

Top Cross Section

(Current Status and Early LHC Prospects)

- Top Background
- Production
- Decay
- TeVatron Results
- ATLAS and the LHC
- Tau potential

Background

- Completes third generation of the standard model
- Observed for the first time in 1994 (Discovery papers in 1995)
 - 35 times more massive than the next quark

- Make precision measurements of the mass and couplings to test the standard model
- Why is the top so heavy?
- Sensitive to beyond standard model physics (eg. New particles lighter than the top)

- Occurs in pairs or singularly (Evidence for in 2009)
- Production typically via hadron collisions

- Within the standard model the top decays with a branching ratio of \sim 0.998 via t \rightarrow Wb
- For ttbar pair decay is characterised by the decay products Top Pair Decay Channels

ĊS	n+jets	ı+jets	jets		
ūd	electro	uonu	tau+		
ч'	еτ	μτ	ξī	tau+jets	
' ' .	eμ	dif	μτ	muon+jets	
θ	eQ	eμ	eτ	electron+jets	
Necal	e ⁺	μ^+	τ^{+}	иd	cs

Decay Classification

- Decays identified as:
 - Fully hadronic
 - Semi leptonic
 (e,µ)
 - Dileptonic (e,µ)
 - τ + X
- Studies have typically focused on the leptonic channels

Discovery

• Took place at the Fermilab TeVatron in 1994/5 (Run I $\sqrt{s} = 1.8$ TeV) by the CDF and D0 collaborations

The TeVatron

Proton – antiproton collider operational since 1992:

Run I : 1992 – 1996 : 1.8TeV : 160pb⁻¹ (Per experiment)

Run II : March 2001 – date : 1.96TeV

10 March 2010

CDF Cross Section

- Most recent value combines four independent measurements of the total cross section:
 - Semileptonic channel (Artifical neural net)
 - Semileptonic channel (Secondary vertex b-tag)
 - Dileptonic channel (Secondary vertex b-tag)
 - Hadronic channel (Likelihood fit to top mass)
- Measurements combined using a matrix technique (Gives a weight to each channel)

CDF Cross Section

10 March 2010

D0 Cross Section

- Produce a series of measurements for different channels and selections
- Take cross section ratios to aid systematics and look for new physics
- Assumed top mass of 170GeV/c² and SM branching ratios
- 1fb⁻¹ data
- All measurements in agreement with each other and with the SM

D0 Cross section

Top at the LHC

- All current direct top measurements come from the TeVatron (Due to cease running in 2012?) The LHC is the future of tep
 - The LHC is the future of top physics!

A Top Factory

proton - (anti)proton cross sections

- The LHC was designed as a $\sqrt{s} = 14$ TeV proton – proton collider with an initial integrated luminosity of 10fb⁻¹/ year
- Standard model ttbar cross section at 14TeV is ~886pb
- Expected number of top pairs $\sim 9 \times 10^6$ / year
- Total number of pairs seen at CDF is ~35000
- The LHC is a top factory!

LHC Startup Sep. 2008

Static magnet test prior to 14TeV running

10 March 2010

Impact on top physics

- Damaged sections were repaired and upgraded
- Non damaged sectors were not treated in the same way to avoid warming up
- 14TeV running postponed
- 10TeV and 7TeV running considered

10 March 2010

Impact on top physics

• $\sigma_{\rm tt}$ (\sqrt{s} = 14 TeV) \approx 886 pb

•
$$\sigma_{\rm tt}$$
 (\sqrt{s} = 10 TeV) \approx 403 pb

- For early physics at 10TeV considered 200pb⁻¹:
 - Corresponds to 80600 events
- For 7TeV considered 1fb⁻¹:
 - Corresponds to 161000 events
- Current TeVatron run II:
 - Corresponds to 34500 events

ATLAS at the LHC

The ATLAS Detector

10 March 2010

10 March 2010

- Two ttbar cross section notes prepared last summer based on 200pb⁻¹ at 10TeV
 - Single Lepton channel
 - Dilepton channel
- Theoretical SM ttbar cross section of 400pb \pm 11% (NLO) and 400pb \pm 6% (NNLO) for $M_{TOP} = 172.5 GeV$
- Analyses deliberately designed to be simple until the detector is fully understood (I.e. Cuts based, no b-tag)
- Work currently in progress on 7TeV equivalent (Monte Carlo now available)

