 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )2
E

ve
nt

s 
/ (

 0
.0

00
9 

G
eV

/c

0

20

40

60

80

100

120

140

)
2

 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )2
E

ve
nt

s 
/ (

 0
.0

00
9 

G
eV

/c

0

20

40

60

80

100

120

140

Figure 5.4: The projection in mES for signal strip events. The data are shown as

solid points, the fit is shown as a blue line, and the solid red and green areas show

the continuum and B-related backgrounds respectively. The two charge samples are

shown separately: left hand subfigure — the B+ sample; right hand subfigure — the

B− sample.

5.4 Fitting mES distribution to obtain Background

fractions

The background fraction arising from B mesons is calculated from the number of events

selected in a MC study, explained in section 5.6. This B background is included as a

fixed component in the continuum background fit.

In order to calculate the fraction of continuum background, a fit is carried out

to the distribution of all events in the mES projection of the signal strip. The fit is

performed separately for the B+ and B− samples. These projections are shown in

figure 5.4 with the fit results overlaid.

In the fit the signal contribution is modelled as a double Gaussian (the sum of two

Gaussians, with a common mean) — signal MC is used to determine the mean and

widths of this distribution. The background is modelled by an Argus function [63]:

f(x) = x

√

1 −
(

x

ζ

)2

e
−χ

 

r

1−(x
ζ )

2

!

, (5.3)
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where χ is a shape parameter, and ζ is the endpoint of the function, which in this fit

is fixed to be the value of the beam energy (
√

s/2). In the fit the mES value is used as

the x variable from the equation. The B-related background is modelled as the sum of

an Argus function and a Gaussian function, the parameters of which are determined

from the B background MC study, and these are kept fixed during the fit procedure.

During the fit the mean of the signal Gaussian, the Argus shape parameter of the

continuum background, and the signal and continuum fractions are allowed to vary.

The continuum fraction is then used in the Dalitz plot fit. The signal fraction is used

to calculate the signal yield, which is used to calculate the overall branching fraction.

Table 5.1: Fractions of signal, continuum and B-related backgrounds calculated from

fit to the mES distribution.

Event type B+ sample B− sample

Signal fraction (%) 72 ± 4 74 ± 4

qq fraction (%) 24 ± 2 23 ± 2

BB fraction (%) 3.3 ± 0.4 3.0 ± 0.3

Table 5.1 gives the fractions of signal, continuum, and B-related backgrounds that

are calculated from the fit to the mES distribution, and the MC study.

5.5 Continuum Background

Continuum events are the dominant source of background in this analysis. It consists

of those events arising from e+e− → qq̄ interactions where q = u, d, s, c. The large

cross section (as stated in section 1.1) for these light quark events means they make

up the vast majority of interactions occurring within the detector. Although they

are sufficiently different to B decays that most can be cut out during event selection,

enough remain to leave a sizeable background.
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The most important difference between continuum and signal events is the shape

of the event. For BB̄ events the B mesons are created almost at rest in the centre of

mass frame. The directions of the decay products cover the entire angular space and

these events are called spherical events. For light quark continuum events the event

topology will not be spherical, but will instead follow a (1+cos2 θ) distribution, where

the maxima occur along the beam line. In addition, as only a small fraction of the

available energy is used in the creation of the new particles, the event will be observed

as collimated jets.

In order to cut out most of these continuum events, use is made of topological

variables. The B mass constraint (section 4.3.3) applied to continuum events makes

them appear more signal like, and so the values of these variables from a fit without

the mass constraint are used. In some of the definitions used a property is summed

over all of the particles in an event, except for the B meson. This property is described

as belonging to the Rest Of the Event (ROE).

The principal variables used are:

• Fisher discriminant, F ,

• cos θT .

Here cos θT is the cosine of the thrust angle of the event. The thrust angle, θT , is

the angle that exists between the thrust axis of the candidate B meson, and the thrust

axis of ROE, which is calculated in the centre of mass frame. The thrust axis is the

axis along which total longitudinal momentum is maximised.

The continuum event distribution peaks very strongly at +1 and −1, whereas the

distribution for signal events is approximately uniform across the whole domain. The

distributions of cos θT for signal MC (solid blue line) and off-resonance data (dashed

red line) are shown in Figure 5.5. Note this figure shows the distributions after a

preliminary cut of 0.95 has been placed on the value (section 4.6). This variable is

required to have an absolute value of no more than 0.9.
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Figure 5.5: Distributions of cos θT for B± → K±K±K∓ MC (solid blue line) and off-

resonance data (dashed red line).

5.5.1 Fisher Discriminant, F

A Fisher discriminant is a linear combination of a number of variables. It is used in

cases where the individual variables have some discriminatory power, but the combined

variable has a greater ability to discriminate between signal and continuum events.

Rather than simply cutting on each variable, using the combination of variables can

take advantage of any extra information, such as that arising from correlations between

variables.

The definition of the Fisher Discriminant, F is:

F =
∑

i

αixi = ~αT~x, (5.4)

where xi are the chosen event variables, and αi are coefficients to be chosen.

The Fisher discriminant used in this analysis is composed of five separate variables.

These are:
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• Zeroth degree Legendre polynomial:

L0 =
ROE
∑

i

pi (5.5)

• Second degree Legendre polynomial:

L2 =
ROE
∑

i

pi ×
1

2
(3 cos2 θi − 1) (5.6)

• TF lv, the flavour tagging algorithm output. This is primarily used to distinguish

between B0 and B0 mesons, and varies between 0 and 1, with higher values

indicating better quality tags. Though this analysis does not use neutral B

mesons, the algorithm is likely to give higher values for charged B meson events,

than for continuum events.

• cos θBmom, the angle between the z-axis and the momentum of the B candidate.

• cos θBthr, the angle between the z-axis and the thrust axis of the B candidate.

When summing over ROE, for each track or cluster, pi is the momentum, and θi is the

polar angle.

In order to determine the values of the coefficients αi samples of phase space signal

Monte Carlo and off-peak data are used. The signal-background separation, D, is

defined as:

D =
(F̄S − F̄B)2

σ2
S + σ2

B

(5.7)

where F̄S is the mean of the Fisher variable for signal, and σ2
S is its variance. There

are equivalent expressions for background contributions upon the substitution S → B.

These can be written in terms of the means, µ, of the component variables, xi, and a

covariance matrix, ES, of the x variable distributions:

F̄S = ~αT ~µS, (5.8)

σ2
S = ~αT ES~α. (5.9)
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Then by defining W = ES + EB and ~d = ~µS − ~µB the parameter D can be rewritten

as:

D =
~αT ~d~dT ~α

~αT W~α
(5.10)

The optimal values of αi can be determined by differentiating D with respect to αi,

and setting the derivative to zero. This yields:

~α = W−1~d (5.11)

Figure 5.6 shows the distributions of the Fisher Discriminant for B± → K±K±K∓

MC, and for off-resonance data.
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Figure 5.6: Distributions of the Fisher Discriminant, F , for B± → K±K±K∓ MC

(solid blue line) and off-resonance data (dashed red line).

The values of the cuts applied are optimised by maximising the value of S/
√

S + B,

where S and B refer to the signal and background components respectively. The

optimisation process follows the procedure outlined in [64]. Figure 5.7 shows the
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Figure 5.7: Optimisation of the Fisher Discriminant cut, by maximising S/
√

S + B.

variation in S/
√

S + B as a function of the value of the Fisher Discriminant, that is

used to decide the cut value.

5.5.2 Distribution of Continuum Background

The distribution of continuum backgrounds within the Dalitz plot space is determined

using data from the sideband (defined in section 5.3), and data taken off-peak. The off-

peak data should have no e+e− → Υ (4S) → BB events in it. The sideband data will

have these types of event, so the expected distribution of BB events in the sideband is
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Figure 5.8: Dalitz plot distributions for continuum background events, from off-

resonance and sideband data. The left hand plot shows the B+ sample, and the

right hand plot shows the B− sample.

calculated, using the same method as detailed in section 5.6. This is then subtracted

from the sideband data. The two data samples (off-resonance and BB-subtracted

sideband) have consistent distributions, and they are added together to give a larger

statistical sample. The distributions of these events in the Dalitz plot is shown in

figure 5.8 — the distributions for the B+ and B− samples are shown separately in the

left and right hand plots respectively.

It can be noted that most of the continuum background is manifest around the

edges of the Dalitz plot space and the centre of the plot is very sparsely populated.

In addition it was expected that there should be a contribution from the φ(1020)

resonance occurring within the continuum. However the width of this resonance is a

lot less than the width of the bins used for the continuum histogram. Therefore the

φ is not reproduced in the background shape. In order that the resonance should be

correctly modelled use of a much finer binning was studied. The region including the

φ is given a finer binning, whilst the rest of the plot uses the standard binning. This

involves the φ region having a binning which is equivalent to a 5000 × 5000 binning

across the entire plot.
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Square Dalitz Plot

Even a binning as fine as this does not perfectly represent the resonance. In addition

it is inefficient in the use of histograms. Instead a technique was applied using an

alternative parametrisation [65] which had been tried in other BABAR analyses, here

referred to as a square Dalitz plot (though since this parametrisation does not have a

distribution that is uniform in phase space, this cannot truly be described as a Dalitz

plot).

In the square Dalitz plot parametrisation the histogram is plotted in terms of two

variables m′ and θ′. These are defined as such:

m′ =
1

π
cos−1

(

2
m++ − m++[min]

m++[max] − m++[min]
− 1

)

θ′ =
1

π
θ++. (5.12)

Both of these variables can take values only between 0 and 1. m++ is the invariant

mass value between the two Kaons of identical charge, which can take maximum

and minimum values of m++[max] = mB −mK and m++[min] = 2mK , and θ++ is the

helicity angle between one of the identically charged Kaons and the B momentum when

measured in the rest frame of the identically charged Kaon pair. The transformation

between the original and the square Dalitz plot coordinates can be defined via the

Jacobian, J , as:

dm2
13dm2

23 = |J |dm′dθ′. (5.13)

The determinant, |J |, can then be written as:

|J | = 4|p∗1||p∗2|m++
∂m++

∂m′

∂cosθ++

∂θ′
, (5.14)

where p∗1 and p∗2 are the momenta of the two tracks of identical charge measured in

the rest frame of the identically charged Kaon pair, and:

∂m++

∂m′
= −π

2
sin(πm′)(m++[max] − m++[min]) (5.15)

∂cosθ++

∂θ′
= −πsin(πθ′). (5.16)
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Figure 5.9: Square Dalitz plot distributions for qq background events. Left: B+, right:

B−. The finely binned regions at the top and bottom of the plots contain the space

occupied by the φ(1020) resonance.

The effect of this transformation is to expand the edges of the plot to take up a greater

area, and to condense the centre of the plot to take up a lesser area. Thus the region of

the plot where most of the continuum background occurs receives greater prominence

in this parametrisation. It should also be noted that any resonant structure present in

the plot will no longer occupy a straight line in the square Dalitz plot, but will instead

form a curve. Further examples of this behaviour can be seen in the BB background

histograms in section 5.6.

The φ(1020) Resonance in the Square Plot

Whilst this parametrisation does expand the edges of the Dalitz plot significantly, it

still does not perfectly model the φ resonance in the continuum. Using a finer binning

in the region that the φ occupies in the square plot was found to be more effective,

and did not require the extreme binning regimes tested with the original Dalitz plot

parametrisation. Figure 5.9 shows the distribution of continuum events in the square

Dalitz plot space, where the two small curves at the top and bottom of the plot are

the regions occupied by the φ(1020) resonance. This histogram modelled the φ(1020)

in the continuum background well.
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5.6 Backgrounds Arising from Decays of B mesons

to Final States other than K±K±K∓

In addition to the continuum backgrounds arising from the production of light quarks,

there is a second source of background that arises from the decays of B mesons to

many final states that are different from the signal mode B± → K±K±K∓. These

events share the spherical topology of signal events, but are likely to be shifted in mES

and ∆E from true signal events.

One source of B related backgrounds is from decays of B mesons to four-body final

states, where one of the four daughter particles has not been reconstructed and the

event is thus mis-reconstructed as a three-body decay. In addition there are decays

where one of the particles (often a pion) is misidentified as a kaon — such as the decay

B± → K±K∓π± being misidentified as B± → K±K±K∓.

In order to study the effects of these backgrounds, the B± → K±K±K∓ selection

criteria are applied to generic MC events. These are MC events that have been pro-

duced to include all known decay modes of the B meson. All modes which have a

non-negligible proportion of events reconstructed are considered for study. For each

of these modes, a sample of exclusive MC is reconstructed to determine the expected

numbers of events in the signal region and the sideband/signal strip. These MC events

can also be plotted in the Dalitz plane to show the distribution of these events. Once

all samples have been considered, the Dalitz distributions are summed together, such

that each event is weighted to give the expected number of events in the signal box.

All the decay modes that were found to make a contribution to this background

source are listed in tables 5.2 and 5.3. The first of these tables details those modes

arising from charged B meson decays, and the second details those modes arising

from neutral B meson decays, and includes the totals from all modes. The Dalitz

distribution of the sum of all these modes can be seen in figure 5.10. The most

prominent feature visible is the background due to the J/ψ, at m2
K+K− = 9.6 GeV2/c4,

where the J/ψ decays to K+K−.
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Figure 5.10: Dalitz plot distributions for BB background events. Left: B+, right: B−.
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right: B−.
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5.6.1 B backgrounds in the Square Dalitz Plot Parametrisa-

tion

As was the case with the continuum background, the background arising from B decays

can also be plotted in the square Dalitz plot space. The centre of the conventional

Dalitz plot is quite void of content, with the exception of the J/ψ, so this formalism

is also appropriate here.

The square plots are shown in figure 5.11. The transformation of linear bands to

curved bands can again be noted.
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Table 5.2: B+B− background modes — detailing branching fractions, efficiencies and number of expected events.

