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Introduction to evolutionary computation

Evolutionary algorithms
solution representation
fitness function
initial population generation
genetic and selection operators

Types of evolutionary algorithms
string and tree representations
hybrid representations

Applications in Particle Physics

Conclusions
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Natural selection - organisms with 
favourable traits are more likely to survive 
and reproduce than those with 
unfavourable traits (Darwin & Wallace)

Population genetics - genetic drift, 
mutation, gene flow => explain adaptation, 
speciation (Mendel)

Molecular evolution - identifies DNA as the 
genetic material (Avery); explains encoding 
of genes in DNA (Watson & Crick)

Goal of natural evolution - to generate a population of individuals of

increasing fitness (ability to survive and reproduce)
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Artificial evolution - simulation of the natural evolution on a computer

New field - Evolutionary Computation 
(subfield of  Artificial Intelligence)

Goal of evolutionary computation - to generate a set of solutions to a

problem of increasing quality

Alternative search techniques 

e.g.  Evolutionary Algorithms
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Individual – candidate solution to a problem 

Chromosome – representation of the candidate solution

decoding encoding

Gene – constituent entity of the chromosome

Population – set of individuals/chromosomes

Fitness function – representation of how good a candidate solution is

Genetic operators – operators applied on chromosomes in order
to create  genetic variation (other chromosomes)
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Initial population creation (randomly)

Fitness evaluation (of each chromosome)

Terminate?

Selection of individuals (proportional with fitness)

Reproduction (genetic operators)

Replacement of the current population with the new one

yes

no

Stop

Start RunProblem definition
Solution representation

(encoding the candidate solution)
Fitness definition
Run
Decoding the best fitted 
chromosome = solution

N
ew

 generationGenetic operators
cross-over – combining  

genetic material from  parents
mutation - randomly changes 

the values of genes 
elitism/cloning – copies the best 

individuals in the next generation
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Chromosome – representation of the candidate solution

Each chromosome represents a point in the search space

Appropriate chromosome representation 
very important for the success of  EA
influence the efficiency and complexity of the search algorithm

Representation schemes
Binary strings – each bit is a boolean value, an integer or a 

discretized real number
Real-valued variables
Trees
Combination of strings and trees
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- maps a chromosome representation into a scalar 
value

ℜ→ICF : I – chromosome dimension

Fitness function needs to model accurately the optimisation problem

Used:
in the selection process
to define the probability of the genetic operators

Includes:
all criteria to be optimised
reflects the constraints of the problem penalising the individuals
that violates the constraints

Fitness function - representation of how good (close to the optimal 
solution) a candidate solution is

The most important component of EA !
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random generation of gene values from the allowed set of  values 
(standard method)
Advantage - ensure the initial population is a uniform representation 

of the search space 

biased generation towards potentially good solutions if prior 
knowledge about the search space exists.   
Disadvantage – possible premature convergence to a local optimum

Generation of the initial population:

Size of the initial population:
small population – represents a small part of the search space 

time complexity per generation is low
needs more generations

large population – covers a large area of the search space
time complexity per generation is higher
needs less generations to converge
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Purpose
to produce offspring from selected individuals
to replace parents with fitter offspring

Typical operators
cross-over – creates new individuals combining  genetic material 

from  parents
mutation - randomly changes the values of genes (introduces new 

genetic material)
- has low probability in order not to distorts the genetic

structure of the chromosome and to generate loss of
good genetic material

elitism/cloning – copies the best individuals in the next generation

The exact structure of the operators – dependent on the type of EA
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Purpose - to select individuals for applying reproduction operators 

Random selection – individuals are selected randomly, without any
reference to fitness

Proportional selection – the probability to select an individual is proportional 
with the fitness value
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n
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CFCP
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)(

)()( P(Cn) –selection probability of the chromosome Cn
F(Cn) – fitness value of the chromosome Cn

Normalised distribution by dividing to the maximum fitness - accentuate 
small differences in fitness values (roulette wheel method)

Rank-based selection – uses the rank order of the fitness value to determine
the selection probability (not the fitness value itself)

e.g. non-deterministic linear sampling – individual sorted in decreasing 
order of the  fitness value are randomly selected

Elitism – k best individuals are selected for the next generation, without 
any modification
k – called generation gap
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EA CO

Transition from one 
point to another  
in the search space

Probabilistic rules
Parallel search

Deterministic rules
Sequential search

Starting the search
process

Set of points One point

Search surface 
information
that guides to the 
optimal solution

No derivative 
information 

(only fitness value)

Derivative information 
(first or second order)
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Hundreds of versions !

