

The ALICE experiment

A Large Ion Collider Experiment

R. Lietava The University of Birmingham

Outlook

- First collisions (2009)
- ALICE detector
- ALICE trigger
- First pp physics with ALICE
- Heavy ions
- Summary

ALICE physics

A-A (macroscopic QCD)

- equation of state (ideal gas or strongly coupled liquid)
- phase diagram (1st, 2nd order, crossover ?)
- □р-р
- reference to AA
- minimum bias physics => soft QCD (underlying event)
- unique pp physics with Alice (baryon transport, charm cross section)

First Collisions at the LHC seen through the eyes of ALICE

The LHC (and everything else) accelerates ..

Monday, 23rd November, ~15:30 .. after concentrated preparations.. in the ALICE Control Room

some anxious minutes waiting for collisions..

still waiting ...

The first 'event' pops up in the ACR

Relief and jubilation ...

'First Physics' analysis

After years of looking at simulated data, first physics results examined, ca 1 hour after data taking finished (284 events !)..

Physics exploitation of ALICE has started for good !

Phase 2 is still a long way to go...

Alice Detector

ACORDE

TOF

TPC

ITS

PHOS

ABSORBER

DIPOLE

MAGNET

TRACKING

CHAMBERS.

MUON

FILTER

TRIGGER

ZDC 116m from I.P.

EMCAL

TRD

PMD

VO

ALV NU

HMPID

Tracking (B=0.2-0.5 T):

- Inner Tracking System (ITS) pixels (SPD),drift (SDD),strips (SSD)
- Time Projection Chamber (TPC)
- Transition Radiation Detector (TRD)

ZDC

116m from I.F

Particle Identification (PID):

- TPC , TRD , Time Of Flight (TOF) ,
 - High Momentum PID (HMPID)

Calorimetry:

- PHOton Spectrometer (PHOS)
- Electromagnetic
 Calorimeter (EMCAL)
- Zero Degree Cal (ZDC)

Alice Detector Displays with Real Tracks !

ALICE Detector Acceptance

Central tracking: -1<η<1 Muon arm: 2.4<η<4

V0: $2.8 < \eta < 5.1$ -3.7 < $\eta < -1.7$ ¹³

ALICE detector

ALICE unique features:

- © acceptance at low p_T (~ 0.2GeV/c)
 - \Rightarrow relatively low field (0.5T)
 - \Rightarrow low material budget (total X/X0=7%)
- © excellent PID capabilities
 - \Rightarrow dE/dx (TPC/ITS), TRD,

TOF, HMPID, PHOS, (EMCAL)

Bimited in luminosity (TPC sensitive time ~ 100µsec)

Time Projection Chamber – track p_T reconstruction

Jacek Otwinowski (GSI)

Moriond, 13-20 March 2010

Tracking works beautifully

γ-ray image of ALICE (DATA)

Particle Identification

Very good PID over broad momentum range

PID peformance (DATA)

Minimum bias trigger

V0: $2.8 < \eta < 5.1$ $-3.7 < \eta < -1.7$ **SPD inner layer:** $-1.98 < \eta < 1.98$

ALICE Central Trigger Processor

CTP features:

- 3 Levels (L0,L1,L2 ~ 1μs, 6μ, 100μs)
- Generally no pipelining
- Partitioning of detectors into independent groups
 - e.g. muon arm
 and central barrel
- Pile up
 - (past-future) protection
 - tens of interactions
 in TPC drift time

Initial trigger

Initial beam: 2 bunches in each ring, 1 collision in ALICE

Phase 1 (day 0)

pixel trigger (2 or more hits in SPD) in coincidence with beam pickup counters (BPTX)
Phase 2 (day 0+n), n=1

- minimum bias trigger with SPD or V0A or V0C in coincidence with BPTXs

Trigger Inputs Timing

How biased is min bias trigger?

Fractions and Trigger efficiencies

24

Trigger Efficiencies and corrections

Efficiency =
$$N_{triggered} / N_{total} = \sum f_{process} e_{process}$$

= $f_{SD} e_{SD} + f_{DD} e_{DD} + f_{ND} e_{ND}$

- Need to know the fraction (f) and the efficiency (e) for each process.
- Efficiency is process, trigger and generator dependent

Eg: MB1 = SPD or V0A or V0C

	MB1 effic	iencies:		_	
Process	SD	DD	ND		
Fraction (f)	0.187	0.127	0.686	Pythia: 92.9%	Reason for difference:
Efficiency (e)	0.714	0.864	0.999		f – uncertainty in fractions
	-			4	$\Delta = 100000000000000000000000000000000000$
				ו	
Process	SD	DD	ND		kinematics
Process Fraction (f)	SD 0.134	DD 0.063	ND 0.803	Phojet: 96.4%	kinematics
Process Fraction (f) Efficiency (e)	SD 0.134 0.767	DD 0.063 0.938	ND 0.803 0.999	Phojet: 96.4%	~2-4% effect each

Diffractive Events Fraction

Extract f_{sd} , f_{dd} offline from data !