Mode BF Efficiency (%) Number of Expected Events

(10−6) Signal Strip Signal Box Signal Strip Signal Box

B+ → K+K−π+ < 6.3 0.4280 ± 0.0057 0.2384 ± 0.0043 6.3 ± 6.3 3.5 ± 3.5

B+ → K+π−π+ 4.9 ± 1.5 0.0134 ± 0.0010 0.00285 ± 0.00047 0.152 ± 0.048 0.032 ± 0.011

B+ → π+π−π+ 10.9 ± 3.7 0.00095 ± 0.00021 0.00072 ± 0.00018 0.0239 ± 0.0097 0.0182 ± 0.0077

B+ → K∗0
0 (1430)π+; K∗0

0 (1430) → K+π− 32.3 ± 3.1 0.0124 ± 0.0026 0.0051 ± 0.0017 0.93 ± 0.22 0.38 ± 0.13

B+ → D0K+; D0 → K+K− 1.4 ± 0.2 0.581 ± 0.015 0.1776 ± 0.0084 1.94 ± 0.33 0.59 ± 0.10

B+ → D0K+; D0 → K+π− 14.1 ± 2.3 0.448 ± 0.011 0.1669 ± 0.0068 14.6 ± 4.2 5.4 ± 1.6

B+ → D0K+; D0 → K+π−π0 48.1 ± 8.3 0.2063 ± 0.0090 0.0433 ± 0.0041 23.0 ± 4.1 4.82 ± 0.96

B+ → D0π+; D0 → K+K− 20.5 ± 1.4 0.0150 ± 0.0087 0.0 ± 0.0 0.67 ± 0.39 0.0 ± 0.0

B+ → D0π+; D0 → K+π− 189.2 ± 11.9 0.0139 ± 0.0025 0.0028 ± 0.0011 6.1 ± 1.2 1.22 ± 0.50

B+ → D0π+; D0 → K+π−π0 647.4 ± 54.8 0.0068 ± 0.0017 0.00161 ± 0.00080 10.2 ± 2.6 2.4 ± 1.2

B+ → D∗0K+; D∗0 → D0π0; D0 → K+K− 0.87 ± 0.25 0.657 ± 0.047 0.103 ± 0.019 1.32 ± 0.39 0.208 ± 0.070

B+ → D∗0K+; D∗0 → D0π0; D0 → K+π− 8.5 ± 3.1 0.435 ± 0.012 0.1361 ± 0.0069 8.5 ± 3.2 2.67 ± 0.99

B+ → D∗0K+; D∗0 → D0π0; D0 → K+π−π0 29.0 ± 8.4 0.1142 ± 0.0097 0.0142 ± 0.0034 7.7 ± 2.3 0.95 ± 0.36

B+ → D∗0K+; D∗0 → D0γ; D0 → K+K− 0.53 ± 0.16 0.626 ± 0.016 0.1328 ± 0.0071 0.81 ± 0.24 0.164 ± 0.049

B+ → D∗0K+; D∗0 → D0γ; D0 → K+π− 5.2 ± 1.9 0.462 ± 0.013 0.1430 ± 0.0074 5.6 ± 2.1 1.73 ± 0.65

B+ → D∗0K+; D∗0 → D0γ; D0 → K+π−π0 17.8 ± 5.3 0.076 ± 0.014 0.0048 ± 0.0018 3.1 ± 1.1 0.39 ± 0.23

B+ → D∗0π+; D∗0 → D0π0; D0 → K+K− 11.1 ± 1.2 0.0306 ± 0.0046 0.0034 ± 0.0012 0.79 ± 0.14 0.122 ± 0.048

B+ → D∗0π+; D∗0 → D0π0; D0 → K+π− 108.2 ± 11.0 0.0159 ± 0.0026 0.00200 ± 0.00076 4.00 ± 0.77 0.86 ± 0.32

B+ → D∗0π+; D∗0 → D0π0; D0 → K+π−π0 370.2 ± 43.1 0.0051 ± 0.0012 0.0034 ± 0.0015 4.4 ± 1.2 1.72 ± 0.68

B+ → D∗0π+; D∗0 → D0γ; D0 → K+K− 6.82 ± 0.82 0.0224 ± 0.0039 0.0062 ± 0.0018 0.355 ± 0.075 0.054 ± 0.025

B+ → D∗0π+; D∗0 → D0γ; D0 → K+π− 66.6 ± 7.9 0.0182 ± 0.0031 0.00167 ± 0.00084 2.81 ± 0.58 0.96 ± 0.30

B+ → D∗0π+; D∗0 → D0γ; D0 → K+π−π0 227.8 ± 29.8 0.0050 ± 0.0014 0.0017 ± 0.0017 2.65 ± 0.84 0.88 ± 0.46

B+ → J/ψK+; J/ψ → K+K− 0.24 ± 0.03 19.987 ± 0.074 19.797 ± 0.074 11.0 ± 1.5 10.9 ± 1.5

B+ → K0
S
K+; K0

S
→ π+π− 0.41 ± 0.41 0.0154 ± 0.0029 0.0044 ± 0.0016 0.015 ± 0.015 0.0042 ± 0.0042
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Table 5.3: B0B0 background modes, detailing branching fractions, efficiencies and number of expected events. The

totals from both B+B− and B0B0 are also reported.

Mode BF Efficiency (%) Number of Expected Events

(10−6) Signal Strip Signal Box Signal Strip Signal Box

B0 → D−K+ 200 ± 60 0.0915 ± 0.0061 0.0199 ± 0.0028 42 ± 13 9.2 ± 3.0

B0 → D∗−K+ 200 ± 50 0.0992 ± 0.0063 0.0247 ± 0.0032 46 ± 12 11.4 ± 3.2

B0 → D∗−π+; D∗− → D0π−; D0 → X 1868 ± 142 0.00154 ± 0.00019 0.000379 ± 0.000095 6.66 ± 0.97 1.63 ± 0.43

B0 → D∗−ρ+; D∗− → D0π−; D0 → X 4942 ± 102 0.00019 ± 0.00013 0.0 ± 0.0 2.0 ± 1.5 0.0 ± 0.0

B0 → K+K−K0
S

12.4 ± 1.2 0.2136 ± 0.0098 0.0541 ± 0.0050 6.2 ± 1.3 1.57 ± 0.37

B0 → K+K−π0 19.0 ± 9.5 0.194 ± 0.012 0.0333 ± 0.0051 8.5 ± 4.3 1.47 ± 0.77

B0 → K+π−π0 36.6 ± 5.2 0.00707 ± 0.00055 0.00035 ± 0.00012 0.599 ± 0.098 0.029 ± 0.011

B0 → K+π− 18.2 ± 0.8 0.00043 ± 0.00015 0.000053 ± 0.000053 0.0180 ± 0.0064 0.0023 ± 0.0023

Total B+B− backgrounds 116 ± 10 40.0 ± 3.1

Total B0B0 backgrounds 112 ± 18 25.4 ± 4.5

Total B backgrounds 229 ± 21 65.4 ± 6.5
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5.7 sPlots

The technique known as sPlots [66] is a useful tool for examining signal and back-

ground distributions separately. It can be used to plot the distribution of a species

(e.g. signal or background) in a specified discriminating variable. It is an important

feature of the sPlot technique that the variable plotted cannot be one of those used

in the fit. When this would be the case the fit has to be repeated with said variable

excluded before sPlots can be produced.

In this analysis the sPlots are made during the mES fit, and used to plot the

distributions in terms of the Dalitz plot invariant mass combinations, which are not

used as discriminating variables at this stage of the analysis.

The sPlot method gives each event used a weight, called an sWeight. A different

sWeight is given to each species, such that the sum of all the sWeights across all the

species gives the total number of events used. The sWeights are calculated from the

signal and background probability density functions used in the fit and their correlation

matrix. This is discussed in detail in [66].

Figures 5.12 and 5.13 show the sPlots for the B+ and B− samples, respectively.

Sub-figures a), b), and c) show the sPlots of the three invariant mass combinations,

whereas sub-figure d) shows the sPlot for the Dalitz plot, as a binned 2D histogram.

For the invariant mass projections, a comparison is provided with the background

subtracted distributions. In these projections, the final signal box data sample is

taken and has the background contribution (taken from the background distribution

histograms normalised to the calculated number of background events in the signal

box) subtracted from it bin by bin to form the histograms shown.

The sPlots are used as an indicator of how well the modelling of the background

(i.e. the background histogram distributions, and calculated fractions) is representing

the actual backgrounds. The sPlots and the background subtracted projections are
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Figure 5.12: Background subtracted (red histogram) and sPlot (black points) compar-

ison for B+ data. Sub-figure a) shows the K+K− mass spectrum for the lower mass

combination, b) shows the K+K− higher mass combination, and c) shows the K+K+

spectrum. The sPlot Dalitz plot distribution is shown in d).

in very good agreement, which is a useful validation of the background model.
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Figure 5.13: Background subtracted (red histogram) and sPlot (black points) compar-

ison for B− data. Sub-figure a) shows the K+K− mass spectrum for the lower mass

combination, b) shows the K+K− higher mass combination, and c) shows the K−K−

spectrum. The sPlot Dalitz plot distribution is shown in d).
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5.8 Dalitz Plot Efficiency

It is important when fitting the data to take into account the efficiency of recon-

struction of the individual events. Of all the actual events that take place within the

BABAR detector not all will be reconstructed, and appear in the final data sample. The

reconstruction efficiency, ε, can be described as:

ε =
Nr

Nt

, (5.17)

where Nt is the total number of events that are used in the calculation of the efficiency;

and Nr is the total number that make up the final sample of events. This value is

typically calculated using MC.

Further, it is not expected that the efficiency should be uniform across the whole

of phase space allowed by the Dalitz plot, and therefore it is a function of the Dalitz

plot coordinates — i.e. ε = ε(x, y).

Variation of reconstruction efficiency across the plot is studied using a large sample

of Monte Carlo events. A sample of MC was generated to simulate B± → K±K±K∓

events. They are uniformly generated in phase space and they will therefore uniformly

populate the Dalitz plot space, due to the kinematics of a Dalitz plot (section 2.8).

The sample consists of a total of 1.314 × 106 MC events.

This sample is then subjected to the same selection criteria as the data. However

the veto (section 4.7) in the D region (1.8 GeV/c2 to 1.9 GeV/c2) is not applied to

the MC, to ensure that the efficiency variation near the veto region is not artificially

modelled incorrectly.

In addition Monte Carlo events have truth information stored with them. The

truth information contains the properties of the event from the MC generator, before

any detector effects are modelled. This allows for the distinction between simulated

events that have been correctly reconstructed, and those that have not (explained in

more detail in section 5.9). Only events that have been correctly reconstructed are

selected. The number of events passing these reconstruction criteria is 260,191.

In order to present the efficiency as a function of Dalitz plot position, the events
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are used to populate two dimensional histograms. The whole MC sample is used

to produce a denominator histogram, and the reconstructed events are placed into

a numerator histogram. The histograms have a binning of 75 × 75 bins. Choice of

binning is discussed more in section 5.10.

The quotient of these two histograms is taken on a bin by bin basis. The resulting

histogram shows the variation in the efficiency across the whole Dalitz plot. This is

shown in Figure 5.14, in the left hand sub-figure.

One additional factor has to be taken into account — some bins cross the kinematic

boundary of the Dalitz plot. When this is the case it can occur that only a very

small fraction of the bin includes the allowed phase space, and the bin may be very

underpopulated, as compared to bins in the centre of the plot. Thus the effect of

statistical fluctuations on these bins is greatly magnified. This could lead to bins with

very small or very big (sometimes unphysical) efficiency values, where such variations

are spurious.

In order to ameliorate this effect the histograms used to make the efficiency plot

were scanned for the contents of each bin. In the case where a bin was underpopulated,

then the bin was merged with a neighbouring bin. The efficiency of the “double bin”

k formed from bins i and j is given by:

εk =
Ni + Nj

Di + Dj

(5.18)

where N is the number of events in the bin i or j of the numerator histogram, and D

is the number of events in its counterpart in the denominator histogram.

Additionally the bin error on each of the bins that were combined is set to the

error on the combined bin. This is relevant for the study of systematic errors.

The effect of this slight rebinning can be seen in figure 5.14, where the left hand

plot shows the efficiency histogram with no low statistics correction, and the right

hand plot shows the same histogram with the correction routine applied.

Figure 5.15 shows how the efficiency varies for the B+ and B− samples. The

efficiency for the B+ sample is shown in the left hand plot, and the efficiency of the
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Figure 5.14: Efficiency variation across the Dalitz plot. The right hand plot has been

corrected for low statistics bins.

B− sample is shown in the right hand plot. There are no significant differences between

the two charges, and so the combined charge histogram is used in the amplitude fit.

5.9 Self Cross Feed — TrueB or !TrueB?

Self Cross Feed (SCF) is the term applied to MC events that pass all the reconstruction

selection criteria, but are incorrectly reconstructed. This can happen when two kaons

arising from the decay of one B meson are combined with one kaon which is a daughter

from the decay of the other B meson, to make a three kaon candidate, which is assumed

to arise from a single B meson. If this is the case it is recorded in the MC file.

It is expected that the amount of SCF is small. This is investigated using a MC

study. The same MC event sample is used as was used in the efficiency study, and

this is subjected to exactly the same selection criteria, except that events which are

incorrectly reconstructed are selected. (The variable in the stored file used to identify
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Figure 5.15: Efficiency variation across the Dalitz plot; the left hand plot shows the

efficiency for the B+ sample; the right hand plot shows the efficiency for the B−

sample.

which MC events are correctly reconstructed is named TrueB).

Of the 1.314×106 MC events, there were a total of 260, 191 that passed the selection

criteria — out of these 1, 619 were found to be SCF. This is 0.6% of the total number of

events passing, and so represents a very small fraction. SCF is therefore not included

as a separate component in the Likelihood fit.

It can be noted that if the selection criteria are widened to the whole signal strip,

as opposed to the signal box (these are defined in section 5.3), then the number of SCF

events rises to 6,255, out of a total of 265,887 events that pass these criteria — this

SCF sample is thus 2.3% of the signal strip events. A lot of self cross feed is therefore

removed by the mES cut that defines the signal box.

In figure 5.16 the SCF efficiency is compared with the efficiency for truth matched

events. These two plots have the same scale and same normalisation — the normali-

sation being the denominator histogram described in section 5.8. Thus a comparison
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between corresponding bins in each histogram, also compares the raw number of events

of SCF and truth-matched (non-SCF) events. It can be seen that the SCF is a very

small fraction of the truth-matched events, even in the corners where the SCF is at

its most prominent.

The distribution of SCF in the B+ and B− MC samples can be seen in figure

5.17. SCF is most prominent in the corners of the Dalitz plot, where there is one very

low momentum Kaon, which could be less well reconstructed. It is possible that low

momentum Kaons arising from the rest of the event could be included in the event

reconstruction.
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Figure 5.16: Dalitz distribution of SCF events (left), compared with truth-matched

events (right). The colour scale shows the efficiency of an event being reconstructed.

The scale has been set to be the same in the two diagrams, to allow comparison - the

normalisation for both histograms is the total number of MC events used.
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Figure 5.17: Dalitz plot distribution of SCF events; the left hand plot shows B+ events,

the right hand plot shows B− events. The colour scale shows the efficiency for events

to be reconstructed as SCF. The scale has been set to a lower level than that used in

figure 5.16 to enhance the structure shown in the SCF distribution.