Genetic Algorithms (GA) (J. H. Holland, 1975)
Evolutionary Strategies (ES) (I. Rechenberg, H-P. Schwefel, 1975)

Tree based
Genetic Programming (GP) (J. R. Koza, 1992)

Hybrid representations 
Developmental Genetic Programming (DGP) (W. Benzhaf, 1994)
Gene Expression Programming (GEP) (C. Ferreira, 2001)

Main differences
Encoding method (solution representation)
Reproduction method

String based
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Solution representation
Chromosome - fixed-length binary string (common technique)
Gene - each bit of the string 

genes chromosome

Reproduction
Cross-over (recombination) – exchanges parts of two chromosomes 

(usual rate 0.7)

Mutation – changes the gene value (usual rate 0.001-0.0001)

1 0 0 1 1 1
1 1

0 1

Point choosen randomly

1 0 0 1 1 0 0 11 0

1 0 0 1 1 0 1 1

Point choosen randomly
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Mainly for large-scale optimisation and fitting problems

Experimental PP
event selection optimisation (A. Drozdetskiy et. al. Talk at ACAT2007)
trigger optimisation (L1 and L2 CMS SUSY trigger – NIM A502 (2003) 693)
neural-netwok optimisation for Higgs search 

(F. Hakl et.al., talk at STAT2002)

Theoretical/phenomenological  PP
fitting isobar models to data for p(γ,K+)Λ (NP A 740 (2004)147)
discrimination of SUSY models (JHEP 0407:069,2004; hep-ph/0406277)
lattice calculations (NP B 73 (1999) 847; 83-84 (2000)837)
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Discrimination of SUSY models (B.C. Allanach et.al, JHEP 0407:069,2004)
GA used to estimate a rough accuracy required for sparticle mass measurements 

and predictions to distinguish SUSY models 

Ik – input space of free parameters of model k
M – space of physical measurements (sparticle masses) 
Each point in Ik is (potentially) mapped into M with a set of renormalisation group 
equations (RGE) => model footprint

Distance measure
BA

BA

MM

MM
rr

rr

+

−
=Δ A,B – points in two footprints

Minimum ∆ (over points in input space) – estimate of accuracy of
mass measurements needed to distinguish the models
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GA used to minimise ∆

Chromosome – real numbers: values of the free parameters of the
two models to be compared

MIR – mirage scenario
EUR – early unification

∆ = 0.5%
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GP search for  the computer program to solve the problem, not for the 
solution to the problem.

Computer program - any computing language (in principle)
- LISP (List Processor) (in practice)

LISP - highly symbol-oriented

a*b-c (-(*ab)c)
-

Mathematical 
expression S-expression

Graphical representation of S-expression

* c

a b

functions (+,*) 
and 

terminals (a,b,c)
(variables or constants)

Chromosome: S-expression - variable length => more flexibility
- sintax constraints => invalid expressions

Solution representation

Reproduction 
Cross-over (recombination) and Mutation (usualy)
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-

a b

sqrt

(sqrt(+(*aa)(-ab)))
)(2 baa −+ -

*

b b

-

a

bsqrt

(-(sqrt(-(*bb)a))b)
bab −−2

a

Parents

Offspring

-

*

b b

-

a

sqrt

(-sqrt(-(*bb)a))a)
aab −−2

-

*

a a

-

a b

sqrt

)(2 baa −−

(sqrt(-(*aa)(-ab)))

function replaced by another function
terminal replaced by another terminal
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Experimental PP - event selection
Higgs search in ATLAS K. Cranmer et.al.,  Comp. Phys. Com 167, 165 (2005).

D, Ds and Λc decays in FOCUS (J.M. Link et. al., NIM A 551, 504 (2005); PL B624, 166 (2005))

Chromosome: candidate cuts/selection rules - tree of:
functions: mathematical functions and operators, boolean operators
variables: vertexing variables, kinematical variables, PID variables

)005.01(100002 n
S

BS
×+×

+
n - number of tree nodes 

penalty based on the size of the tree
(big trees must make significant contribution to bkg reduction or signal increase)

e.g. Search for (FOCUS)−+++ → ππKD

Fitness function (will be minimised)
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Final selection

Initial selection

Best candidate, after 40 generations
= final selection criteria

Best fitted chromosomes from generation 0

Inter point in target Decay vertex out of target 
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Fitness of the best individual
Average fitness of the population

average size of the
individuals

Evolution graph
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Chromosome - sequence of symbols (functions and terminals)