26

First Measurements

Statistics for pp physics analysis

- Total events collected: > 1 M
- Good pp interactions': 500 k
- $\Box 100 \text{ k} : \text{B} = 0 \text{ (alignment)}$
- 10 k : B reversed (systematics)
- □ 30 k : √s = 2.36 TeV

Detector configuration:

Not 'Stable beams':

ITS, VO

□ 'Stable beams' - On 6th December 'stable beams' were declared & we could switch on all ALICE detectors for the first time..

$dN/d\eta$ at $\eta=0$

□ ISR(1977): dN/dη=a+b*ln(s)

SppS (1981): dN/dη=a+b*ln(s)+c*ln(s)²

dN _{ch} /dղ in ղ < 0.5	0.9 TeV		2.36 TeV	
ALICE, CMS: stat. and syst. uncertainty added quadratically	INEL	NSD	INEL	NSD
ALICE preliminary	3.02 ± 0.07	3.58 ± 0.11	3.77 ± 0.23	4.44 ± 0.16
ALICE EPJC65:111 (2010)	3.10 ± 0.26	3.51 ± 0.29		
CMS JHEP 02 (2010) 041		3.48 ± 0.13		4.47 ± 0.16
UA5 Z. Phys. C33 1 (1986)	3.09 ± 0.05*	3.43 ± 0.05*	* only stat. e	error

First Alice Results from p-p collisions Jan-Fiete Grosse-Oetringhaus

 $dN_{ch}/d\eta$ (2)

Larger increase from 0.9 to 2.36 TeV at mid-rapidity as in MC generators

	in %	INEL	NSD
	ALICE prel.	24.8 ^{+6.1} _{-3.0}	$24.0_{-1.3}^{+3.9}$
	CMS		28.4 ± 3.0
P y t h i a	D6T	19.7	18.7
	ATLAS CSC	19.2	18.3
	Perugia-0	19.6	18.5
	Phojet	17.5	14.5

First Alice Results from p-p collisions Jan-Fiete Grosse-Oetringhaus

Multiplicity distribution

1972: KNO (statistical) scaling law $P_{n}(s) = \frac{1}{\langle n \rangle} \Psi\left(\frac{n}{\langle n \rangle}\right)$

⇒ shape of distribution is independent of s

1983: KNO scaling broken (UA5: PLB121,109,1983 & PLB138,304,1984)

Two mechanisms:

⇒ jet/mini-jet production
 - coherent production of particles
 ⇒multiple parton interactions

Multiplicity Distributions

- 900 GeV
- Work in progress
- RAW spectra
- MCs propagated through detector response

Phojet remarkably close to data

Multiplicity Distributions

- 2.36 TeV
- Work in progress
- RAW spectra
- MCs propagated through detector response

Early Minimum-Bias Physics in ALICE - Jan Fiete Grosse-Oetringhaus

Multiplicity Distributions

- Distributions in limited η-regions
 - Vertex range reduced a region in which every event has full η-acceptance
- Consistent with UA5 results for NSD at 0.9 TeV

Probability $P(N_{ch})$

0

10⁻²

10⁻³

10-4

10⁻⁵

|η| < 0.5 (x

 $\sqrt{s} = 0.9 \text{ TeV}$ NSD

20

ALICE

• UA5

 $|\eta| < 1.0 (x \ 10)$

ALICE preliminary

Multiplicity N_{ch}

60

40

High Multiplicity pp

J. D. Bjorken: multiplicity (number of charged tracks) of an event can be related to the energy density in the collision

$$\epsilon_{Bj} = \frac{dE_{\perp}}{dy} \frac{1}{S_{\perp}\tau} \qquad \qquad \frac{d\langle E_{\perp} \rangle}{dy} \approx \frac{3}{2} \left(\langle m_{\perp} \rangle \frac{dN}{dy} \right)$$

Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au collisions from STAR arXiv:0808.2041v1 [nucl-ex] 14 Aug 2008

 τ is formation time, S is overlapping area

 Higher multiplicity reach at LHC pp, some events should exceed threshold energy density

□ Are p-p and A-A events with the same multiplicity different?