5.10 Migration

Migration of events is the movement of the position of events within the Dalitz plot

space during the reconstruction process. This effect is studied using a MC event sam-

ple, where both the reconstructed Dalitz plot coordinates, and the true coordinates,

where the simulated event was generated, are available. The distance moved is defined

as:

dmigration =

√

(m
2(truth)
13 − m

2(reco)
13 )

2
+ (m

2(truth)
23 − m

2(reco)
23 )

2
(5.19)

The effect of Dalitz plot migration is two-fold. Firstly in terms of the underlying

physics — if events move a long way during reconstruction then they will move in

and out of the resonance bands, and more particularly the interference regions. This

will diminish the ability of the fit to distinguish resonances, and fit the phases of the

resonances.
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Secondly when histograms are used in the fit to represent efficiency and back-

grounds, each bin should reflect the properties of events that lie within it. If the

migration is large, or the bin size is too small, then this may not be the case. The

bin size should ideally be chosen so that it is larger than the migration effect, so that

there is no significant bin to bin migration.

Figure 5.18: Migration of events within the Dalitz plot; the left hand plot shows inflow,

the right hand plot shows outflow. The colour scale gives dmigration in units of GeV2/c4.

To study the migration effect the sample of 1.314×106 phase space B± → K±K±K∓

MC events is used. For each event the quantity dmigration is calculated. There are two

types of histogram plotted with this information:

• Inflow: In these histograms the migration distance is plotted at the coordinates

where the event was reconstructed.

• Outflow: In these histograms the migration distance is plotted at the coordi-

nates where the event was generated.

In both cases the total migration distance in each bin is divided by the number of

events in that bin in order to give the actual quantity plotted in the bin as the mean
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Figure 5.19: Migration of self cross feed events within the Dalitz plot; the left hand

plot shows inflow, the right hand plot shows outflow. The colour scale gives dmigration

in units of GeV2/c4.

migration distance per event. Figure 5.18 shows the migration for MC events, for both

the positive and negative samples.

The level of migration is seen to be at a low level, and a lot smaller than the choice

of 75 × 75 for the binning of most of the histograms chosen.

It is also possible to look at the migration of SCF events. This is shown in figure

5.19. The migration of self cross feed is higher than for truth matched MC events, and

can be quite high for individual events, as would be expected for events which have

been mis-reconstructed.

5.11 Multiple Solutions

It was noted early on in the development of the Dalitz plot fitting tools used in this

analysis that the fitter did not necessarily converge on a unique solution for a given

set of events (data or MC). This is due to local minima occurring in the multidimen-
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sional likelihood-parameter space. These can have likelihood values only slightly worse

than the global best likelihood. In order to ameliorate this complication a number of

approaches were adopted which are used as standard in all the fits presented in this

analysis.

Firstly the parameter values were allowed to vary over a greater range than was

initially used. Specifically the magnitudes were allowed to be negative in the fit. This

was due to a problem whereby the fitter could be close to a minimum of likelihood,

but one of the magnitudes was very close to zero for a given iteration. The fitter

would then attempt to vary this parameter, but would be unable to change it in the

direction that would give a better likelihood due to the magnitude constraint. The fit,

if it converged, would return a value for this magnitude that was approximately zero

— the value would be of the order of the tolerance set for the fit.

Allowing negative magnitudes enables the fitter to converge on the actual mini-

mum it is seeking. Since the magnitude is one part of a complex number, a negative

magnitude solution is equivalent to a positive magnitude solution with a change in the

phase by π. The constraint on the magnitude being positive was therefore made only

after the fitter had returned its results, together with a change in phase if required.

A similar problem was encountered in fitting the phases. Since the fitter does not

know that the phases are periodic, that is a phase of zero will give identical solutions

to a phase of 2π, the fitter could get stuck at the phase boundary at 2π, and would

not automatically change to a value close to zero in order to improve the likelihood.

Constraining the phases to lie between zero and 2π (or −π and π), could lead to

incorrect solutions, and therefore the phase was not bounded in this way. Once the

fit results were returned, the value of the phase was modified by multiples of 2π to

ensure that the reported results would span the range −π to π.

A second consideration was to perform the same fit many times, but each time to

change the values to which the parameters were initially set. A random initial value

was generated for each of the magnitudes and phases to be fitted. It was then found

that a number of fit results may lie at a particular likelihood value, whilst others will
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lie at a different likelihood value. The fit results that had the best likelihood value

were selected. Investigation with toy MC (section 4.1.1) showed this approach to be

valid in selecting the best solutions for a given generated sample.

Fits to the B± → K±K±K∓ Dalitz plot showed that there could be solutions only

slightly worse in likelihood than the best solution. Fit results showing this phenomenon

are shown in section 6.2.

5.12 Fitting for Additional Parameters

In addition to the magnitudes and phases, which are included as free parameters in

the amplitude fit, there are other parameters which could in principle be determined

in the fit, such as masses and widths of resonances. Where the normalisation of the

integrals used in the fitting procedure (shown in equation 5.1) is dependent on these

parameters, then to allow them to float in the fit would either require using integrals

which are not correct, or recalculating the integrals at every iteration of the fit, which

would be too intensive on computing time.

Instead an alternative procedure was adopted, in which the fit was carried out

multiple times, each with a fixed value for the parameter, to span a range of values.

This procedure was first implemented for fits using the Belle inspired non-resonant

shape, given in equation (2.76), which has a single free parameter, α. Based on the

value of α = 0.121 ± 0.014 (Solution 1) quoted by the Belle collaboration [27], this

parameter was fixed to values at regular intervals between 0.1 and 0.2. A minimum

in − lnL occurred when fitting with α set to approximately 0.13 to 0.14. Further fits

were carried out in a narrower range, from α = 0.12 to 0.15, using a step size of 0.001.

The range of values of − lnL achieved is shown in figure 5.20, together with a curve

showing a quadratic fit to the points.

The minimum is at α = 0.135, and this is taken as the best value for α. To estimate

the uncertainty, the values of α at which − lnL is 0.5 above its minimum value are

taken as the ±1σ boundaries. This gives a final estimate of:
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Figure 5.20: The variation of the fit likelihood as the parameter α is adjusted. The

likelihood values returned from the fitter are plotted as points; the red curve is a

quadratic fit to these points.

• α = 0.135 ± 0.010.

This method was also used to determine values of other parameters, notably the free

parameter in the BABAR non-resonant model, given by equation (2.77), and the mass

and width of the resonance labelled (KK)0
0. Where results for such quantities are

quoted in this document, both the central values and the uncertainties are estimated

using the procedure described in this section. Where such values are quoted with

asymmetric uncertainties, a quartic function was used in place of a quadratic function.
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5.13 Resolution

This section describes an attempt at constructing a Dalitz plot fit that incorporates

experimental resolution within the fitting routine itself. For reasons to be explained

this method was not employed for the final fit, and no results reported outside this

section make use of the fitting method detailed here.

5.13.1 Motivation for the Study of Resolution Effects

The main contribution to the inclusive B± → K±K±K∓ decay known before the anal-

ysis of the Dalitz plot for this mode, was that from B± → φ(1020)K±, φ → K+K−.

This φ(1020) resonance has a width that is narrower than other resonances that had

been studied using the Laura++ framework in other charmless analyses. Following

initial problems fitting to the φ(1020) resonance, resolution effects were studied, and

a method of incorporating these effects into the fit was proposed.

It was subsequently found that the fit to the φ(1020) resonance was greatly im-

proved as a consequence of the more sophisticated modelling of this resonance in the

continuum background, as detailed in section 5.5. Studies showed that this resonance’s

shape was not in fact greatly affected by the experimental resolution, and so the default

model was sufficient to return reliable results.

However this study also revealed that the resonance that was affected by the ex-

perimental resolution was the χc0. The methods tested to incorporate resolution into

the fitting model did in fact improve the modelling of the χc0 resonance.

This section will therefore concentrate on the effect of the alternative fitting regime

tested on the χc0 resonance, rather than the φ(1020) resonance, which was the initial

motivation for this study.
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5.13.2 Resolution Method

Method Overview

The method chosen to investigate the effects of resolution is based on a paper by

D.M. Schmidt, R.J. Morrison, and M.S. Witherell entitled “A general method of esti-

mating physical parameters from a distribution with acceptance and smearing effects”

[67]. This paper presents a method for examining resolution effects, in cases where the

effect can vary from a small effect up to a very large dominant effect, and so would be

appropriate for use here where resolution effects are not expected to be a dominant

factor. The method requires a large number of full MC events, and makes use of both

the reconstructed information from the MC, as well as the MC truth information, that

is the properties of the particles and the event that were generated by the MC package,

before any simulation of detector resolution effects.

In addition to modelling resolution effects this method also takes into account

“acceptance”, which is analogous to the study of efficiency in this analysis. The result

is that the efficiency histogram is not used in this method, and efficiency is incorporated

into the fit via the fit values and a normalisation term.

The new fit method is achieved by formulating a modified version of Laura++,

which calculates the value of the new likelihood defined in the next section, by using

the default likelihood calculation of the unmodified Laura++ package as input.

Method Details

This section details the way the method works, as described in the aforecited paper,

with some items specific to this analysis replacing the more general terms from the

paper.

Consider a distribution, Γ(x, µ), where both x and µ are multidimensional quan-

tities representing a set of values — x represents physical quantities, which can be

measured in the experiment, such as invariant masses, and µ represents parameters,

which are to be determined from a maximum likelihood fit, such as magnitudes and
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phases for resonant contributions.

When resolution effects are considered it is no longer possible to determine the

underlying distribution Γ(x, µ), but rather a different distribution F (x̃, µ) is involved,

where instead of x, the measured quantity is x̃, which is the physical value of x but

smeared by the resolution effects.

It would then be possible to relate F (x̃, µ) to Γ(x, µ) via:

F (x̃, µ) = A(x̃)

∫

S(x̃, x)Γ(x, µ)dx (5.20)

where A(x̃) and S(x̃, x) are functions representing the acceptance and smearing ef-

fects respectively. These functions can be determined from MC study (as is done in

the efficiency study described in section 5.8). However it can become very difficult

and undesirable to attempt to parametrise the smearing effects in such a way, since

the smearing function would depend on both the reconstructed and unreconstructed

values. The method employed here adopts the alternative approach of using the MC

events (which contain the smearing information) directly in the Likelihood fit.

The MC distribution should model Γ(x, µ) at the generator (truth information)

level, and should model F (x̃, µ) in the observed/reconstructed events. A set of m

MC events can be generated, and each individual event labelled yj (to distinguish it

from a data event xi). Then the set of events {ỹj, yj} can be recorded, so that the

reconstructed MC values are associated with the truth information.

It is necessary to calculate a likelihood value for each data event in the fit, despite

not forming an analytical construction for F (x̃, µ). To estimate this it is desirable to

use a large sample size of MC events, and to have a small binning size if a histogram is

to be formed. The function Γ(x, µ) can be factorised into two terms: P (x) representing

the phase space part, which can be flat, and W (x, µ), which is used to weight the events

as described later.

The estimate is obtained by forming a small circular volume, Vi, centred around

an event x̃i (the term volume is used here in line with the general terminology, despite

the actual “volume” used being a 2-D area). All reconstructed MC events, ỹj, that lie

within this volume are established, and a weight is assigned to each MC event.
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Figure 5.21: A volume Vi is shown as a green circle, centred around a data event

shown as a cross. MC events are shown as solid points — on the left plotted at their

reconstructed positions, and on the right at their MC truth positions. The black line

is the Dalitz plot boundary.

An example of how a volume, Vi, is formed is shown in figure 5.21. The left-

hand subfigure shows Vi as a green circle, centred on a data event shown by a cross.

The points are the positions of all the MC events reconstructed within the volume.

The righthand subfigure shows the same volume and data event. The points are the

positions of the same MC events, but plotted by their MC truth information.

The weight W (yj, µ) is calculated using the value of the MC data at the true po-

sition, rather than the reconstructed position, which is where the unfolding of the

smearing information takes place. The sum of the weights of all the events recon-

structed in Vi is then taken in the calculation of the likelihood. The form of W (yj, µ)

here is calculated using the Dalitz plot dynamics function that is used by the default

Laura++ package to formulate the unmodified likelihood (given by equation (5.1)).

Thus to calculate the likelihood of a set of n data events, {x̃i}, using m MC events,
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{ỹj, yj}, the following calculation is performed:

lnL =
n

∑

i=1

(
∑

ỹj in Vi
W (yj, µ)

C(µ)Vi

)

(5.21)

where C(µ) is the normalisation condition:

C(µ) =
m

∑

j=1

W (yj, µ). (5.22)

5.13.3 Phase Space Corrections

In making use of MC events to simulate smearing effects in this method it is assumed

that the MC distribution is generated to be flat in phase space, which is true within

the Dalitz plot kinematic boundary. However since no events were generated outside

the Dalitz plot, this assumption breaks down for events lying close to the boundary,

when the volume Vi intersects this boundary.

Where this is the case an allowance needs to be made, otherwise the likelihood

for such events will be artificially low. Consider two similar events — one in which

the volume around it lies wholly within the Dalitz plot, and one in which part of the

volume lies outside the phase space boundary. If both events have similar kinematics

and reconstruction efficiency, it would be expected that similar likelihood values would

be obtained for each. However the likelihood term for the second event will be reduced

in proportion to the fraction of the volume that lies outside the plot.

To address this issue two approaches were tested. The first approach was to calcu-

late the size of the volume, V ′
i , lying within the kinematic boundary, and making the

substitution Vi → V ′
i in the denominator of the likelihood (equation 5.21).

The second approach was to increase the radius of the volume, such that the size

of the new volume, V ′′
i which is contained within the boundary, is equal to the default

volume size — V ′′
i = Vi. This has the advantage that a similar number of MC events

are used for data events with similar efficiencies, ensuring that all these events have

similar statistical significances. However this does result in some MC events further

from the data event being included. Additionally this means that the event is no
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longer central to the volume, but since part of the original volume is empty due to the

boundary, the data event would effectively not have been central in any case.

Phase Space Correction Method

In order to make the correction to the volume to account for the reduction in phase

space it is necessary to calculate the area contained within the Dalitz plot boundary.

The functional form of the Dalitz plot kinematic boundary is given by equations

(2.61) and (2.62), for the lower and upper boundaries respectively, as for every value

of the abscissa, there are two ordinate values.

To test whether the volume intersects the boundary, the boundary values are cal-

culated at either edge of the volume, i.e. at the central abscissa ± the volume radius.

This is done for both the upper and lower boundaries, but the following description

refers to just one boundary.