Expression tree (ET)

Q*-+abcdaaabbb

Q

+

*

d

-

ca b

Mathematical expression
)()( dcba +⋅−

mapping

Translation 
(as in GP)

Head (h) Tail (t) t=h(n-1)+1
n – higest arity

*b+a-aQab+//+b+babbabbbababbaaa

*

b +

-
a Q

a

a

ET ends before 
the end of the gene!
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Reproduction
Genetic operators applied on chromosomes not on ET => 

always produce sintactically correct structures!
Cross-over – exchanges parts of two chromosomes
Mutation – changes the value of a node
Transposition – moves a part of a chromosome to another location 

in the same chromosome 

e.g. Mutation: Q replaced with *  

*

b +

-
a Q

a

a

*

b +

-
a *

a

a

*b+a-aQab+//+b+babbabbbababbaaa

b

*b+a-a*ab+//+b+babbabbbababbaaa
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cuts/selection criteria finding for signal/background classification

fitness function - number of events correctly classified as signal or 
background  (maximise classification accuracy) – limitation
imposed by the software  available at the time

input functions - logical functions => cut type rules
- common mathematical functions

input data - Monte-Carlo simulation from BaBar experiment for
Ks production in e+e- (~10 GeV), 

L. Teodorescu, IEEE Trans. Nucl. Phys., vol. 53, no.4, p. 2221 (2006)
L. Teodorescu, D. Sherwood, Comp Phys. Comm. 178, p 409 (2008)
also talks at.  CHEP06, ACAT2007 (PoS(ACAT)051 and ACAT2008 (PoS(ACAT)066)

CERN Yellow Report CERN-2008-02

−+→ ππSK

GEP for event selection
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Fsig ≥ 5.26, 
Rxy < 0.19, 
doca <1, 
Pchi > 0

No. of genes = 1,  Head length =10

Classification  Accuracy = 95%
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Head Selection criteria
1 Fsig ≥ 9.93

2 Fsig≥ 8.80, doca <1

3 Fsig > 3.67, Rxy ≤ Pchi

4 Fsig > 3.67, Rxy ≤ Pchi

5 Fsig ≥ 3.63, |Rz| ≤ 2.65, Rxy < Pchi

7 Fsig ≥ 3.64, Rxy < Pchi, Pchi > 0 

10 Fsig ≥ 5.26, Rxy < 0.19, doca <1, Pchi > 0

20 Fsig > 4.1, Rxy ≤ 0.2, SFL > 0.2, Pchi > 0,  doca > 0,  Rxy ≤ Mass

GEP analysis – optimises classification accuracy

Fsig ≥ 4.0
Rxy ≤ 0.2cm
SFL  ≥ 0cm
Pchi > 0.001

Cut-based (standard) analysis – optimises signal significance
Reduction
S: 15%
B: 98%

Reduction
S: 16%
B: 98.3%

doca ≤ 0.4cm
|Rz| ≤ 2.8cm
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5000 events, 8 variables, GEP - 38 functions
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nGEP – new methods for creating constants
GEP-FT - evolution controlled by an online threshold on fitness 

4600

4620

4640
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4680
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4800

2500 5000 7500 10000 12500 15000 17500 20000
Number of generation

Fi
tn
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s

GEP
nGEP
GEP-FT
nGEP-FT

FT = average fitness per generation * scaling factor
Scaling factor optimised (typical values between 0.5 to 1.5 )
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3-year project funded by EPSRC  
Detailed studies and further developments of GEP

- characterise and improve the solution evolvability
- hybrid algorithms (GEP + statistical methods)
- classification and clustering algorithms

LHC data – test-bed for outcomes of the project => HEP analysis

Small team:  myself,  one RA,  two Ph.D. students
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NN

GA

ES

GP
GEP SVM

Particle physics – more and more open to new algorithms

Particle physics – in more need of powerful algorithms
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Wolpert D.H., Macready W.G. (1997), No Free Lunch Theorem for 
Optimization, IEEE Transactions on Evolutionary Computation 1, 67.

In PP
- used only general purpose algorithms so far
- need  more specialised versions?
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Evolutionary algorithms in PP
used but not extensively (at present)
proved to work correctly
good performance – optimal solutions, not traped in

local minima
need more specialised versions for reaching 
much better performance

disadvantage – high computational time
- prospects for change – new, faster 
algorithms, more computing power
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