

Trapped Antihydrogen

Mike Charlton, Physics, Swansea University UK

Motivation for Antihydrogen Experiments

Processes and Some Insights from Simulations

Positron and Antiproton Clouds - Collection and Manipulation

Antihydrogen Production

The ALPHA Antihydrogen Trapping Experiment

| Antihydrogen | = | Hydrogen | ?

CPT Theorem. (Based upon Lorentz Invariance, spin-statistics and locality)

An outside view ...?

Quote from John Ellis (CERN Theory Division) writing in his article "Antimatter matters" a "news and views feature" from *Nature* 424 (2003) 631-4

" But CERN has recently embarked on an experimental programme ... to look for any differences between the structure (...) of hydrogen and antihydrogen down to one part in 10¹² or 10¹⁵. Admittedly we theorists do not really expect that CPT violation will show up in these experiments – but we have been wrong before."

1S-2S transition in H; Niering *et al.* **PRL 84 (2000) 5496** 2 466 061 413 187 103(46) Hz, or 1.8 parts in 10¹⁴

Ground State Hyperfine transition in H; Essen *et al.* Nature 229 (1971) 110

1 420 405 751.7667(9) Hz, or 6.4 parts in 10¹³

Birmingham December 7th 2011

	Radiative Recombination Three-Body Recombination				
Principle	e ⁺ y	e+			
Temperature depend.	∝ T -2/3	$\propto T^{-9/2}$			
e ⁺ density dependence	∝ n _e	$\propto n_e^2$			
Final internal states	<i>n</i> < 10	<i>n</i> >> 10			
Expected rates	few 10 Hz	unknown			
[J. Stevefelt et al., PRA 12 (1975) 1246] [M. E. Glinsky et al., Phys. Fluids B 3 (1991) 1279]					

The TBR is a quasi-elastic encounter of 2 positrons in the vicinity of an antiproton. Energy exchange $\sim k_B T_e$, which will be the same order of the binding energies.

Thus, these are very weakly bound states which are strongly influenced by the ambient fields

Electric and magnetic fields of the Penning trap

AND

The plasma self electric field

$$E_r(r) = n_e e r / 2\varepsilon_0$$

The combination of E_r and B_z results in a tangential drift speed, which to 2^{nd} order is given by:

$$v_d = -E(r)/B + mE(r)^2/eB^3r$$

Work of Jonsell et al., J.Phys.B 42 (2009) 215002

 $T_e = 15 \text{ K}$

Antihydrogen binding energies as the atoms leave the positron plasma

$$n_{\rho} = 10^{15} \text{ m}^{-3} \text{ (x)}; n_{\rho} = 5 \text{ x } 10^{13} \text{ m}^{-3} \text{ (+)}$$

Antihydrogen binding energies on detection $n_e = 10^{15} \text{ m}^{-3}$ (+); 5 (\circ), 2 (Δ) and 1 (\Box) x 10¹⁴ m⁻³ and 5 x 10¹³ m⁻³ (x)

Radial distribution of antihydrogen formation positions at different time intervals

Positron Accumulation

Accumulation time / sec.

Antiprotons: CERN's "Accelerators"

Antiprotons: the AD, Antiproton Decelerator

From PS: 1.5x10¹³ protons/bunch, 26 GeV/c

Antiprotons: Capture and Cooling

Method devised by Gabrielse and co-workers: PRL, 57, 2504 (1986) and PRL ,63, 1360 (1989)

The trap walls are cooled to 15 K

Antiproton Capture Trap

Similar apparatus used currently in ALPHA

trap temperature

ALPHA will routinely stack up to 8 shots from the AD to provide $\sim 2 \times 10^5$ antiprotons into mixing

G. Andresen et al, PRL, 101 (2008) 203401

Sympathetic compression of an antiproton cloud by electrons

Typically use a fixed frequency rotating wall technique at 10 MHz

Andresen et al. PRL (2010) 105 013003

Typically (9 ± 4) K is lowest achievable at the lowest well available at which (6 ± 1) % of the initial antiprotons remain

Antiprotons into the AD at ~ 3.5 GeV (~ $3x10^7$ from $1.5x10^{13}$ protons at 26 GeV) ~ 100 s of cooling in the AD to 5.3 MeV; ejection in a 100 ns burst Capture and electron cooling in a Penning Malmberg trap for ~ 20 s (ϵ ~ 10^{-3}) Stacking of up to 8 AD shots. Takes ~ 1000 s for ~ 2 $x10^5$ cold antiprotons Shuffle to 1 T region. Recool and sympathetic radial compression for about 60 s Evaporative cooling if desired to very low temperatures. Takes ~ 10 s

... Now ready for mixing with positrons ...

- Fill positron well in mixing region with 75-10⁶ positrons;
 allow them to cool to ambient temperature (15 K)
- 2. Launch 10⁴ antiprotons into mixing region
- 3. Mixing time 190 sec continuous monitoring by detector
- 4. Repeat cycle every 5 minutes

For comparison:

"hot" mixing = continuous RF heating of positron cloud

(suppression of formation of antihydrogen)

- Charged tracks to reconstruct antiproton annihilation vertex.
- Identify 511 keV photons from e⁺-e⁻ annihilations.
- Identify space and time coincidence of the two.