It is possible to approximate the boundaries locally as a straight line. This is

demonstated in figure 5.22. The two vertical straight lines lie at the values of the vol-

ume edges, defined in the previous paragraph. The values of the Dalitz plot boundary

at these points are calculated, and joined by a straight line, which is shown in red in

the figure. The volume is shown as a green circle, and the black line is the Dalitz plot

boundary. The size of the volume here is far larger than would be used in practice,

in order to allow the curvature to be seen. For a practical volume size no difference

between the boundary and a straight line can be detected by eye.

The intersection between the straight line and the volume can then be found, if

any. When no intersections are found the volume is adjudged to be wholly within the

Dalitz plot, and no correction is required. Note that as all events lie within the Dalitz

plot, the Dalitz plot boundary will always be convex as demonstrated in the figure, so

this is a sufficient condition for rejecting events that need no correction.

If an intersection between the straight line and the volume is found then this can be

used as an initial estimate of the intersection between the volume and the boundary.

The calculated abscissa of each intersection with the straight line is used to calculate

130



 )4/c
2

 (GeV-K+K
2m

4 4.5 5 5.5 6 6.5 7 7.5 8

 )4
/c2

   
(G

eV
-

K+
K2

m

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 5.22: The Dalitz plot boundary (curved black line) can be approximated as

a straight line (solid red line), by calculating the boundary value at the edges of the

volume (green circle with edges shown as two vertical black lines), and joining these

points.

the value of the ordinate on the boundary at this point. The value of the abscissa

is then calculated on the circular edge of the volume, for this same ordinate. This

new abscissa is used to calculate a new ordinate lying on the kinematic boundary, and

the process can be iterated, until the positions of the calculated points both on the

boundary and on the circle match to within a given tolerance.

Once the intersection has been found, the boundary can again be approximated

as a straight line, and the area of the circle cut out by this straight line can be

calculated from simple geometry. The area lying between this straight line and the

Dalitz plot boundary is then evaluated using a Simpson’s rule calculation, and added

as a correction to give the final value for the area of the volume lying within the Dalitz

plot.

In order to implement the second “V ′′
i = Vi” method mentioned above, the volume

radius is incremented, by multiplying by the square root of the quotient between the

desired and obtained areas. This process is then iterated until the quotient is equal to
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Figure 5.23: Example events with volumes formed around each event. The Dalitz plot

boundary is shown, with intersections with the volume indicated. The area of the red

circle within the Dalitz plot boundary is equal to the total area of the green circle.

one, to within a given tolerance.

This is demonstrated in figure 5.23, which shows some sample events, together with

the volume constructed around them, the Dalitz plot boundary, and the calculated

intersections. The green circles represent the default size of the volume, Vi, and the

red circles represent the volume, V ′′
i , required to obtain the default area contained

within the kinematic boundary.

5.13.4 Example of Use — Toy MC Generation

To demonstrate this method, the modified Laura++ package is used to generate some

toy MC events. Since the main resonance affected by the resolution is the χc0, the

plots focus on this resonance. As a comparison, the same resonance is generated using

the unmodified Laura++ package, and additionally a full MC sample of B± → χc0K
±,

χc0 → K+K− is used.

Figure 5.24 shows the invariant mass projections of the Dalitz plot in the region

around the χc0 mass. Subfigure a) shows toy MC events generated by the unmodified

Laura++ package; subfigure b) shows toy MC events generated by Laura++ utilising

the smearing method detailed in this section; and subfigure c) shows the full MC
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Figure 5.24: Three MC samples representing the χc0 resonance — a) toy MC events

generated by unmodified Laura++; b) toy MC events generated by the modified

Laura++; c) Full MC events.

sample. Each of the plots contains a flat non-resonant component.

The width of the χc0 in the full MC sample is greater than the natural width of this

resonance. The default Laura++ program only models the natural width — however

the modfified version of Laura++ successfully models the increased width. There are

some slight differences between the full MC and modified Laura++ resonance shapes

— the peak in the toy MC is slightly less sharply peaked than that in the full MC;

and the tails show a slight difference, but the overall widths are very similar.

5.13.5 Resolution Method Conclusions

This method was successful in being able to model the resolution smearing of the χc0

resonance. However, this method was not used in the final analysis for a number of rea-

sons. Firstly the χc0 resonance was not a major contribution to the B± → K±K±K∓

mode, and so in the final results it is included as only an upper limit.

Secondly the analysis requires a large amount of toy MC generation, in order to

determine fit biases and systematic uncertainties, for example. Each of these toy MC

studies takes a long time to generate. This modified smearing method introduces many

extra calculations for each event. It can take up to a thousand times longer to generate

the MC events required than using the unmodified Laura++ package. As a result this

method was found to be too computationally expensive to be used for a full analysis.
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Chapter 6

Results

6.1 Component Model

The decay B± → K±K±K∓ can proceed via intermediate resonant particles. The only

charmless resonance known a priori in the analysis was the φ(1020). By conducting a

Dalitz plot analysis contributions from any other resonances could be sought. To best

fit the data, a signal model was established consisting of resonant components that

showed a significant impact in improving the likelihood fit.

To determine a signal model, established charmless resonances that can decay to

two charged Kaons were considered. These included:

• φ(1020), f0(980), f0(1500), f ′
2(1525), f2(1270), φ(1680), φ3(1850), f0(1710).

In addition there are a number of charmed resonances that can contribute, two of

note are:

• χc0, D0.

The χc0 has a width that is comparable with the widths of some charmless resonances,

and was thus included in the signal model as an interfering component, with the chosen

charmless resonances. Other charmed or charmonium resonances are considered in the

background model, detailed in section 5.6.
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In common with other charmless analyses the decays of D mesons are vetoed in the

Dalitz plot. The width of the D0 is such that it is entirely dominated by experimental

resolution, and thus no interference could be observed if it were to be included.

The initial signal model included the φ(1020), χc0, and a non-resonant

B± → K±K±K∓ component. To this model extra resonances were added, and those

that significantly improved the fit likelihood were retained, to form an improved model.

The final signal model consisted of 6 components, as follows:

• B± → K±K±K∓ (non-resonant),

• B± → φ(1020)K±,

• B± → χc0K
±,

• B± → f0(980)K±,

• B± → φ(1680)K±,

• A scalar resonance of mass, m ∼ 1.5 GeV/c2.

The significance of each of these components can be seen by the detrimental effect on

the likelihood fit, when they are not included. This is shown by omission tests (section

6.4). The φ(1680) is the least significant of the signal model resonances. Motivation

for its inclusion is given in section 6.1.1. The effect upon the fit of resonances not

included in the signal model is presented in addition tests (section 6.5).

The non-resonant component was modelled as uniform in phase space in the initial

tests. Fits were also carried out using Belle’s experimentally motivated non-resonant

model, equation (2.76), and the model suggested within BABAR, equation (2.77). These

each have a single free parameter, which was fitted using the scanning technique de-

scribed in section 5.12. The distribution of each is shown in Figure 6.1 — each plot

shows MC generated using the respective parametrisation, using the parameter value

that best fits the data as input to the generation.
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Figure 6.1: The distribution of non-resonant events, using MC generated from the

“BABAR” and “Belle” models, shown on the left hand side, and right hand side, re-

spectively.

Both models attempt to model the non-resonant amplitude decreasing slightly at

higher invariant masses. These models give very significantly better results when used

in place of a uniform phase space component. The “BABAR” model gave a better likeli-

hood value, and more stable fit results (fewer multiple solutions, and more convergent

fits). This model was chosen over the Belle model, and in all results shown in this

thesis the non-resonant component is modelled using the BABAR model. The value

estimated from the likelihood scan is:

• α = −0.799+0.038
−0.034.

The f0(980) is a resonance that was seen in the BABAR analysis of B± → K±π±π∓

[28], in which its decay to two charged pions is observed. It does also decay to two

kaons, despite being below threshold for this process. For this reason it is modelled

using a Flatté distribution, as described in section 2.9.3.
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6.1.1 Resonant Structure at ∼ 1.5 GeV/c2

The resonant structure at ∼ 1.5 GeV/c2 was initially fitted as the f0(1500) resonance.

This resonance was not included in the final signal model for several reasons.

The f0(1500) decays to two pions with a branching fraction approximately four

times that to two kaons [1]. It would be expected that any signal for this resonance

in B± → K±K±K∓ would imply that this resonance would also be seen in the decay

B± → K±π±π∓, however no evidence of this resonance is seen in the BABAR analysis

of this mode [28].

Other analyses of B± → K±K±K∓ (discussed fully in section 7.2) have also seen

this resonant structure, and have not identified it with the f0(1500). Instead the

mass and width of the resonance are fitted as free parameters. Assignment of this

resonance as the a0(1450) is excluded by comparisons with the mode B± → K±K∓K0
S
,

as described in section 7.2.

The spin of the resonance was investigated by looking at the angular distribution of

the events across the band in the Dalitz plot. If the resonance were spin 0, the angular

distribution would be flat. Higher spins lead to more complex structures as given in

section 2.8. The helicity distribution for events with invariant mass 1.3 < mK+K− <

1.7 GeV/c2 is consistent with being flat, though it is possible that there could be a

linear dependence - this would be the case if there were interference between a spin 0

resonance and a spin 1 resonance. This partly motivates the inclusion of the φ(1680)

resonance in the fit.

The approach adopted is to fit the resonant structure as a scalar resonance, and to

fit the mass and the width using the parameter scanning technique outlined in section

5.12. The values of these parameters are estimated to be:

• mass = (1.523+0.028
−0.020) GeV/c2,

• width = (175+32
−27) MeV/c2.

In this document this scalar resonance is referred to as (KK)0
0.
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6.2 Multiple Solutions for the B± → K±K±K∓ Data

Samples

When fitting the events in the B± → K±K±K∓ Dalitz plot multiple solutions were

observed. The most important feature was that a set of solutions only slightly worse

in likelihood value gave very different results in terms of the physical parameters.

There were two particular resonance components that were affected by multiple

solutions. Firstly the χc0 — in this case two distinct values were seen for the magni-

tude/fit fraction, however both solutions were relatively small as was expected for this

resonance.

The second resonance that would display multiple solutions was the (KK)0
0. In

this case the difference between the two solutions was large. Because constructive and

destructive interference can occur in a Dalitz plot then it cannot be assumed that the

total of the fit fractions for all the individual components will sum to 100%.

One of the solutions gave a total fit fraction of around 100%, whereas the other gave

a fit fraction in the region of 150% to 200%. The favoured solution in terms of better

likelihood was always the one which gave the lower fit fraction, however the likelihood

difference between the two solution regimes was not significant enough definitively to

exclude the higher fraction regime.

It can also be noted that where a scalar resonance interferes with a flat scalar

component (non-resonant), then it can be shown that there exist degenerate solutions

with different magnitudes and phases [41]. For a vector resonance (or higher) this

degeneracy is lifted.

In tables 6.1 and 6.2 the leading solutions from fitting to the B+ and B− data sets,

respectively, are shown. It can be noted that both multiple solution regimes described

above are seen in each of the charge separated data sets.

The lower fraction solutions are the favoured solutions for both data sets, and it

is these that are primarily used in this analysis, and quoted in the summary tables in

section 7.1. Further discussion of separation of multiple solutions with an enhanced
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Table 6.1: Summary of leading solutions when fitting to the B+ sample.

Parameter B+ Solution 1 B+ Solution 2 B+ Solution 3

-log(Likelihood) 5193.8 5195.2 5200.6

Fraction of total fits (%) 30 19 10

NR Mag 1.0 (FIXED) 1.0 (FIXED) 1.0 (FIXED)

NR Phase 0.0 (FIXED) 0.0 (FIXED) 0.0 (FIXED)

NR Fraction (%) 56.63 ± 3.52 51.89 ± 5.58 62.11 ± 9.98

χc0 Mag 0.32 ± 0.04 0.24 ± 0.05 0.21 ± 0.05

χc0 Phase 0.58 ± 0.21 −0.35 ± 0.33 −0.75 ± 0.31

χc0 Fraction (%) 5.87 ± 1.37 3.11 ± 1.21 2.62 ± 1.22

φ(1020) Mag 0.44 ± 0.04 0.47 ± 0.06 0.42 ± 0.04

φ(1020) Phase −3.02 ± 0.25 −2.96 ± 0.46 −2.82 ± 0.32

φ(1020) Fraction (%) 11.08 ± 2.07 11.38 ± 2.76 11.04 ± 2.70

f0(980) Mag 0.67 ± 0.08 0.65 ± 0.15 0.70 ± 0.09

f0(980) Phase 2.14 ± 0.23 2.28 ± 0.41 2.34 ± 0.24

f0(980) Fraction (%) 25.04 ± 4.88 21.64 ± 7.92 30.75 ± 8.04

(KK)0
0 Mag 0.44 ± 0.05 0.42 ± 0.05 1.12 ± 0.09

(KK)0
0 Phase −0.84 ± 0.19 −0.83 ± 0.26 0.65 ± 0.14

(KK)0
0 Fraction (%) 10.73 ± 2.22 9.09 ± 2.19 77.22 ± 14.62

φ(1680) Mag 0.12 ± 0.05 0.12 ± 0.05 0.02 ± 0.07

φ(1680) Phase −0.25 ± 0.52 −0.29 ± 0.50 −0.02 ± 3.49

φ(1680) Fraction (%) 0.78 ± 0.66 0.69 ± 0.62 0.03 ± 0.19

Total Fraction (%) 110.1 97.8 183.8

data set is also included in section 7.4.
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Table 6.2: Summary of leading solutions when fitting to the B− sample.

