Searching for Supernova Relic Neutrinos

Dr. Matthew Malek University of Birmingham – HEP Seminar 11 May 2011

Outline

- Introduction: A Brief History of Neutrinos
- Theory
 - Supernova Neutrino Emission
 - Supernova Relic Neutrinos
- Super-Kamiokande Detector
- Data Reduction
- Analysis and Results
- Conclusions and Future

Enter The Neutrino

• 1910s - 1920s: Studies of nuclearβ decays

Did not appear to conserve energy!

•1956: $oldsymbol{
u}$ finally discovered by Cowan and Reines.

Used nuclear reactor as source of neutrinos. Nobel prize 1995

In The Mine, But Looking At The Stars

• First solar neutrino detector: • Homestake mine, S. Dakota • Ray Davis, Brookhaven • 1967 – 1998 • 615 tons of C₂Cl₄ (cleaning fluid!) • "Radiochemical" detector: $v_e + {}^{37}Cl \rightarrow {}^{37}Ar^* + e^-$

<u>Good News:</u>

First discovery of solar v !

Bad News:

Farfewerthan anticipated!

Supernova Neutrinos: The Plot Thickens

- On 23-Feb-1987, a burst of V came from Sanduleak -69° 202 in Large Mag. Cloud. (now known as Supernova 1987a)
- 19 (or 20) SN neutrinos seen in two water Cherenkov experiments:
 11 (or 12) at KamiokaNDE
 8 at the competing IMB
- H undreds of papers written analysing these few neutrinos!

- Between solar and supernova ${f V}$ detections, the field of neutrino astronomy was born!
- In 2002, Ray Davis and Masatoshi Koshiba shared Nobel Prize for this accomplishment (along with discovery of x-ray astronomy).

Main Sequence

Classify by spectral lines :

Got Hydrogen?

Classify by spectral lines :

Classify by spectral lines :

Supernova Neutrino Emission: Start of the Collapse

$e^- + A(N,Z) \rightarrow v_e + A(N+1,Z-1)$

- Mean free path of neutrinos > core size
- Neutrinos escape promptly

Supernova Neutrino Emission: Neutrino Trapping

- Core density increases as collapse continues
- Mean free path of neutrinos shrinks w/ increasing density
- \bullet v trapped by coherent scattering off nuclei:

 ν + A(N,Z) \rightarrow ν + A(N,Z)

Supernova Neutrino Emission: Shock Wave Formation

- Inner core reaches nuclear densities
- Neutron degeneracy halts gravitation attraction
- Inner core rebounds, causing shock wave
- Shock wave propagates through outer core
- v-sphere larger; v still emitted from outer core

Supernova Neutrino Emission: Neutronization Burst

- Shock slows infall and dissociates nucleons
- Shock loses 8 MeV per dissociated nucleon
- Electrons captured on dis. protons produce v_e via:

$$e^{-} + p \rightarrow Ve + n$$

Supernova Neutrino Emission: Neutrino Cooling

Supernova Neutrino Energy Spectra

 $V\mu$ and $V\tau$ do not experience CC \rightarrow smaller V-sphere \rightarrow higher E More n than p in proto-neutron star $\rightarrow Ve$ decouples before Ve

K.Takahashi, M.Watanabe & K.Sato, Phys. Lett. B 510, 189

Supernovae Relic Neutrinos

- To date, only SN v burst seen on 23-Feb-1987 (Sanduleak -69° 202)
- Diffuse backgrnd of SN relic v should exist! (Called 'SRN')
- All 6 types of v emitted in SN BUT we only search for $\overline{v_e}$
- Inverse β x-section dominant:

 $\overline{\mathbf{v}_{e}} + \mathbf{p} \rightarrow \mathbf{e}^{+} + \mathbf{n}$

 $(E_e = E_v - 1.3 \text{ MeV})$

T.Totani & K.Sato, Astropart. Phys. 3, 367

Theoretical Models

- Predictions generated from SN model, cosmology, etc.
- SRN detection provides info on SN rate, SFR, galaxy ev.
- Low thresh ightarrow probe high Z
- Flux predictions: $F_{SRN} = 2 - 54 \overline{v_e} \text{ cm}^{-2} \text{ s}^{-1}$