- Pt spectra
- Strangeness
- Jets
- Flow

Transverse momentum

Comparison ALICE / CMS ($|\eta| < 0.8$)

Good agreement between ALICE and CMS ($|\eta| < 0.8$) within 5%.

Jacek Otwinowski (GSI)

Moriond, 13-20 March 2010

Transverse momentum

Next

2009 data

- 900 GeV and 2.36 TeV Papers on multiplicity and transverse spectra coming soon
- Identified particles spectra (pi,K,p)
- Strangeness K0 and hyperons
- Pi0
- Eta/phi correlations

2010

- As with 2009 data
- Heavy Ions

Phases of Strongly Interacting Matter

QCD predict lear matter ergo a phase on at a ture of, MeV and lensity, V/fm³.

Heavy-ion physics with ALICE

Alignment calibration available from pp

- □ Global event properties (10⁵ events):
 - Multiplicity, rapidity density
 - Elliptic flow
- □ Source characteristic (10⁶ events):
 - Particle spectra, resonances
 - Differential flow
 - interferometry

□ High pt and heavy flavours (10⁷ events):

- Jet quenching
- Quarkonia production

Elliptic Flow

 Φ – angle with respect to reaction plane

Relativistic hydrodynamics prediction: $v_2/\epsilon \sim constant$

Is the QGP an ideal fluid ?

Η

С

one of the first 'expected' answers from LHC

- Hydrodynamics: modest rise (Depending on EoS, viscosity speed of sound)
- experimental trend & scaling predicts large increase of flow

Summary

- Alice detector works according to expectationsAlice produced its first physics publication
- Analysis with larger statistics in progre
 - pT spectra, <pT> vs multiplicity
 - pT spectra of identified particles
 - multiplicity distribution
 - pbar/p
 - •••
- Looking forward to coming period:
 - higher collision energy
 - heavy ion collisions ...

END

The ALICE collaboration

Pythia Tunes

Perugia (320)

- Updated lep fragmentation
- Showering of MPI
- Tevetron MB data 630,1800,1960
- SPPS 200,450,900
- ATLAS CSC(306)
 - Arthur Moraes
 - pt ordered

D6T(109)

- R.Field, Tevatron
- New structure function
- q2 oredred

Jacek Otwinowski (GSI)

Moriond, 13-20 March 2010

Jet Quenching

Charged particle correlations in Au+Au at RHIC (STAR)

In central Au-Au events, although trigger jet is clearly visible, "away-side" jet is not visible, as predicted from strong absorption in a high colour charge density volume, e.g. that produced in a QGP

More Particles..

High-multiplicity trigger example

J F Oetringhaus

- Example of threshold tuning:
- MB and 3 high-mult. triggers 250 kHz collision rate recording rate 100 Hz

scalin

g

4167

259

16

1

MB 60%

trigger

rate Hz

60.0

13.3

13.3

13.3

3 HM triggers: 40%

threshold

Baryon number transfer in rapidity

• When original baryon changes its colour configuration (by gluon exchange) it can transfer its baryon number to low-x without valence quarks – by specific configuration of gluon field [10]

experimentally we measure baryon – antibaryon asymmetry
largest rapidity gap at LHC (> 9 units)
predicted absolute value for protons ~ 2-7%

Baryons in central region at LHC

Multiplicity reach at 900 GeV

ALICE Electromagnetic Calorimeter

• upgrade to ALICE

• ~17 US and European institutions

Current expectations:

- 2009 run: partial installation
- 2010 run: fully installed and commissioned

Lead-scintillator sampling calorimeter Shashlik fiber geometry Avalanche photodiode readout

Coverage: $|\eta| < 0.7$, $\Delta \phi = 110^{\circ}$ ~13K towers ($\Delta \eta x \Delta \phi \sim 0.014 x 0.014$) depth~21 X₀ Design resolution: $\sigma_E / E \sim 1\% + 8\% / \sqrt{E}$

First heavy flavour physics:charm

reach up to 11.5 - 14 GeV/c with 7×10^7 evts

Jets rates at LHC

V0 beam gas rejection

Fig. 3. Arrival time of particles in the VZERO detectors relative to the beam crossing time (time zero). A number of beamhalo or beam-gas events are visible as secondary peaks in VZERO-A (left panel) and VZERO-C (right panel). This is because particles produced in background interactions arrive at earlier times in one or the other of the two counters. The majority of the signals have the correct arrival time expected for collisions around the nominal vertex.

9

Birmingham ALICE Group