Parameter B− Solution 1 B− Solution 2 B− Solution 3 B− Solution 4

-log(Likelihood) 4910.7 4913.0 4914.3 4914.3

Fraction of total fits (%) 31 17 2 5

NR Mag 1.0 (FIXED) 1.0 (FIXED) 1.0 (FIXED) 1.0 (FIXED)

NR Phase 0.0 (FIXED) 0.0 (FIXED) 0.0 (FIXED) 0.0 (FIXED)

NR Fraction (%) 52.52 ± 3.69 50.96 ± 3.35 86.78 ± 9.17 52.76 ± 9.12

χc0 Mag 0.25 ± 0.04 0.36 ± 0.05 0.18 ± 0.03 0.34 ± 0.04

χc0 Phase −0.56 ± 0.26 0.65 ± 0.22 −1.00 ± 0.51 0.53 ± 0.20

χc0 Fraction (%) 3.35 ± 1.06 6.72 ± 1.67 2.87 ± 0.92 6.25 ± 1.81

φ(1020) Mag 0.50 ± 0.05 0.51 ± 0.05 0.38 ± 0.04 0.50 ± 0.05

φ(1020) Phase 2.88 ± 0.23 3.06 ± 0.25 −0.03 ± 0.29 −2.60 ± 0.33

φ(1020) Fraction (%) 12.95 ± 2.48 13.08 ± 2.52 12.45 ± 2.38 13.10 ± 3.28

f0(980) Mag 0.74 ± 0.07 0.69 ± 0.08 0.42 ± 0.06 0.68 ± 0.10

f0(980) Phase 1.88 ± 0.19 2.03 ± 0.23 0.12 ± 0.22 2.49 ± 0.29

f0(980) Fraction (%) 28.92 ± 4.95 24.01 ± 4.80 15.24 ± 4.92 24.19 ± 7.31

(KK)0
0 Mag 0.41 ± 0.05 0.41 ± 0.05 0.79 ± 0.07 1.20 ± 0.10

(KK)0
0 Phase −1.48 ± 0.23 −1.28 ± 0.23 1.54 ± 0.13 0.81 ± 0.16

(KK)0
0 Fraction (%) 8.87 ± 1.88 8.41 ± 1.85 54.02 ± 7.04 76.17 ± 15.29

φ(1680) Mag 0.21 ± 0.05 0.22 ± 0.05 0.11 ± 0.04 0.16 ± 0.06

φ(1680) Phase −1.19 ± 0.30 −1.12 ± 0.29 2.93 ± 0.53 1.63 ± 0.51

φ(1680) Fraction (%) 2.28 ± 0.99 2.49 ± 1.05 1.11 ± 0.81 1.40 ± 1.12

Total Fraction (%) 108.9 105.7 172.5 173.9

6.3 Fit Results

The multiple solution results presented in the previous section show that for both

the B+ and B− samples the two leading solutions are very similar for all parameters,
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except for the phase and fraction of the χc0 resonance. The two different χc0 solutions

match up well between the two data samples. The solution with the lower fit fraction

is designated as χc0 solution A, and the higher fit fraction solution is designated as

χc0 solution B. For all other parameters the mean value of each parameter between

the two fits is taken. These results are given in Table 6.3.

The table also includes the average efficiency across the Dalitz plot. This is calcu-

lated during the fit, and is weighted by the position of events within the plot:

ε̄ =

∫ ∫

DP
|∑j ajgj(x, y)|2ε(x, y)dxdy

∫ ∫

DP
|∑j ajgj(x, y)|2dxdy

, (6.1)

where the definition of terms is the same as that used in the likelihood equation (5.1).

Figure 6.2 shows the fit results in invariant mass projections. The output from the

fits is used as input for toy MC generation. The MC events number ten times as many

as the data events, in order to reduce statistical fluctuations. This MC is used to show

the fit result in the figure, where it is shown as a solid blue line. The data events are

shown as black points. The red and black histograms show the amount of continuum

and B-related backgrounds, respectively. The plots on the left hand side show the B+

sample, and those on the right hand side show the B− sample. The top two plots show

the projection for the lower mass K+K− invariant mass combination, while the middle

plots show the projection of the higher mass K+K− invariant mass combination. The

bottom two plots show the projection of the like-signed kaon invariant mass.
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Table 6.3: The mean fit results for the two most likely solutions in the B+ and B−

samples. The two χc0 results are shown, but the total fraction uses the mean χc0

fraction. The first uncertainty is statistical, the second is systematic, calculated using

the methods given in sections 6.6.1 and 6.7 respectively.

Component B+ Fit B− Fit

NR Fraction (%) 54.3 ± 9.5 ± 3.0 51.7 ± 9.0 ± 4.1

NR Phase 0.0 (FIXED) 0.0 (FIXED)

φ(1020) Fraction (%) 11.2 ± 1.4 ± 0.43 13.0 ± 1.7 ± 0.43

φ(1020) Phase −2.99 ± 0.46 ± 0.11 2.97 ± 0.25 ± 0.13

f0(980) Fraction (%) 23.3 ± 8.7 ± 3.8 26.5 ± 7.7 ± 3.8

f0(980) Phase 2.21 ± 0.41 ± 0.12 1.96 ± 0.23 ± 0.15

(KK)0
0 Fraction (%) 9.9 ± 3.0 ± 1.8 8.6 ± 2.5 ± 1.8

(KK)0
0 Phase −0.84 ± 0.19 ± 0.09 −1.38 ± 0.23 ± 0.20

χc0 A Fraction (%) 3.1 ± 0.92 ± 0.55 3.4 ± 0.77 ± 0.14

χc0 A Phase −0.35 ± 0.33 ± 0.21 −0.56 ± 0.26 ± 0.04

χc0 B Fraction (%) 5.9 ± 1.2 ± 0.64 6.7 ± 1.3 ± 0.34

χc0 B Phase 0.58 ± 0.21 ± 0.21 0.65 ± 0.22 ± 0.06

χc0 Mean Fraction (%) 4.5 ± 1.2 ± 0.64 5.0 ± 1.3 ± 0.34

φ(1680) Fraction 0.74 ± 0.83 ± 2.1 2.4 ± 1.2 ± 0.34

φ(1680) Phase −0.27 ± 0.52 ± 1.0 −1.16 ± 0.30 ± 0.23

Total Fraction (%) 104.0 107.3

Average Efficiency (%) 19.17 ± 0.40 ± 0.08 19.02 ± 0.33 ± 0.11
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Figure 6.2: Invariant mass projection plots, showing the fit results (obtained from

high statistics toy MC sample) as a solid blue line, data as black points, continuum

background as a red histogram, and B-related background as a green histogram. The

left hand plots are for the B+ sample, and the right hand plots are for the B− sample.

The top plots show the lower mass K+K− mass combination, the middle plots show

the higher mass K+K− mass combination, and the bottom plots show the like-signed

kaon mass combination.
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6.4 Omission Tests

To determine which components to include in the signal model (described in section

6.1), the data sets were fitted using different resonant contributions. Where the fit

was significantly improved by including a resonance, in comparison to exactly the

same fit but omitting this resonance, then the resonance was included in the model.

Adding additional resonances increases the number of free parameters in the fit by

two, and thus will lead to a slight improvement in the fit, as measured by the change

in the − lnL value for the fit. Major resonant contributions will lead to a much larger

change in − lnL, however. The following tests demonstrate how the omission of the

resonances in the signal model can lead to a deleterious effect on the fit.

Tables 6.4 and 6.5 show the results of omitting each of the chosen components in

turn from the signal model, including the change in − lnL for the fit. Because one

magnitude and one phase have to be kept fixed during the fit, when the non-resonant

component is omitted, the φ(1020) parameters are fixed instead.

The removal of the non-resonant component has the most significant detrimental

effect on the fit. This component is also affected by the omission of other fit compo-

nents (with the exception of the φ(1680)) — as the non-resonant distribution overlaps

every other component in the plot it follows that it would be sensitive to the presence

of these other components.

The φ(1020) is a very distinct feature on the Dalitz plot, and occupies a very narrow

band. As such its parameters are quite stable to the removal of other components.

When it is removed, there is no other resonance that can model its sharp peak, but

the fitter attempts to use the f0(980) to model this.
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6.5 Addition Tests

These tests are carried out using a similar method to that used for the omission tests.

In these tests the full signal model is used, with the addition of one resonance in turn,

that was considered as a potential signal component. The addition of these resonances

produces a slight improvement in the − lnL value for the fit, due to the increase in

the number of available fit parameters, but none of them produces the large difference

in − lnL seen in the omission tests for the major signal components.

The resonances that were included in these tests were the f2(1270), f ′
2(1525), and

the f0(1710). The φ3(1850) was not included as it lies within the D veto region. The

f0(1370) is not well established in terms of its properties; its mass is quoted as 1200

to 1500 MeV/c2, and its width is given as 200 to 500 MeV/c2 [1]. Since the nominal

signal model includes a scalar resonance, in the region of 1500 MeV/c2, for which the

mass and width are fitted rather than taken from established values, no advantage was

gained in adding this resonance to the model. Some further comments on the f0(1370)

can be found in section 7.2.

The results of including the additional resonances in the fit are shown in table 6.6

for the B+ sample, and in table 6.7 for the B− sample. These resonances do not give

a compelling improvement to the fit, and they do not have a significant effect on the

nominal resonances.

For each of these additional resonances tested an upper limit on its branching

fraction is determined, as detailed in section 6.8.
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Table 6.4: Omission test results for the fit to the B+ sample. (All errors are statistical only and come from the

Minuit fit.)

Nominal No Non-resonant No χc0 No φ(1020) No f0(980) No (KK)0
0 No φ(1680)

− lnL + lnL(Nominal) 0 135.5 25.5 77.3 15.5 31.5 2.5

Non-resonant Fraction (%) 54.25 ± 5.70 — 69.79 ± 4.77 70.20 ± 7.75 80.86 ± 2.79 33.09 ± 6.40 52.49 ± 5.28

Non-resonant Magnitude 1.00 FIXED — 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED

Non-resonant Phase 0.00 FIXED — 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED

χc0 Fraction (%) 4.49 ± 1.37 5.78 ± 1.46 — 4.37 ± 1.61 4.64 ± 1.08 4.46 ± 1.67 4.53 ± 1.37

χc0 Magnitude 0.28 ± 0.05 0.36 ± 0.04 — 0.25 ± 0.04 0.24 ± 0.03 0.37 ± 0.06 0.29 ± 0.05

χc0 Phase +0.12 ± 0.33 +1.26 ± 0.29 — −0.13 ± 0.58 +0.45 ± 0.67 +0.24 ± 0.36 +0.14 ± 0.32

φ(1020) Fraction (%) 11.23 ± 2.82 9.86 ± 1.29 11.38 ± 2.12 — 13.48 ± 1.58 10.70 ± 2.61 11.46 ± 2.49

φ(1020) Magnitude 0.46 ± 0.06 0.46 FIXED 0.40 ± 0.04 — 0.41 ± 0.03 0.57 ± 0.05 0.47 ± 0.05

φ(1020) Phase −2.99 ± 0.47 −2.99 FIXED +3.13 ± 0.25 — −1.75 ± 0.14 −2.36 ± 0.33 −2.94 ± 0.39

f0(980) Fraction (%) 23.34 ± 8.09 49.85 ± 5.08 28.89 ± 5.63 64.75 ± 8.90 — 18.33 ± 5.05 21.52 ± 6.73

f0(980) Magnitude 0.66 ± 0.15 1.04 ± 0.09 0.64 ± 0.07 0.96 ± 0.06 — 0.75 ± 0.14 0.64 ± 0.14

f0(980) Phase +2.21 ± 0.42 +1.32 ± 0.16 +1.99 ± 0.20 +1.62 ± 0.15 — −3.02 ± 0.41 +2.29 ± 0.38

(KK)0
0 Fraction (%) 9.91 ± 2.21 13.93 ± 2.78 11.34 ± 2.39 11.53 ± 2.72 13.78 ± 2.24 — 9.35 ± 2.06

(KK)0
0 Magnitude 0.43 ± 0.05 0.55 ± 0.06 0.40 ± 0.04 0.41 ± 0.05 0.42 ± 0.03 — 0.42 ± 0.05

(KK)0
0 Phase −0.84 ± 0.27 +1.61 ± 0.20 −0.83 ± 0.18 −1.36 ± 0.22 −0.19 ± 0.13 — −0.86 ± 0.23

φ(1680) Fraction (%) 0.74 ± 0.66 0.50 ± 0.57 0.67 ± 0.62 1.82 ± 1.06 0.60 ± 0.57 0.66 ± 0.59 —

φ(1680) Magnitude 0.12 ± 0.05 0.11 ± 0.06 0.10 ± 0.05 0.16 ± 0.05 0.09 ± 0.04 0.14 ± 0.06 —

φ(1680) Phase −0.27 ± 0.52 0.55 ± 0.61 −0.30 ± 0.56 −1.16 ± 0.36 −0.04 ± 0.64 −0.76 ± 0.46 —
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Table 6.5: Omission test results for the fit to the B− sample. (All errors are statistical only and come from the

Minuit fit).

Nominal No Non-resonant No χc0 No φ(1020) No f0(980) No (KK)0
0 No φ(1680)

− lnL + lnL(Nominal) 0 103.4 36.2 98.9 24.0 30.7 10.9

Non-resonant Fraction (%) 51.75 ± 3.69 — 64.79 ± 4.51 71.49 ± 9.26 70.75 ± 2.27 34.89 ± 4.12 46.28 ± 3.50

Non-resonant Magnitude 1.00 FIXED — 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED

Non-resonant Phase 0.00 FIXED — 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED

χc0 Fraction (%) 5.04 ± 1.67 5.54 ± 1.38 — 4.89 ± 1.82 5.18 ± 1.26 5.06 ± 1.63 5.01 ± 1.71

χc0 Magnitude 0.31 ± 0.05 0.36 ± 0.04 — 0.26 ± 0.04 0.27 ± 0.03 0.38 ± 0.05 0.33 ± 0.05

χc0 Phase +0.05 ± 0.27 +0.52 ± 0.30 — −0.22 ± 0.27 +0.48 ± 0.30 +0.11 ± 0.29 +0.03 ± 0.27

φ(1020) Fraction (%) 13.02 ± 2.52 11.49 ± 1.35 13.05 ± 2.34 — 15.80 ± 1.75 12.38 ± 2.35 13.83 ± 2.58

φ(1020) Magnitude 0.51 ± 0.05 0.51 FIXED 0.45 ± 0.04 — 0.48 ± 0.03 0.60 ± 0.05 0.55 ± 0.05

φ(1020) Phase +2.97 ± 0.25 +2.97 FIXED +2.85 ± 0.22 — −2.01 ± 0.14 −2.88 ± 0.26 +3.00 ± 0.24

f0(980) Fraction (%) 26.47 ± 4.96 43.79 ± 4.74 31.47 ± 5.22 72.61 ± 10.56 — 23.23 ± 4.12 24.53 ± 5.06

f0(980) Magnitude 0.72 ± 0.08 1.00 ± 0.08 0.70 ± 0.06 1.01 ± 0.06 — 0.82 ± 0.11 0.73 ± 0.10

f0(980) Phase +1.96 ± 0.23 −0.965 ± 0.17 +1.80 ± 0.17 +1.36 ± 0.12 — +2.74 ± 0.28 +2.07 ± 0.25

(KK)0
0 Fraction (%) 8.64 ± 1.88 17.48 ± 3.09 8.68 ± 1.87 10.13 ± 2.45 11.29 ± 1.92 — 8.57 ± 1.88

(KK)0
0 Magnitude 0.41 ± 0.05 0.63 ± 0.06 0.37 ± 0.04 0.38 ± 0.05 0.40 ± 0.04 — 0.43 ± 0.05

(KK)0
0 Phase −1.38 ± 0.23 +1.16 ± 0.20 −1.40 ± 0.22 −2.09 ± 0.27 −0.53 ± 0.15 — −1.47 ± 0.26

φ(1680) Fraction (%) 2.39 ± 1.05 1.75 ± 1.04 2.26 ± 0.97 4.54 ± 1.63 2.22 ± 1.07 2.68 ± 1.13 —

φ(1680) Magnitude 0.22 ± 0.05 0.20 ± 0.05 0.19 ± 0.04 0.26 ± 0.04 0.18 ± 0.04 0.28 ± 0.06 —

φ(1680) Phase −1.16 ± 0.30 −0.48 ± 0.40 −1.22 ± 0.30 −1.86 ± 0.23 −0.59 ± 0.32 −1.23 ± 0.28 —
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Table 6.6: Addition test results for the fit to the B+ sample. (All errors are statistical

only and come from the Minuit fit).