Population synthesis (Totani *et al.*, 1996) Constant SN rate (Totani *et al.*, 1996) Cosmic gas infall (Malaney, 1997) Cosmic chemical evolution (Hartmann *et al.*, 1997) Heavy metal abundance (Kaplinghat *et al.*, 2000) LMA ν oscillation (Ando *et al.*, 2002)

The Super-Kamiokande Detector

- 50,000 ton water Cherenkov detector
- Located 1,000 m underground
- 11,146 inward-facing 50 cm
 PMTs view fiducial volume (22,500 t)
- 1,885 outward-facing 20 cm
 PMTs monitor incoming events
- 5 MeV energy threshold

Detection Method

Solar: $v_e + e^- \rightarrow v_e + e^-$ SN: $\overline{v}_e + p \rightarrow e^+ + n$

The LINAC Calibration System

- Position of LINAC electrons known to within few mm
- LINAC used to calibrate absolute energy scale, & detector resolutions (angular, vertex and energy)

Energy Calibration for E > 18 MeV

Use μ -e decay for E-scale μ^+ gives basic Michel spec. μ^- can be captured on ¹⁶O

Ave. μ -e event has E = 37 MeV Systematics: 1.23% \pm 0.24%

SRN Data Reduction

We cannot 'tag' SRN events! Understanding BG vital!

<u>Reducible</u>

- μ induced spallation
- Atmospheric ν_{μ}
- Nuclear de-excitation γ
- Solar neutrinos

<u>Strategy:</u> Remove 'reducible' BG with cuts Differentiate 'irreducible' BG from SRN signal by shape

Irreducible

- Atmospheric v_e
- Atm. $\nu_{\mu} \rightarrow \mu \rightarrow Decay-e$ [Muon is "invisible"]

Spallation Cut

- Cosmic ray μ spall ¹⁶O nuclei \rightarrow emit β particles
- $E_{\beta} = 3-21 \text{ MeV}$; $\tau_{\beta} > 8.5 \text{ msec}$ Apply spallation cut to data w/ E < 34 MeV (due to E_{res} of SK)
- Cut <u>all</u> events with $\Delta T < 0.15s$. Likelihood func. uses $\Delta T & \Delta L$ to cut long-lived spallation
- Ability to remove spallation sets lower threshold (18 MeV)

Sub-Event Cut

Cherenkov Angle Cut: Basic Idea

- Remaining μ tagged by Cherenkov angle
- Look for a collapsed ring: $\cos(\theta_c) = 1 / (n \bullet \beta)$

Cherenkov Angle Cut: Reconstruction Method

Cherenkov Angle Cut: Electron Reconstruction

Cherenkov Angle Cut: *Muon Reconstruction*

Cherenkov Angle Cut: Cut Results

- Cut events w/ $\theta_{\rm C}$ < 38° to remove > 97% of μ
- Cut events w/ $\theta_{\rm C} > 50^{\circ}$ to remove nuclear de-excitation events

Cherenkov Angle Cut: *Multi-γReconstruction*

Solar Direction Cut: Motivation

• Solar neutrinos:

created by nuclear fusion in the Sun

 $4p \rightarrow ^{4}He + 2 e^{+} + 2 V_{e}$

 Flux & spectra calculated by the Standard Solar Model

Flux:

[Units are (10 ¹⁰ cm ⁻² sec ⁻¹)]

pp 5.96 (1.00 ± 0.01) pep 1.40x10⁻² (1.00 ± 0.015) hep 9.3x10⁻⁷ $(1.00\pm???)$ ⁷Be 4.82x10⁻¹ (1.00 ± 0.10) ⁸B 5.05x10⁻⁴ $\begin{pmatrix} +0.20\\ 1.00\\ -0.16 \end{pmatrix}$

Solar Neutrino Detection

Solar Direction Cut

- ◆ 18 MeV threshold is
 below hep cut-off →
 SSM predicts 1.06 events
- Potential contamination from ⁸B due to smearing
- Remove all events that point back to 30° of Sun AND have E < 34 MeV

Reduction Summary (cont.)