Semileptonic Channel

23

• Assumes 200pb⁻¹ at 10TeV

- Base selection:
 - 1 lepton (e or μ) with $p_T > 20 \text{ GeV}$
 - Lepton to have passed 15GeV single lepton trigger (efficiency from data)
 - Et_{MISS} > 20 GeV
 - ≥ 4 jets with $p_T > 20 GeV$
 - ≥ 3 jets with $p_T > 40 GeV$
- Reconstruct the hadronic top as the three jets with the highest combined $p_{_{\rm T}}$ (35% efficient)
- Option to require one of the hadronic top two jet combinations to lie within 10GeV of the reconstructed W mass (Measured from peak of W combination distribution)

Semileptonic selection

Numbers of Selected Events							
	Electror	n Analysis	Muon Analysis				
Sample	default	+M _W -cut	-cut default + <i>M</i> _W -cut				
tī	2600	1286	3144	1584			
W+jets	1305	448	1766	628			
single top	210	81	227	98			
$Z \rightarrow ll$ +jets	148	43	144	49			
hadronic $t\bar{t}$	16	10	11	5			
W $b\bar{b}$	21	7	32	10			
WW	11	6	14	7			
WZ	3	1	5	2			
ZZ	0.4	0.2	0.5	0.2			
Signal	2600	1286	3144	1584			
Background	1715	598	2199	799			
S/B	1.5	2.1	1.4	2.0			

 Applying the W_{MASS} cut halves the statistics but increases the S/B ratio by a factor of 1.4

> Table and plots normalised to 200pb⁻¹

10 March 2010

25

gaussian to replicate the combined signal and background
Integrate the gaussian to estimate the number of ttbar events

- Plot the three jet invariant mass distribution after the W mass cut
 Use a maximum likelihood fit with a
- Mass Fit
 Plot the three jet invariant mass distribution after the W mass out

Cut and Count

and data

Measure cross section by counting events $\sigma = Obtain \epsilon$ from monte carlo and N_{bka} fr om Monte Carlo

Semileptonic predictions

$$\sigma = \frac{N_{\rm sig}}{\mathscr{L} \times \varepsilon} = \frac{N_{\rm obs} - N_{\rm bkg}}{\mathscr{L} \times \varepsilon}$$

Results

	Cut and Count method				Fit method	
Source	e-ana	alysis	μ-analysis		e-analysis	μ -analysis
	default	+M _W -cut	default	+M _W -cut	+M _W -cut	+M _W -cut
	(%)	(%)	(%)	(%)	(%)	(%)
Stat.	± 2.5	± 3.4	±2.3	±3.1	± 14.1	± 15.2
Lepton ID eff.	± 1.0	± 1.0	± 1.0	± 1.0	\pm 1.0	\pm 1.0
Lepton trig. eff.	± 1.0	± 1.0	± 1.0	± 1.0	\pm 1.0	\pm 1.0
50% W+jets	± 25.1	± 17.4	± 28.1	±19.8	± 3.3	± 5.6
20% W+jets	± 10.0	± 7.0	± 11.2	±7.9	\pm 1.5	± 2.6
JES (10%,-10%)	+24.8-23.4	+15.9-19.1	+20.5-22.3	+11.9-17.9	-14.4	-15.4
JES (5%,-5%)	+12.3-11.9	+8.6-9.3	+10.4-10.9	+6.1-8.4	-3.7	-3.9
PDFs	±1.6	\pm 1.9	± 1.2	\pm 1.4	\pm 1.9	\pm 1.4
ISR/FSR	+9.1-9.1	+7.6-8.2	+8.2-8.2	+5.2-8.3	-12.9	-12.9
Signal MC	±3.3	\pm 4.4	± 0.3	± 2.8	\pm 4.5	\pm 1.4
Back. Uncertainty	± 0.6	± 0.4	± 0.5	± 0.4	-	-
Fitting Model	-	-	-	-	\pm 3.3	\pm 4.7
10% Lumi.	±11.6	± 11.2	± 11.4	± 11.1	± 10	± 10
20% Lumi.	± 23.2	± 22.3	± 22.8	± 22.2	± 20	± 20
Tot. without Lumi.	+18.8-18.5	+14.4-15.2	+17.5-17.7	+11.9-14.7	+6.4 -14.9	+6.0 - 14.8