Nominal Add f2(1270) Add f ′
2(1525) Add f0(1710)

− lnL + lnL(Nominal) 0 −0.2 −1.1 −5.0

Non-resonant Fraction (%) 54.25 ± 5.70 52.98 ± 5.43 53.39 ± 5.63 53.76 ± 5.31

Non-resonant Magnitude 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED

Non-resonant Phase 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED

χc0 Fraction (%) 4.49 ± 1.37 4.52 ± 1.40 4.54 ± 1.39 4.54 ± 1.47

χc0 Magnitude 0.28 ± 0.05 0.29 ± 0.05 0.29 ± 0.05 0.29 ± 0.05

χc0 Phase +0.12 ± 0.33 +0.12 ± 0.33 +0.14 ± 0.33 +0.09 ± 0.36

φ(1020) Fraction (%) 11.23 ± 2.82 11.29 ± 2.65 11.34 ± 2.64 11.17 ± 2.64

φ(1020) Magnitude 0.46 ± 0.06 0.47 ± 0.05 0.47 ± 0.05 0.46 ± 0.05

φ(1020) Phase −2.99 ± 0.47 −2.94 ± 0.44 −2.93 ± 0.44 −3.00 ± 0.36

f0(980) Fraction (%) 23.34 ± 8.09 22.24 ± 7.14 22.14 ± 7.32 24.53 ± 6.32

f0(980) Magnitude 0.66 ± 0.15 0.65 ± 0.14 0.64 ± 0.15 0.68 ± 0.12

f0(980) Phase +2.21 ± 0.42 +2.26 ± 0.41 +2.27 ± 0.41 +2.30 ± 0.34

(KK)0
0 Fraction (%) 9.91 ± 2.21 9.72 ± 2.22 9.70 ± 2.34 8.34 ± 2.89

(KK)0
0 Magnitude 0.43 ± 0.05 0.43 ± 0.05 0.43 ± 0.05 0.39 ± 0.07

(KK)0
0 Phase −0.84 ± 0.27 −0.83 ± 0.25 −0.78 ± 0.26 −0.83 ± 0.31

φ(1680) Fraction (%) 0.74 ± 0.66 0.75 ± 0.68 0.82 ± 0.72 2.80 ± 1.38

φ(1680) Magnitude 0.12 ± 0.05 0.12 ± 0.05 0.13 ± 0.05 0.23 ± 0.06

φ(1680) Phase −0.27 ± 0.52 −0.23 ± 0.54 −0.16 ± 0.55 +0.77 ± 0.32

Additional Fraction (%) — 0.05 ± 0.28 0.13 ± 0.27 4.81 ± 2.80

Additional Magnitude — 0.03 ± 0.07 0.05 ± 0.05 0.30 ± 0.08

Additional Phase — −0.42 ± 3.71 +0.95 ± 0.99 +1.31 ± 0.28
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Table 6.7: Addition test results for the fit to the B− sample. (All errors are statistical

only and come from the Minuit fit).

Nominal Add f2(1270) Add f ′
2(1525) Add f0(1710)

− lnL + lnL(Nominal) 0 −2.7 −4.9 −1.5

Non-resonant Fraction (%) 51.75 ± 3.69 55.03 ± 4.10 48.82 ± 3.35 49.17 ± 5.17

Non-resonant Magnitude 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED

Non-resonant Phase 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED

χc0 Fraction (%) 5.04 ± 1.67 5.03 ± 1.67 5.04 ± 1.71 5.08 ± 1.86

χc0 Magnitude 0.31 ± 0.05 0.30 ± 0.04 0.32 ± 0.05 0.32 ± 0.05

χc0 Phase +0.05 ± 0.27 +0.05 ± 0.27 +0.06 ± 0.27 +0.04 ± 0.27

φ(1020) Fraction (%) 13.02 ± 2.52 12.90 ± 2.53 13.18 ± 2.56 13.03 ± 2.91

φ(1020) Magnitude 0.51 ± 0.05 0.49 ± 0.05 0.52 ± 0.05 0.52 ± 0.06

φ(1020) Phase +2.97 ± 0.25 +2.91 ± 0.25 +3.12 ± 0.27 +3.04 ± 0.24

f0(980) Fraction (%) 26.47 ± 4.96 27.57 ± 5.08 23.34 ± 4.85 25.23 ± 5.35

f0(980) Magnitude 0.72 ± 0.08 0.71 ± 0.08 0.69 ± 0.09 0.72 ± 0.08

f0(980) Phase +1.96 ± 0.23 +1.90 ± 0.23 +2.07 ± 0.27 +2.08 ± 0.24

(KK)0
0 Fraction (%) 8.64 ± 1.88 9.03 ± 1.92 8.75 ± 1.91 7.08 ± 2.63

(KK)0
0 Magnitude 0.41 ± 0.05 0.41 ± 0.05 0.42 ± 0.05 0.38 ± 0.08

(KK)0
0 Phase −1.38 ± 0.23 −1.37 ± 0.22 −1.23 ± 0.24 −1.56 ± 0.30

φ(1680) Fraction (%) 2.39 ± 1.05 2.32 ± 1.02 2.21 ± 1.04 2.45 ± 1.16

φ(1680) Magnitude 0.22 ± 0.05 0.21 ± 0.05 0.22 ± 0.05 0.22 ± 0.05

φ(1680) Phase −1.16 ± 0.30 −1.19 ± 0.30 −0.93 ± 0.33 −1.12 ± 0.33

Additional Fraction (%) — 0.34 ± 0.34 1.43 ± 1.01 1.10 ± 1.41

Additional Magnitude — 0.08 ± 0.04 0.17 ± 0.06 0.15 ± 0.09

Additional Phase — −2.93 ± 1.18 −0.52 ± 0.29 +0.98 ± 0.53
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6.6 Fit Bias Study

To determine whether any potential biases exist in the reported fit results, a study

was carried out using toy MC. The results from the fit to data were taken, and used

as inputs to the MC generation function of the Laura++ package. The generated MC

was then fitted in the same manner as used to fit the data. This was repeated on

multiple toy MC samples, each containing a number of events equalling that in the

data sample. The fit results were then combined to form a distribution for each of the

parameters included in the fit.

A “pull” value, ζ i
p for is defined as:

ζ i
p =

µi
g − µi

f

σi
f

(6.2)

where µi
g is the generator value used for parameter i, µi

f is the fitted value of the same

parameter, and σi
f is the fitter’s uncertainty on the parameter.

If there is no fit bias present then the distribution of pull values for each contri-

bution/parameter should follow a Gaussian distribution with mean 0 and standard

deviation 1.

The pull distributions for the parameters included in the fit are summarised in

table 6.8 for MC based on both the B+ and the B− samples.

It can be seen that some of the magnitudes and phases do show some deviation

from the expected Gaussian distribution. This was investigated, and was attributed to

the effect of the f0(980) in the fit, as smaller deviations were observed when tests were

carried out omitting this resonance. Other fitting scenarios were tested, for example:

using a greater number of events or using more toy experiments, but no significant

reduction in fit biases was observed.

Ideally all possible fit biases should be eliminated, but where this is not possible,

then their effects are included as a systematic uncertainty. The difference between

the generated and fitted values of a parameter is incorporated into the systematic

uncertainty quoted for that parameter in the final results.
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Table 6.8: Magnitude and Phase pulls from toy MC generated from the best fit.

B+ B−

Pull mean Pull width Pull mean Pull width

f0(980) Magnitude 0.249 ± 0.053 1.069 ± 0.046 0.235 ± 0.047 0.926 ± 0.039

f0(980) Phase −0.263 ± 0.059 1.134 ± 0.052 −0.299 ± 0.045 1.014 ± 0.032

φ(1020) Magnitude −0.155 ± 0.050 1.007 ± 0.040 −0.147 ± 0.052 1.007 ± 0.045

φ(1020) Phase −0.293 ± 0.047 1.061 ± 0.034 −0.178 ± 0.045 1.002 ± 0.031

(KK)0
0 Magnitude 0.119 ± 0.044 0.974 ± 0.031 0.167 ± 0.043 0.956 ± 0.030

(KK)0
0 Phase −0.005 ± 0.051 1.015 ± 0.047 −0.022 ± 0.044 0.974 ± 0.031

φ(1680) Magnitude 0.262 ± 0.040 0.879 ± 0.028 0.091 ± 0.045 0.996 ± 0.032

φ(1680) Phase −0.098 ± 0.051 1.034 ± 0.048 −0.110 ± 0.046 1.030 ± 0.030

χc0 Magnitude −0.225 ± 0.050 0.996 ± 0.049 0.043 ± 0.046 1.016 ± 0.032

χc0 Phase −0.096 ± 0.047 1.051 ± 0.033 −0.023 ± 0.046 1.010 ± 0.030

6.6.1 Statistical Uncertainty

The uncertainty on the fit outputs from Minuit may not be a reliable source for the

statistical uncertainties on these parameters, due to fit biases, multiple solutions, and

other factors. Instead samples of toy MC events are generated, with inputs based on

the results from the fits to data. For each fit parameter, the distribution from fitting

to the toy MC samples is produced, and the width of the distribution is taken as the

statistical uncertainty on that parameter. This technique has been used in previous

analyses using the Laura++ framework.

Tables 6.9 and 6.10 include the means and widths for parameters of the B+ and

B− samples respectively.

6.7 Systematic Uncertainties

To estimate the systematic uncertainties on the fit results, a number of possible sources

are investigated. In this section the systematic uncertainties associated with the his-
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Table 6.9: B+ Fit fraction means and widths from toy MC study using the nominal

fit results.

B+ Best Fit B+ 2nd Best Fit

Mean Width Mean Width

Non-resonant Fit Fraction (%) 58.09 ± 0.49 9.54 ± 0.44 53.70 ± 0.42 8.22 ± 0.40

f0(980) Fit Fraction (%) 27.93 ± 0.41 8.07 ± 0.41 24.39 ± 0.45 8.64 ± 0.44

φ(1020) Fit Fraction (%) 10.773 ± 0.074 1.437 ± 0.068 11.183 ± 0.072 1.401 ± 0.070

(KK)0
0 Fit Fraction (%) 11.48 ± 0.15 3.01 ± 0.13 9.93 ± 0.15 2.85 ± 0.13

φ(1680) Fit Fraction (%) 0.924 ± 0.040 0.679 ± 0.053 0.687 ± 0.082 0.827 ± 0.081

χc0 Fit Fraction (%) 5.532 ± 0.065 1.235 ± 0.062 3.116 ± 0.052 0.923 ± 0.053

Table 6.10: B− Fit Fraction means and widths from toy MC study using the nominal

fit results.

B− Best Fit B− 2nd Best Fit

Mean Width Mean Width

Non-resonant Fit Fraction (%) 52.25 ± 0.47 8.61 ± 0.51 52.26 ± 0.46 9.04 ± 0.45

f0(980) Fit Fraction (%) 30.01 ± 0.40 7.38 ± 0.37 26.78 ± 0.40 7.65 ± 0.41

φ(1020) Fit Fraction (%) 12.757 ± 0.093 1.691 ± 0.086 13.025 ± 0.068 1.349 ± 0.068

(KK)0
0 Fit Fraction (%) 8.87 ± 0.12 2.15 ± 0.12 9.71 ± 0.14 2.48 ± 0.14

φ(1680) Fit Fraction (%) 2.557 ± 0.062 1.160 ± 0.053 2.784 ± 0.062 1.171 ± 0.057

χc0 Fit Fraction (%) 3.372 ± 0.039 0.765 ± 0.039 6.406 ± 0.064 1.262 ± 0.065

tograms and the calculated background fractions are studied. Five systematics asso-

ciated with the fit inputs are studied here:

• the use of the efficiency histogram;

• the use of the continuum background histogram;

• the use of the BB background histogram;
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• the calculated fraction of continuum background;

• the calculated fraction of BB background;

To investigate the systematic uncertainties associated with using histograms in

the likelihood fit an approach is adopted in which the fit is performed multiple times

with different possible histograms. For each variant histogram the value in each bin is

fluctuated within the Gaussian uncertainty of that bin. A set of 100 variant histograms

is produced for each of the histogram systematics studied, and each is fitted as for the

nominal fit. These 100 results are combined to produce a distribution in fit fractions

and phases. The systematic uncertainty on each of these parameters is assigned as the

root mean square (RMS) of its distribution.

For the background fraction uncertainties the procedure is very similar. The frac-

tion is fluctuated within its Gaussian uncertainty, and fits carried out using 100 differ-

ent fractions. The RMS of the obtained distributions are again assigned as systematic

uncertainties.

Table 6.11 shows the values obtained for the systematic uncertainties for each of

the fit fractions and phases in the fit. Also shown is the systematic uncertainty on

the average efficiency returned by the fit — these values are used in the determination

of the uncertainty of the inclusive branching fraction in section 6.10.3. The table is

divided into double columns — the left hand column displays the obtained RMS values

using the B+ sample, and the right hand column displays the RMS values from using

the B− sample.

The first double column gives the RMS value for each sample when the efficiency

histogram is fluctuated, the second double column gives this information for the fluc-

tuation of the continuum background histogram, and the third double column for

the fluctuation of the fraction of continuum background. The fourth and fifth dou-

ble columns report the RMS values for the fluctuation of the B related background

histogram, and the B-related background fraction respectively.