- Reconstruct annihilation vertex
- Search for 'clean' 511 keV-photons: exclude crystals hit by charged particles + its 8 nearest neighbours
- '511 keV' candidate = 400... 620 keV no hits in any adjacent crystals
- Select events with two '511 keV' photons
- Reconstruction efficiency $\leq 0.25 \%$

University of Aarhus: G.B. Andresen, P.D. Bowe, J.S. Hangst Auburn University: F. Robicheaux University of British Columbia: A. Gutierrez, W.N. Hardy University of Calgary: T. Friesen, R. Hydomako, R.I. Thompson University of California, Berkeley: M. Baquero-Ruiz, J. Fajans, C. So, J.S. Wurtele **CERN:** *E. Butler* University of Liverpool: P. Nolan, P. Pusa NRCN, Negev: E. Sarid Riken: D. M. Silveira, Y. Yamazaki Federal University of Rio de Janeiro: C.L. Cesar Simon Fraser University : M.D. Ashkezari, M.E. Hayden York University, Toronto : S. Menary Swansea University: W. Bertsche, M. Charlton, A. Deller, S.J. Eriksson, A. Humphries, N. Madsen, D.P. van der Werf Stockholm University : S. Jonsell University of Tokyo: R.S. Hayano TRIUMF: M. C. Fujiwara, D.R. Gill, L. Kurchaninov, K. Olchanski, A. Olin, J.W. Storey

Main Aim

To superimpose a magnetic well neutral trap onto an antihydrogen production and detection apparatus. Thus, to trap antihydrogen to promote spectroscopic comparisons with hydrogen.

Complexities are many including;

Effect of neutral trap fields on stability of charged particle clouds

Detection involves pion trajectory detection and vertex reconstruction ...

Cryogenic traps ...

Laser access ...

$$U = -\vec{\mu} \cdot B \qquad \qquad \text{Well depth} \sim 0.7 \text{ K/T}$$

Based on Berkeley/Swansea results: standard quadrupole arrangement was rejected by ALPHA as the magnetic field gradient across charged

> plasmas is too great; see Fajans et al., Phys. Rev. Lett. 95 155001 (2005)

Plasma lifetimes may be reduced in the presence of quadrupolar field

ansea Universit

3-layer silicon antiproton annihilation vertex detector surrounding the mixing region is not shown

ALPHA: An Antihydrogen Trapping Experiment

ALPHA: An Antihydrogen Trapping Experiment

LETTER

doi:10.1038/nature09610

Trapped antihydrogen

G. B. Andresen¹, M. D. Ashkezari², M. Baquero-Ruiz³, W. Bertsche⁴, P. D. Bowe¹, E. Butler⁴, C. L. Cesar⁵, S. Chapman³, M. Charlton⁴, A. Deller⁴, S. Eriksson⁴, J. Fajans^{3,6}, T. Friesen⁷, M. C. Fujiwara^{8,7}, D. R. Gill⁸, A. Gutierrez⁹, J. S. Hangst¹, W. N. Hardy⁹, M. E. Hayden², A. J. Humphries⁴, R. Hydomako⁷, M. J. Jenkins⁴, S. Jonsell¹⁰, L. V. Jørgensen⁴, L. Kurchaninov⁸, N. Madsen⁴, S. Menary¹¹, P. Nolan¹², K. Olchanski⁸, A. Olin⁸, A. Povilus³, P. Pusa¹², F. Robicheaux¹³, E. Sarid¹⁴, S. Seif el Nasr⁹, D. M. Silveira¹⁵, C. So³, J. W. Storey⁸[†], R. I. Thompson⁷, D. P. van der Werf⁴, J. S. Wurtele^{3,6} & Y. Yamazaki^{15,16}

Published in Nature **468** (2010) 673

ALPHA: An Antihydrogen Trapping Experiment

Neutral trap depth $\sim 0.5 \text{ K}$

30,000 pbars at 200K 2M positrons at 40 K (evaporatively cooled) Auto-resonant injection and mix for 1 sec. Clear the charge particles Turn off the neutral trap (1/e time ~ 9 ms) Search for pbar annihilations from Hbar (bias fields to eject any charged particles still trapped)

Trapped Antihydrogen Birmingham December 7th 2011

Swansea University

Prifysgol Abertaw

Searching for trapped antihydrogen

Shut off magnetic minimum trap (1/e time ~ 9 ms)

Interrogate output of vertex detector in 30 ms time window after the shut off

Apply cuts to data to reject cosmic ray events

Initial publication – 38 events

Table 1 | Number of annihilations identified in the 30 ms following

Type of attempt	Number of attempts	Antiproton annihilation events		
No bias	137	15		
Left bias	101	11		
Right bias	97	12		
No bias, heated positrons	132	1		
Left bias, heated positrons	60	0		
Right bias, heated positrons	54	0		

Trapped Antihydrogen Birmingham December 7th 2011

309 events

Nature Physics – June 2011

ALPHA: An Antihydrogen Trapping Experiment

Confinement Time (s)	0.4	10.4	50.4	180	600	1000	2000
Number of attempts	119	6	13	32	12	16	3
Detected events	76	6	4	14	4	7	1
Estimated background	0.17	0.01	0.02	0.05	0.02	0.02	0.004
Statistical significance (<i>o</i>)	>>20	8.0	5.7	11	5.8	8.0	2.6
Trapped antihydrogen per attempt	1.13 ±0.13	1.76 ±0.72	0.54 ±0.26	0.77 ±0.21	0.59 ±0.29	0.77 ±0.29	0.59 ±0.59

2011 beamtime – try microwave positron spin flip experiment as a first probe of the ground state hyperfine structure

In parallel, work on new apparatus to allow laser access for 1S-2S 2-photon transition

CERN has recently approved the "ELENA" project and will construct an extra ring to further decelerate antiprotons to about 100 keV – this will increase our capture efficiency for low energy antiprotons by a factor of around 100! (About 5 years from now ...)

Members of the ATHENA collaboration

Members of the ALPHA collaboration

Colleagues at Swansea

UK financial support from EPSRC

AD staff and all support from CERN