Error improved in the cut and count method by application of W mass cut

Results

- Assume lepton trigger, 5% JES error, 20% uncertainty on W+jets and 20% luminosity error
- ElectronCutandCount $\frac{\Delta\sigma}{\sigma} = (3(\text{stat})^{+14}_{-15}(\text{syst}) \pm 22(\text{lumi}))\%$ **Baseline Cut** $\texttt{MuonCutandCount} \frac{\Delta \sigma}{\sigma} = (3(\texttt{stat})^{+12}_{-15}(\texttt{syst}) \pm 22(\texttt{lumi}))\%$ and Count Include W mass cut ${\tt ElectronFit} \frac{\Delta\sigma}{\sigma} ~=~ (14({\tt stat})^{+6}_{-15}({\tt syst})\pm 20({\tt lumi}))\%$ **Baseline Fit** $\texttt{MuonFit}\frac{\Delta\sigma}{\sigma} ~=~ (15(\texttt{stat})^{+6}_{-15}(\texttt{syst})\pm 20(\texttt{lumi}))\%$ Analysis without the use of MET $\texttt{VariantAnalysis:ElectronCutandCount} \frac{\Delta\sigma}{\sigma} = (3(\texttt{stat})^{+19}_{-21}(\texttt{syst}) \pm 26(\texttt{lumi}))\%$ $\texttt{VariantAnalysis:MuonCutandcount} \frac{\Delta\sigma}{\sigma} = (3(\texttt{stat})^{+20}_{-20}(\texttt{syst}) \pm 23(\texttt{lumi}))\%$
 - For a standard model assumption, the error on the cross section for 200pb⁻¹ at 10TeV is expected to be less than 20% (Plus luminosity error)

Dileptonic Channel

- Assumes 200pb⁻¹ at 10TeV
- Consider ee, $\mu\mu$ and $e\mu$ channels
- Base selection:
 - Two oppose sign leptons with $p_{T} > 20 GeV$
 - Require single lepton trigger of $p_T > 15 GeV$

$$\ge 2$$
 jets with $p_T > 20 GeV$

 $-Et_{MSS} > 20GeV$

- Cut and count method for cross section calculation
- Assume 20% luminosity error

Results

$\Delta\sigma/\sigma$ (%)	ee channel	$\mu\mu$ channel	$e\mu$ channel	combined
Stat only	-7.5 / 7.8	-6.0/6.2	-4.0/4.1	-3.1/3.1
Luminosity	-17.3 / 26.3	-17.4 / 26.2	-17.4 / 26.2	-17.4 / 26.2
Electron Efficiency	-4.5 / 5.0	0.0 / 0.0	-2.2 / 2.4	-1.9/1.9
Muon Efficiency	0.0 / 0.0	-4.6 / 5.2	-2.1 / 2.2	-2.2/2.3
Lepton Energy Scale	-0.3 / 1.6	-2.4/2.0	-0.5 / 0.5	-0.8 / 0.8
Jet Energy Scale	-3.4 / 3.2	-3.0/4.5	-2.5 / 2.5	-2.8/3.0
PDF	-2.1 / 2.3	-1.4/1.6	-1.6 / 1.8	-1.7 / 1.8
ISR FSR	-4.0/4.2	-3.6/3.7	-3.5/3.5	-3.6/3.7
Signal Generator	-4.7 / 5.4	-4.6 / 5.4	-4.7 / 5.3	-4.7 / 5.3
Cross-Sections	-0.3 / 0.3	-0.3/0.3	-0.3/0.3	-0.3 / 0.3
Drell Yan	-1.4 / 1.3	-2.2 / 2.2	-0.5 / 0.5	-0.8 / 0.9
Fake Rate	-9.7 / 9.5	-1.1 / 1.1	-6.2/6.2	-4.0 / 4.0
All syst but Luminosity	-12.7 / 13.9	-8.9/10.2	-9.4 / 10.2	-8.7 / 9.6
All systematics	-21.0 / 30.3	-19.3 / 28.3	-19.5 / 28.5	-19.3 / 28.1
Stat + Syst	-22.3/31.3	-20.2 / 29.0	-19.9 / 28.8	-19.5 / 28.3

Overall error (200pb⁻¹): $3.1(\text{stat})^{+9.6}_{-8.7}(\text{syst})^{+26.2}_{-17.4}(\text{lumi})\%$

Why look at taus?

10 March 2010

31

15%

21%

- Make better use of the available ttbar events:
 - Many ttbar studies use the semileptonic channel but usually only considering the electron or muon cases. These together have a combined branching ratio of 30%.
 - 21% of ttbar events contain one or more decays to taus. By making use of ttbar events containing a single tau lepton the size of the useful semileptonic dataset may be extended.