There are an additional two sources of uncertainty that were also considered. These

were the fit bias, and model dependency. For the fit bias, the uncertainty is taken to
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be the difference between the value of a parameter in the nominal fit, and the mean

value for that parameter obtained in the fit bias tests of section 6.6. The uncertainty

due the model dependence is calculated based on the observed values from fits where

an extra resonance is added, as described in section 6.5. The uncertainty is taken to

be the largest deviation from the nominal value for each parameter. The uncertainties

calculated from each of these sources are shown in Table 6.12.
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Table 6.11: Systematic uncertainties from the amplitude fit.

Uncertainty Source ε histogram qq histogram qq fraction BB histogram BB fraction Total

Data Sample B+ B− B+ B− B+ B− B+ B− B+ B− B+ B−

Non resonant fit fraction (%) 0.314 0.610 2.020 0.632 0.336 0.934 0.291 0.380 0.281 0.283 2.111 1.367

Non resonant phase Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed

χc0 fit fraction 0.043 0.048 0.540 0.036 0.021 0.030 0.024 0.041 0.035 0.014 0.544 0.080

χc0 phase 0.011 0.007 0.204 0.010 0.003 0.004 0.014 0.010 0.003 0.003 0.205 0.017

φ(1020) fit fraction 0.279 0.244 0.150 0.192 0.018 0.008 0.044 0.213 0.052 0.031 0.325 0.378

φ(1020) phase 0.016 0.015 0.076 0.013 0.005 0.012 0.013 0.018 0.010 0.007 0.080 0.030

f0(980) fit fraction 0.550 0.497 1.993 0.524 0.032 0.346 0.387 0.477 0.336 0.221 2.133 0.958

f0(980) phase 0.010 0.013 0.061 0.018 0.005 0.019 0.011 0.011 0.009 0.008 0.064 0.032

(KK)0
0 fit fraction 0.163 0.247 0.517 0.209 0.052 0.237 0.091 0.102 0.117 0.198 0.564 0.459

(KK)0
0 phase 0.012 0.012 0.064 0.017 0.003 0.004 0.020 0.013 0.003 0.004 0.068 0.025

φ(1680) fit fraction 0.057 0.042 0.224 0.035 0.010 0.017 0.074 0.033 0.059 0.021 0.250 0.069

φ(1680) phase 0.016 0.022 0.070 0.025 0.004 0.017 0.033 0.020 0.006 0.002 0.079 0.042

Average efficiency 0.062 0.063 0.017 0.020 0.000 0.001 0.007 0.005 0.007 0.007 0.065 0.067
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Table 6.12: Systematic uncertainties from the amplitude fit. The sub-total includes

the fit bias and model dependency. The total includes these, and the histogram and

fraction fluctuations.

Uncertainty Source Fit bias Model dependence Sub-total Total

Data Sample B+ B− B+ B− B+ B− B+ B−

Non resonant fit fraction 1.635 0.785 1.280 3.745 2.076 3.826 2.961 4.063

Non resonant phase Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed

χc0 fit fraction 0.172 0.168 0.100 0.036 0.199 0.172 0.573 0.211

χc0 phase 0.015 0.027 0.040 0.010 0.043 0.029 0.208 0.053

φ(1020) fit fraction 0.252 0.124 0.110 0.160 0.275 0.202 0.425 0.429

φ(1020) phase 0.053 0.049 0.076 0.115 0.093 0.125 0.133 0.128

f0(980) fit fraction 2.820 1.930 1.430 3.130 3.162 3.677 3.814 3.800

f0(980) phase 0.047 0.037 0.130 0.018 0.138 0.041 0.120 0.139

(KK)0
0 fit fraction 0.795 0.650 1.570 1.560 1.760 1.690 1.848 1.751

(KK)0
0 phase 0.007 0.012 0.060 0.195 0.060 0.195 0.091 0.197

φ(1680) fit fraction 0.074 0.286 2.060 0.175 2.061 0.335 2.076 0.342

φ(1680) phase 0.020 0.041 1.035 0.225 1.035 0.229 1.038 0.233

Average efficiency 0.010 0.020 0.045 0.080 0.046 0.082 0.080 0.106
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6.8 Upper Limits

The χc0 and φ(1680) are the least significant components of the nominal signal model,

and together with the resonances that were included in the addition tests (section 6.5)

upper limits are calculated on the fit fraction of each resonance.

Upper Limits can be calculated using the form of the Likelihood equation:

∫ xul

0
Ldx

∫ ∞

0
Ldx

= 0.90, (6.3)

where x is a parameter, and xul is the upper limit on this parameter. The 0.90 indicates

that the upper limit would be at a 90% confidence level. This formula does not take

into account systematic uncertainties however.

In order to incorporate the systematic effects into the upper limit, a Monte Carlo

simulation is used instead. A total of 100 MC samples are generated for each resonance

for which an upper limit is to be determined. The input parameters used for the MC

simulation are the magnitudes and phases obtained from the addition tests for each

of the additional resonances, and from the main fit for the two resonances that were

included in the signal model.

In each sample the background and efficiency systematic effects (namely the effi-

ciency histogram, the continuum background histogram, the continuum background

fraction, the BB background histogram, and the BB background fraction) are fluc-

tuated. This is performed in the same manner as used in the systematic uncertainty

determination (section 6.7), except that all five sources are fluctuated for each and

every MC sample, rather than studying each in turn. Fit bias is not included as an

additional component, as it will already be present in the fit. Model dependency is

included as including these extra resonances is the source of this uncertainty.

The generated MC is fitted in the standard manner used in this analysis, and the

results are combined to form parameter and − lnL distributions. The fit results are

subjected to a cut on the − lnL distribution, such that the least likely 10% of the fits

are removed. Of the remaining 90% of the fit results, the highest fit fraction for each
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resonance is taken to be its fit fraction upper limit at 90% confidence level.

For each of the resonances, this test is performed using the values from both the

B+ and the B− samples. When an overall upper limit is shown in the summary tables,

the higher of the two values obtained is used. Table 6.13 shows the upper limits for

each of the resonances investigated.

Table 6.13: 90% confidence level fit fraction upper limits.

B− Sample B+ Sample

χc0 Fit Fraction (%) 7.8 8.2

φ(1680) Fit Fraction (%) 4.2 3.8

f ′
2(1525) Fit Fraction (%) 2.8 3.2

f2(1270) Fit Fraction (%) 6.7 2.5

f0(1710) Fit Fraction (%) 6.0 9.5

6.9 CP Asymmetries

The CP asymmetry, ACP , is defined by equation 2.25. It gives a measure of the

amount of direct CP violation in a decay, corresponding to a difference in the decay

rates for the two CP conjugate decay modes, B+ → K+K+K− and B− → K−K−K+.

Values of ACP are determined for the four most significant contributions to the

signal model. Due to the large uncertainties on the fractions of the two other contri-

butions, it would not be possible to exclude any significant range of possible ACP , and

thus they are not treated here.

To determine the values of ACP for each resonance, the fit results for that resonance

in the B+ and B− samples are taken together with the uncertainty on the fit results.

To determine the uncertainty on each ACP value, the error on each of the B+ and B−

values are combined with the partial derivatives of equation 2.25 with respect to Af and

Āf̄ to give the combined uncertainty on ACP . This method is performed separately for
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the statistical and systematic uncertainties. Sources of systematic uncertainties which

are common to both samples, such as the efficiency histogram, are not considered in

this calculation.

The asymmetry on the inclusive branching fraction for B± → K±K±K∓ is ob-

tained in a similar fashion, using the signal yields in the B+ and B− samples. The

five asymmetry values calculated are given in table 6.14.

Table 6.14: Calculated values of the ACP parameter. The first uncertainty is statistical,

and the second is systematic.

Mode ACP (%)

B± → K±K±K∓ inclusive 0.0 ± 3.0 ± 4.2

B± → K±K±K∓ non-resonant −2.2 ± 12 ± 4.9

B± → φ(1020)K±; φ(1020) → K+K− 5.4 ± 7.9 ± 3.7

B± → f0(980)K±; f0(980) → K+K− 6.4 ± 21 ± 11

B → (KK)0
0K

±; (KK)0
0 → K+K− 11 ± 18 ± 10

The results show no significant asymmetries for any of the modes studied, all lying

within one standard deviation of the hypothesis ACP = 0, which corresponds to no

direct CP violation.

6.10 Inclusive Branching Fraction

The inclusive branching fraction is obtained from the following formula:

B(B± → K±K±K∓) =
Nsig

ε̄εcNBB

(6.4)

where Nsig is the number of signal events, NBB is the total number of events containing

a BB pair recorded by BABAR, ε̄ is the weighted efficiency returned by the Dalitz
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plot fit, and εc is the efficiency correction, that takes into account the difference in

reconstruction efficiencies between data and Monte Carlo samples.

The total inclusive branching fraction is calculated to be

B(B± → K±K±K∓) = 35.1 × 10−6. To determine the systematic uncertainty on

this value, the uncertainties attributed to each of the quantities in equation 6.4 are

investigated in sections 6.10.1 to 6.10.4. The total calculated uncertainty is given in

Table 6.16.

6.10.1 Uncertainty on NBB

The number of events containing a BB pair is determined by a BABAR working group,

and the uncertainty on this value is calculated to be 1.1% [47]. The number of BB

pairs is calculated by studying the number of multihadronic events, and the number

of dimuon events, in both on and off-resonance data. In off-resonance data, all multi-

hadronic events arise from continuum (light quark etc.) events, whereas on-resonance

data also have the contribution from B meson decays. The two numbers are scaled,

so that they represent the same luminosity, and the difference between the two is used

as the number of BB pairs. The luminosity is calculated from the number of dimuon

events in each sample.

The assumption is made that 50% of the decays of the Υ (4S) are to B+B− pairs,

and the other 50% are to B0B0 pairs. Experimental measurements have not found

any significant deviation from this ratio [68].

6.10.2 Uncertainty on Nsig

In order to determine the uncertainty on Nsig the fit to mES is repeated with the

expected B-related background in the fit increased or decreased by 1σ, the standard

deviation on this background which was determined when it was modelled (section

5.6).

The variation in the signal yield is seen to be approximately symmetric about the

nominal value. From these results a systematic uncertainty of 0.2% is assigned to this
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quantity.

6.10.3 Uncertainty on ε̄

The uncertainty on the average weighted efficiency, ε̄, is determined from three sources:

• Firstly there is the uncertainty from the Dalitz plot fit. This is calculated from

toy MC studies, where samples are generated and fitted, and the weighted ef-

ficiencies from each experiment are collated. The RMS value of the efficiency

distribution was found to be 0.5% for both the B+ and B− samples, which is

taken as the systematic uncertainty.

• The variation in efficiency due to the uncertainty in the efficiency and background

histograms, background fractions, fit bias, and model dependency was examined

during the fluctuation tests detailed in section 6.7 — Tables 6.11 and 6.12 include

the RMS values of the efficiency distributions in each of the tests. Summing

these uncertainties gives a combined uncertainty of 0.4% for the B+ sample, and

0.5% for the B− sample. For both samples the dominant contribution to this

uncertainty was the fluctuation of the efficiency histogram.

• The final contribution to this uncertainty arises from corrections to PID and

tracking. The method follows that used in [64]. The tracking uncertainty follows

a standard procedure outlined by the tracking task force [69] [70]. A systematic

uncertainty of 0.8% is assigned per track, and these are added coherently to give

a total tracking uncertainty of 2.4%. The PID correction is found to be 1% per

track per selector applied. Since each track has 2 selectors applied (Kaon selector

and electron selector), this gives an uncertainty of 1.4% per track. These are

then added coherently to give a total PID uncertainty of 4.2%.

6.10.4 Uncertainty on εc

The variable εc represents a correction arising from the difference in reconstruction

efficiency between experimental data and that observed in MC simulation. The mode
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B+ → D0π+, where D0 → K+π− is chosen to examine this because it has a branching

fraction of (1.89 ± 0.12) × 10−4, and is topologically and kinematically similar to the

signal mode. The potentially more useful mode B+ → D0K+, with D0 → K+K−,

which has an identical final state to the signal, has a branching fraction of only (1.4±
0.2)×10−6, and so there are insufficient events to allow control studies to be performed.

Two sets of events are used in this investigation. The first is the experimental

data, which are only taken in a small invariant mass range centred on the D0 mass.

This is not in the final form that is used for the main analysis, but is instead that

obtained before applying the final selection cuts. The second set of events is full MC

simulation for the mode B+ → D0π+, D0 → K+π−. For each of these sets of events,

the CharmlessFitter package (described in section 4.7), is used to apply each of the

final cuts on cos θT , the Fisher discriminant, mES, and ∆E, in turn, and the efficiency

for each cut is determined. For the MC the fraction of events remaining after each

cut is used to determine the efficiency. For the data, the cut is applied, and then the

remaining events are subjected to a fit to the mES distribution to determine the signal

yield arising from each cut — the ratio these signal yields, before and after the cut, is

used to determine the efficiency.

Thus the efficiency is calculated in both data and MC, and the ratio of these

efficiencies is used to obtain the data/MC efficiency correction for each cut. The

results are listed in table 6.15, together with the overall correction, and the statistical

uncertainties on these quantities, determined from combining the uncertainty on the

number of events in each of the data and MC samples.

It should be noted that a separate fit is carried out to the data at each stage, and

that the reported number is the signal yield from the fit, rather than the raw number

of events after each cut. These fitted yields have an associated uncertainty, and so can

fluctuate upwards after a cut. The most likely cause of this eventuality is when a cut

removes a very small number of events of which the majority are background.
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Table 6.15: Data/MC efficiency corrections.

Requirement Data Before Data After Data Efficiency MC Before MC After MC Efficiency Correction Uncertainty Fractional Uncertainty

cos θT 14293 13206 0.924 76770 71435 0.931 0.992 0.013 0.013

Fisher 13206 10794 0.817 71435 59261 0.830 0.984 0.014 0.014

mES 10794 10814 1.001 59261 59252 1.000 1.001 0.015 0.015

∆E 10814 10363 0.958 59252 57387 0.969 0.989 0.015 0.015

Total 0.965 0.029 0.030
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Table 6.16: The total systematic uncertainty on the branching fraction.

Source of uncertainty Uncertainty (%)

NBB 1.1

Nsig 0.2

ε̄ (DP fit) 0.5

ε̄ (histogram etc.) 0.5

ε̄ (PID) 4.2

ε̄ (Tracking) 2.4

εc 3.0

Total 5.8
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Chapter 7

Conclusions and Summary

7.1 Summary of Results

A summary of the results obtained in this analysis is given here. For branching frac-

tions and asymmetry measurements, the fit fractions reported in chapter 5 have been

multiplied by the inclusive branching fraction to arrive at the exclusive branching

fraction for each mode. The uncertainty on each of these exclusive measurements is

obtained by combining the uncertainty on the fit fraction with the uncertainty on the

inclusive branching fraction.