Final Data Sample

Signal & BG Shapes: Monte Carlo

Signal falls sharply w/ inc. energy; BG shape rises \rightarrow Use shape difference to extract SRN signal

Fitting the Final Data

Fitting the Final Data

Efficiency-Corrected Data

Background Event Rates

Michel Electrons

- Best fit to data: 174 ± 16 events
- Expected from MC:

145 ± 43 events

Atmospheric (v_e)

- Best fit to data:
 88 ± 12 events
- Expected from MC:

75 ± 23 events

Expected backgrounds fit data well! Best fit to α (# SRN events) is ZERO for all six models.

Flux Calculation

Use 90% C.L. limit on α to get full spectrum flux limits:

Where: $F = \frac{\alpha_{90}}{Np \times \tau \times \int f(E_{\nu}) \sigma(E_{\nu}) \epsilon(E_{\nu}) dE_{\nu}}$

- N_p = # of free protons in SK = 1.5×10^{33}
- $\tau = detector livetime = 1496 days = 1.29 \times 10^8$ seconds
- $f(E_v)$ = normalized SRN spectrum shape function
- $\sigma(E_v) = cross section = 9.52 \times 10^{-44} E_e p_e$
- Integral runs from E_{ν} = 19.3 MeV to 83.3 MeV

SRN Search Results

Theoretical	SK SRN	SK SRN	Predicted
Model	Rate Limit	Flux Limit	SRN Flux
Population	<3.2	<130	44
Synthesis	Evts / 22.5 kton yr	\overline{ve} / cm ² sec	$\overline{v}e / cm^2 sec$
Cosmic	<2.8	<32	5.4
Gas Infall	Evts / 22.5 kton yr	\overline{ve} / cm ² sec	\overline{ve} / cm ² sec
Cosmic Chemical	< 3.3	<25	8.3
Evolution	Evts / 22.5 kton yr	\overline{ve} / cm ² sec	\overline{ve} / cm ² sec
Heavy Metal	<3.0	<29	<54
Abundance	Evts / 22.5 kton yr	$\overline{v_e}$ / cm ² sec	$\overline{v_e}$ / cm ² sec
Constant SN Rate	< 3.4	<20	52
	Evts / 22.5 kton yr	\overline{ve} / cm ² sec	$\overline{v}e / cm^2 sec$
LMA Neutrino	< 3.5	<31	11
Oscillation	Evts / 22.5 kton yr	$\overline{v_e}$ / cm ² sec	$\overline{\nu}e$ / cm ² sec

SK Flux Limits vs. Theoretical Predictions

SK SRN Limit (90% C.L.) 📕 Predicted SRN Flux

Constant SN Model

- SRN flux scales with SN rate
- 90% C.L. limit on flux \rightarrow 90% C.L. limit on SN rate
- Prediction of 52 ve cm⁻² sec⁻¹ corresponds to SN rate of 1.6 × 10³ SN year⁻¹ Mpc⁻³ (based on ¹⁶O abundance)
- SK limit of 20 ve cm⁻² sec⁻¹ corresponds to SN rate limit of 6.2 × 10² SN year⁻¹ Mpc⁻³ ← TOO LOW!
- Previous best limit (Kam-II) was 780 $\overline{\nu_e}$ cm⁻² sec⁻¹
- SK limit is better by factor of 39!