- Tau final states are predicted for a number of as yet unseen processes:
 - Standard model higgs boson (ttH-ttτ)
 - MSSM Higgs (H/A $\rightarrow \tau \tau$)
 - Non standard model top decays

Charged Higgs would be expected to couple preferentially to the tau

Tau Problems

- Unlike electrons and muons, taus decay within the detector volume (Electroweak)
- Decay produces two signatures:
 - Leptonic
 - 17.8% τ→eν
 - 17.8% τ→μν
 - Hadronic
 - 64.8% Decays to pions, kaons etc
- Both decays have problems
 - Leptonic decays are almost indistinguishable from electron/muon production
 - Hadronic decays produce narrow jets (in a hadronic enviroment)

- "Leptonic" taus
- Hadronic taus
 - 1 prong (1 charged pion/kaon)
 - 3 prong 3 charged pions/kaons)
 - 5 prong(5 charged pions/kaons)
- Note that the hadronic modes can also include any number of neutral pions.

TeVatron work

- D0 measurement in the dileptonic channel with one tau in the final state
- Used 1.2fb⁻¹ data and observed
 - 19 signal events in the $\mu + \tau$ channel
 - 17 signal events in the $e + \tau$ channel
- Combining channels for a 170GeV top mass:

 $\ell + \tau : \sigma(t\bar{t}) = 6.75^{+1.91}_{-1.70}(\text{stat})^{+1.49}_{-1.31}(\text{syst}) \pm 0.39(\text{lumi}) \text{ pb.}$

 Combining with an earlier 1fb⁻¹ measurement and using a top mass of 175GeV:

 $\ell + \tau : \sigma(t\bar{t}) = 7.32^{+1.34}_{-1.24}(\text{stat})^{+1.20}_{-1.06}(\text{syst}) \pm 0.45(\text{lumi}) \text{ pb.}$

 All results consistent with other D0 measurements and the standard model

- Triggering
- Event selection

37

Triggering Taus in ATLAS

- For standard
 leptonic tops, trigger
 efficiencies are
 estimated from data
 by Z→II decays
 (Tag and probe)
- Examined whether
 it is possible to do
 the same for taus

10 March 2010

Neil Collins : University of Birmingham

38

- ATLAS trigger has 3 levels
- L1 Calorimeter trigger:
 - Looks for high pt electrons and photons, jets and taus decaying into hadrons, and large missing and total Et (transverse energy)
 - For electron, photon and tau triggers, isolation can be applied to reduce the jet background

ATLAS

L1 Continued.....

Whole Trigger

Trigger Item	$W_{\tau \rightarrow hX}$	$Z_{\tau\tau}$	$t\bar{t}$
tau12	74.8 ± 0.3	88.8 ± 0.1	88.6 ± 0.2
tau16i	73.5 ± 0.3	86.0 ± 0.1	83.5 ± 0.3
tau20i	75.9 ± 0.3	85.3 ± 0.2	84.1 ± 0.3
tau29i	78.9 ± 0.5	83.3 ± 0.2	83.9 ± 0.4
tau38i	78.8 ± 0.9	78.7 ± 0.4	81.2 ± 0.5
tau50	71.7 ± 1.6	67.7 ± 0.7	70.0 ± 0.7
tau84	78.8 ± 4.0	80.3 ± 1.7	74.5 ± 1.5

Comparison of TAU_25 and TAU 25I triggers for ttbar and $Z \rightarrow \tau \tau$ events

Tau trigger efficiencies in top events compare well with those in cleaner environments

Good Tau Selection

- Selection relies on identifying narrow jets with low track multiplicity
- Select hadronic taus only
- Dependant on highly correlated calorimeter variables:
 - Shower width
 - Jet isolation

Must have strong rejection power against QCD jets (main background)

Tau Safe Cuts

- For established running multivariant techniques will be used for good tau selection
- In early data a set of simple "safe cuts" based on 4 calorimeter variables in 5 p_T bins (10-25, 25-45, 45-70, 70-100 and >100GeV) have been developed
- Selection subdivided into:
 - Loose, medium and tight cuts
 - 1-Prong and 3-Prong taus
- Cuts optimized by comparing the shapes of the variable distributions for signal and background samples
 - Signal: Mix of $Z \rightarrow \tau \tau$ and $A \rightarrow \tau \tau$ events
 - Background: Pythia QCD multijet (p₁ 10-500GeV)
 - Originally optimized for 14TeV

Tau Safe Cuts

Safe Variables for calo approach

EMRadius: taus have a smaller transverse shower profile than QCD-jets -<u>This is the strongest</u> <u>variable</u>

Clusters from had. decaying taus are well collimated => tighter isolation criteria are used

Tight cuts
 Medium cuts
 Loose cuts

Bjorn Gosdzik DESY

10 March 2010

Trigger and selection work!

10 March 2010

The Future

- Possible to trigger on taus in tops
- Selection cuts seem useable
- LHC run I statistics compare well to TeVatron dataset
- Future looks bright for ATLAS top cross section measurements with the potential for exciting new work in the tau sector

10 March 2010

Backup

10 March 2010