Table 7.1 reports the exclusive branching fractions and CP asymmetries of the

four most prominent contributions to the Dalitz plot. It also includes the inclusive

branching fraction for B± → K±K±K∓, and the calculated asymmetry for the whole

Dalitz plot of this mode. Table 7.2 includes the calculated upper limits for the less

significant resonances.

In addition to these results, three parameters were estimated using parameter scans,

as described in section 5.12. These were the mass and width of the scalar resonance

(KK)0
0, and the free parameter, α in the non-resonant parametrisation of equation

2.77. The values determined were:

• (KK)0
0 mass: m = (1.523+0.028

−0.020) GeV/c2.
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• (KK)0
0 width: Γ = (175+32

−27) MeV/c2.

• Non resonant: α = −0.799+0.038
−0.034.

Table 7.1: Summary of measurements of branching fractions (averaged over charge

conjugate states) and CP asymmetries. The first error is statistical, and the second is

systematic.

Mode B(Mode) (10−6) ACP (%)

B± → K±K±K∓ Total 35.1 ± 1.3 ± 2.1 0.0 ± 3.0 ± 4.2

B± → K±K±K∓ non–resonant 18.6 ± 3.4 ± 1.8 −2.4 ± 13 ± 4.7

B± → φ(1020)K±, φ(1020) → K+K− 4.3 ± 0.6 ± 0.3 7.4 ± 8.0 ± 2.5

B± → f0(980)K±, f0(980) → K+K− 8.7 ± 3.1 ± 1.4 6.3 ± 21 ± 11

B± → (KK)0
0K

±, (KK)0
0 → K+K− 3.3 ± 1.1 ± 0.7 −6.8 ± 25 ± 14

Table 7.2: Summary of measurements of central values and upper limits of branching

fractions (averaged over charge conjugate states) for less significant components. The

first error is statistical, and the second is systematic.

Mode B(Mode) (10−6) 90% CL Upper Limit (10−6)

B± → χc0K
±, χc0 → K+K− 1.7 ± 0.5 ± 0.1 < 2.9

B± → φ(1680)K±, φ(1680) → K+K− 0.6 ± 0.4 ± 0.2 < 1.5

B± → f2(1270)K±, f2(1270) → K+K− − < 1.1

B± → f ′
2(1525)K±, f ′

2(1525) → K+K− − < 2.4

B± → f0(1710)K±, f0(1710) → K+K− − < 3.3
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7.2 Comparison of Results with other Analyses of

B± → K±K±K∓

This section compares the results of this analysis with other analyses of

B± → K±K±K∓, which have been carried out by both the BABAR and Belle col-

laborations.

7.2.1 BABAR Results

The BABAR paper [26] details an analysis which was carried out concurrently with and

on the same dataset as the analysis reported in this document. This analysis was used

as cross check on the published analysis.

The major difference in the analysis techniques is that the published analysis is a

binned analysis, as opposed to an unbinned analysis in this thesis. That analysis also

includes the f0(1710) in the signal model, and does not include the φ(1680); both of

these resonances are minor contributions to the plot.

The results are largely consistent with the results of this document. The (KK)0
0

(referred to as X0(1550)) fraction is markedly different. This is due to the complica-

tions of multiple solutions as described in section 5.11. Both analyses observe multiple

solutions for the (KK)0
0 component fraction, one of which is of the order of 10% and the

other a much higher value. However, while this analysis favours the lower solution, the

published analysis favours the higher solution, though both observe the other solution,

but with a lower likelihood in their respective fits. The mass and width of the X0(1500)

are quoted as mX0
= 1.539± 0.020 GeV/c2 and ΓX0

= 0.257± 0.033 GeV/c2. The mass

is consistent with that measured in this analysis, though the width is somewhat larger.

The total measured branching fraction (including the χc0) is B(B± → K±K±K∓) =

(35.2 ± 0.9 ± 1.6) × 10−6, which is in very good agreement with that measured in

this analysis (section 6.10). Excluding the χc0 to quote a purely charmless branch-

ing fraction gives B(B± → K±K±K∓) = (33.5 ± 0.9 ± 1.6) × 10−6. Subtracting the

χc0 component from the inclusive branching fraction measured in this thesis gives
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B(B± → K±K±K∓) = (33.4 ± 1.3 ± 2.1) × 10−6, also in good agreement.

7.2.2 Belle Results

The Belle collaboration presented results for B± → K±K±K∓ [27] using 140 fb−1 of

data taken at a centre of mass energy corresponding to the Υ (4S) mass, and 8.3 fb−1

of data taken off resonance. They have two fit regimes, these being KKK − AJ and

KKK−BJ , where J is the spin of the resonance observed at ∼ 1.5 GeV/c2, which they

call the fX(1500). The KKK −AJ models do not include a non-resonant component,

and are disfavoured compared to the KKK −BJ models which do. The non-resonant

component is not flat, but instead a number of parametrisations are tried; the chosen

non-resonant parametrisation is discussed in section 2.9.4.

Different values of J are tested, but the favoured model is the KKK − B0 model.

This model contains multiple solutions of the type noted previously, measuring the

fX(1500) fractions as (63.4±6.9)% (Solution 1) and (8.21±1.94)% (Solution 2). There

is also the uncertainty in the χc0 fraction, but it is a relatively minor contribution.

The mass and width of the fX(1500) are measured to be mfX
=

(1.524 ± 0.014) GeV/c2 or (1.491 ± 0.018) GeV/c2, and ΓfX
= (0.136 ± 0.023) GeV/c2

or (0.145± 0.029) GeV/c2, where the two values correspond to the two solutions given

above. The mass results are in agreement with that estimated in this thesis, and the

width results are slightly lower.

Belle place an upper limit on B(B± → f0(980)K±, f0(980) → K+K−) < 2.9×10−6.

The Belle analysis uses measurements of the Flatté parametrisation from the E791

collaboration [71], which has a much lower coupling of the f0(980) to two kaons than

the BES parameters used in this analysis, and thus a much lower branching fraction

is expected. Different Flatté parametrisations are discussed in section 7.3.

The charmless branching fraction (not including χc0) is measured to be (30.6 ±
1.2 ± 2.3) × 10−6, which is slightly lower than that measured by the BABAR Dalitz

analyses.
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7.2.3 Comparison of B± → φ(1020)K± Results

The decay B± → φ(1020)K± is the only charmless mode contributing to

B± → K±K±K∓, that has been measured in quasi-two-body (non Dalitz plot) analy-

ses. The PDG value for this mode is B(B± → φ(1020)K±) = (9.3±1.0)×10−6 [1], and

also gives the branching fraction B(φ(1020) → K+K−) = (49.1 ± 0.6)%. This thesis

finds a branching fraction of B(B± → φ(1020)K±, φ(1020) → K+K−) = (4.3 ± 0.6 ±
0.3)×10−6. The same branching fraction is calculated to be (4.14±0.32±0.33)×10−6

in the published BABAR paper, and (4.72 ± 0.45 ± 0.35+0.39
−0.22) × 10−6 in the Belle pa-

per. The three sources of uncertainty given are: statistical, systematic, and model

dependency. All of these branching fractions are in good agreement.

7.3 Conclusions and Discussion

This thesis documents the Dalitz plot analysis of the mode B± → K±K±K∓. The

signal is modelled as six components, one of which is a non-resonant component, and

the other five resonant components. Branching fractions are measured, with upper

limits being placed on the two least significant components and also on three additional

resonances.

The analysis is not able to unambiguously identify the resonant structure at

∼ 1.5 GeV/c2 in the K+K− spectrum. In line with similar analyses, the mass and

width of this resonance are fitted, with reasonable agreement between analyses. Iden-

tifying this resonance as the a0(1450) is disfavoured by observations of the mode

B0 → K+K−K0
S

(section 2.6.4). The analysis of the mode B± → K±π±π∓ does not

see a similar resonance in its π+π− spectrum, which suggests that the resonance is not

the f0(1500), as this resonance has a branching fraction to ππ that is approximately

four times that to KK [1].

It is possible that the f0(1500) could interfere with other scalar resonances in

such a way that a resonant structure is observed in B± → K±K±K∓, but not in
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B± → K±π±π∓. Interference schemes involving light scalar glueballs have been sug-

gested (section 2.7.1). Scalar resonances can be quite broad, and overlap with each

other in invariant mass spectra, obfuscating each spectrum, and making identification

of individual states experimentally challenging. The existence of some states (such as

the σ or f0(600)) remains controversial.

Some experiments, such as that described in section 2.7, have seen some evidence

for a scalar state with approximately the same mass as the f ′
2(1525) in the KK mass

spectrum. However such a state has never been well established.

Analyses with a greater quantity of data will be needed to reveal more information

about this resonance, and perhaps confirm or exclude one of the above suggestions as

to its nature.

The observation of the f0(980) also presents some questions. The nature of this res-

onance is unknown, with traditional quark model qq assignments suggested, as well as

four quark qqq̄q̄, and KK molecule possibilities. Current predictions and experimental

results are unable to distinguish between these possibilities (section 2.7.1).

The decay of f0(980) is modelled using the Flatté lineshape (section 2.9.3). This

accounts for the coupled channel nature of the resonance. Because the mass is less than

the threshold for creation of KK, the f0(980) does not show a conventional resonant

structure, but instead appears as only a “resonance tail”.

The parameters of the Flatté distribution have been determined by other experi-

ments, and have been tested in the mode B± → K±π±π∓ [28], as the B± → K±K±K∓

mode does not have enough data to discriminate significantly. The parameters from

the BES collaboration have been adopted here and by other BABAR analyses, and

have been recommended by the BABAR Dalitz Task Force [72]. The use of differ-

ent Flatté parameters from other experiments leads to very different results, as can

be noted from the comparison between BABAR and Belle results for this mode given

in section 7.2. Assigning a model dependency systematic uncertainty to the B± →
f0(980)K±, f0(980) → K+K− branching fraction to account for this was not seen as

useful, since such an uncertainty would be almost as large as the measurement itself.
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The only meaningful comparisons that can be made are with other measurements that

also use the BES parameters.

The non-resonant component is modelled by a simple parametrisation, involving

only a single free parameter, in this and the other Dalitz analyses of B± → K±K±K∓.

These analyses agree that the non-resonant component is not consistent with being

distributed uniformly in phase space, instead they favour an increase in non-resonant

contributions at lower invariant masses. Theoretical predictions of non-resonant dis-

tributions have been examined, such as [73] [74]. Some of these attempt to model

the non-resonant component by taking into account the presence of virtual resonances

outside the Dalitz plot, such as B∗ mesons. Such models have an increase at higher

invariant masses, and are not consistent with the observed experimental data.

Whatever the form of the non-resonant component, it will interfere with all reso-

nant components of the Dalitz plot. It is difficult to separate scalar resonances from the

non-resonant contribution, particularly given the interference between them. Unless

the nature of scalar resonances present in B± → K±K±K∓ can be better established,

the form of the non-resonant component of this mode will be subject to large uncer-

tainties. Any comparison of its form with theoretical predictions is thus subject to

these uncertainties.

7.4 Future Analyses

The Laura++ package has been used in a number of analyses, including this one. New

analyses are being undertaken using the same framework, incorporating supplementary

features that allow more information to be obtained. The Laura++ fitting routine will

be able to fit both B+ and B− samples simultaneously. In analyses of neutral B decay

modes, such as B0 → π+π−K0
S
, it is not possible to separate B0 and B0 events, as

is done for B+ and B− events, but instead the other B decay in the event must be

used for flavour tagging. Thus a simultaneous time-dependent fit has to be performed
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to extract CP information. This will mean that quantities such as ACP will be a

fit output, rather than being calculated from the results of the fits to two separate

samples.

Incorporating extra variables, such as mES, into the combined fit would also pro-

vide a reduction in the systematic uncertainties due to the simultaneous extraction of

signal and background yields. Self Cross Feed will also be incorporated as a separate

component into fits. The fit may allow for the fitting of separate weak and strong

phases (section 2.4) for each resonance, given sufficient data to separate them.

The BABAR experiment is continuing to take data, and has an objective of taking

1ab−1 by the end of its running. Such a dataset would represent a four to five-fold

increase on the quantity of data used in this analysis. The goals of an analysis using

such a data sample would include establishing the resonant content of the Dalitz plot

with more precision than was possible in this analysis. In addition to a decrease in the

statistical uncertainty, the implementation of some of the extensions to the Laura++

fitter detailed above, together with improved background modelling from the larger

data sample, would reduce the systematic uncertainties upon the results.

In this analysis, model dependency is not fully incorporated as a systematic un-

certainty. This is due to the doubt as to the composition of the signal model, and

the nature of some of the resonances, and the non-resonant component. To include

a model dependency uncertainty for these factors would lead to results that make

no quantitative statement about the possible composition. Instead the results are

presented for a particular model, which can be amended or improved upon in future

analyses.

The mode B± → K±K±K∓ is observed to have a much higher non-resonant frac-

tion than related B → hhh modes. With many more data, leading to an improved

signal model, it may be possible to start testing theoretical predictions of the form of

the non-resonant component, that cannot be tested in similar charmless analyses.

With an increased data set, a major goal would be to observe CP -violation in

this mode. Combined with other experimental results, this could further constrain
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the parameters of The Unitarity Triangle, and lead to a greater understanding of

CP -violation within (and perhaps beyond) the Standard Model.
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Appendix A

Glossary

AWG Analysis Working Group

BABAR A BB experiment

DAQ Data Acquisition

DCH Drift Chamber

DCT Drift Chamber Trigger

DRC or DIRC Detector of Internally Reflected Cherenkov radiation

DOCA Distance Of Closest Approach

DQG Data Quality Group

ER Event Reconstruction

EMC Electromagnetic Calorimeter

EMT Electromagnetic Calorimeter Trigger

FCTS Fast Control and Timing System

FEE Front End Electronics

FSR Final State Radiation

GLT Global Level Trigger

HER High Energy Ring

IFR Instrumented Flux Return

IFT Instrumented Flux Return Trigger
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IR Interaction Region

L1T Level 1 Trigger

L3T Level 3 Trigger

Linac Linear Accelerator

LER Low Energy Ring

LST Limited Streamer Tube

MC Monte Carlo

OPR Online Prompt Reconstruction

PC Prompt Calibration

PEP-II Positron Electron Project II

PID Particle Identification

PMT PhotoMultiplier Tube

RPC Resistive Plate Chamber

ROE Rest Of Event

SCF Self Cross Feed

SVT Silicon Vertex Tracker

TLA Three Letter Acronym

TOT Time Over Threshold

θT The thrust angle of an event
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