Model-Insensitive Limit

- Full spectrum flux limits have strong model dependence, based on spectrum in low energy regions.
- Remove model dependence and get flux in directly observable region ($E_v > 19.3 \text{ MeV}$):

$$F_{\text{insen.}} = F \times \frac{\int_{19.3 \text{ MeV}}^{\infty} f(E\nu) \, dE\nu}{\int_{0}^{\infty} f(E\nu) \, dE\nu}$$

- For all models, this limit is same: $< 1.2 \overline{\nu_e} \ \mathrm{cm}^{-2} \mathrm{sec}^{-1}$
- Compare with previous limit: $< 226 \nu_e \text{ cm}^2 \text{ sec}^1$ [From Kamiokande-II, see W. Zhang *et al.* Phys. Rev. Lett. **61**, 385]

Model-Insensitive Results

Theoretical	SRN Flux Limit	Predicted SRN Flux
Model	(Ev >19.3 MeV)	(Ev >19.3 MeV)
Population	<1.2	0.41
Synthesis	\overline{Ve} / cm ² sec	\overline{ve} / cm ² sec
Cosmic	<1.2	0.2
Gas Infall	\overline{ve} / cm ² sec	$\overline{\nu e}$ / cm ² sec
Cosmic Chemical	<1.2	0.39
Evolution	\overline{ve} / cm ² sec	$\overline{v_e}$ / cm ² sec
Heavy Metal	<1.2	<2.2
Abundance	\overline{ve} / cm ² sec	\overline{ve} / cm ² sec
Constant	<1.2	3.1
SN Rate	\overline{ve} / cm ² sec	$\overline{v}e / cm^2 sec$
LMA Neutrino	<1.2	0.43
Oscillation	\overline{Ve} / cm ² sec	\overline{ve} / cm ² sec

Model-Insensitive Results vs. Flux Predictions

Other Experiments

<u>KamLAND</u>

- Lq. Scintillator (408 t fid) detector
- 1.8 MeV threshold
- After inverse β : $n + p \rightarrow d + \gamma$ (E γ = 2.2 MeV)
- By searching for the delayed γ, virtually all BG can be removed
- Threshold can be set at ~10 MeV (below which reactor ν dominate)
- Expected event rate is 0.1 ev/year due to small fiducial volume

<u>SNO</u>

- 1 kt heavy water w/ salt added
- With D₂O: $n + d \rightarrow {}^{3}H + \gamma$ (E γ = 6.3 MeV)
- With NaCl: $n + {}^{35}Cl \rightarrow {}^{36}Cl + \gamma$ (E γ = 8.6 MeV)
- Search for delayed γ after an e⁺
- Event rate 0.03 ev/yr for thresh. of E > 10 MeV

Possible Upgrade for SK?

 Neutron detection in Sł via Gadolinium? Expected Annual Event Rate Gd has large x-section • 100 t (0.2%) in SK to catch > 90% nCapture \rightarrow 8 MeV 1.5 γcascade 1 Above 12 MeV thresh. 0.5 ~ 2 SRN/year expected 0

10

20

30

Analysis Threshold (Positron Energy in MeV)

40

50

60

• First SRN discovery??

Water Cherenkov: The Next Generation

DUSEL	Hyper-Kamiokande	
• 650 kton total volume	 1,000 kton total volume 	
• 440 kton fiducial volume (= $20 \times SK$)	• 540 kton fiducial volume (= $24 \times SK$)	
• sensitivity \propto (exposure) ^{1/2}	 Current plans call for depth of 1400 – 1900 m.w.e 	
 First approximation: Detection within 3 yrs 	 Too shallow for SRN search! 	
 If Gd works in SK, scale it to larger detectors 	 Depth might not pose a problem with Gd-enriched Hyper-K 	
• May see ~40 SRN/yr \rightarrow measure E spectrum?	• HK may see ~50 SRN / yr \rightarrow Neutrino cosmology??	

Supernova Relic Neutrinos: A Summary

- SRN signal would manifest as distortion of Michel spectrum
- Above $E_e = 18$ MeV, no distortion seen \rightarrow flux limits can be set
- The Super-Kamiokande flux limits on the SRN are 1-2 orders of magnitude better than previous limits
- Some SRN models can be constrained or rejected
- An increase in sensitivity of factor 3-6 is needed to probe all models
- Future experiments (DUSEL, Hyper-Kamiokande) may be able to observe SRN due to higher statistics
- New methods, such as enhancing Super-Kamiokande with Gd, have been proposed to detect the SRN