

Life on the Nu Frontier

- Neutrinos known and unknown
- Neutrino experiments
- Long and short baseline experiments
- Chooz/Double Chooz
- MINOS
- T2K
- Nova
- Daya Bay
- Future frontiers
- The Next Big Measurement

- Neutrinos known and unknown
- Neutrino experiments
- Long and short baseline experiments
- Chooz/Double Chooz
- MINOS
- T2K

2

- Nova
- Daya Bay/Reno
- Future frontiers
- The Next Big Measurement

Parameters describing flavour change and matter/antimatter asymmetry.

Neutrinos – known and unknown

$\begin{array}{c} \nu_{e} \\ \nu_{\mu} \\ \nu_{\mu} \\ \nu_{\tau} \end{array} \sim \begin{array}{c} 0.8 & 0.5 & s_{13}e^{-i\delta} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \\ \nu_{3} \end{array} \qquad \begin{array}{c} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{array}$

We know:

- v's have mass.
- ν's change flavour.
- Flavour change is consistent with oscillation.
- $\theta_{12} \sim 35^{\circ}$.
- θ₂₃ ~ 37-53°.
- $\theta_{13} < 12^{\circ}$.
- Δm_{23}^2 , Δm_{12}^2 .

We don't know:

- (1) Value of θ_{13} .
- (2) Sign of the mass ordering.
- (3) Deviation of $\theta_{_{23}}$ from maximal.
- (4) Value of δ .
- (5) Number of v types.
- (6) Majorana or Dirac?
- (7) Absolute v masses.

Neutrinos – known and unknown

$\begin{array}{c} \nu_{e} \\ \nu_{\mu} \\ \nu_{\mu} \\ \nu_{\tau} \end{array} \sim \begin{array}{c} 0.8 & 0.5 & s_{13}e^{-i\delta} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \\ \nu_{3} \end{array}$

We know:

- v's have mass.
- v's change flavour.
- Flavour change is consistent with oscillation.
- θ_{12} ~ 35°.
- $\theta_{23} \sim 37-53^{\circ}$.
- $\theta_{13} < 12^{\circ}$.
- Δm_{23}^2 , Δm_{12}^2 .

Measure We don't know: me!

- (1) Value of θ_{13} .
- (2) Sign of the mass ordering.
- (3) Deviation of θ_{23} from maximal.
- (4) Value of δ .
- (5) Number of v types.
- (6) Majorana or Dirac?
- (7) Absolute v masses.

- v are produced by:
- the sun,
- cosmic rays in the atmosphere,
- or we make them ourselves in
 - reactors,
 - dedicated beams.

- Neutrinos known and unknow
- Neutrino experiments
- Long and short baseline experiments
- Chooz/Double Chooz
- MINOS
- ◆ T2K
- Nova
- Daya Bay
- Future frontiers
- The Next Big Measurement

A muon in Super Kamiokande

Laura Kormos Lancaster University Birmingham 2010

5

Short-baseline/ reactor $\theta_{12}, \theta_{23}, \theta_{13}$

Chooz (ended 1998) KamLAND DoubleChooz Daya Bay and Reno Long-baseline/ accelerator $\theta_{23,}\theta_{13}$, MSW effects, δ

K2K (ended 2005) MINOS MiniBooNE Icarus and Opera T2K Nova

- Neutrinos known and
- Neutrino experimer
- Long and short baseline experiments
- Chooz/Double Chooz
- MINOS
- ▼ T2K
- Nova

7

- Daya Bay
- Future frontiers
- The Next Big Measurement

Short-baseline/ reactor $\theta_{12}, \theta_{23}, \theta_{13}$

Chooz (ended 1998) KamLAND DoubleChooz Daya Bay and Reno

Neutrinos – known and unk

- Neutrino experimer
- Long and short baseline experiments
- Chooz/Double Chooz
- MINOS
- ▼ 12K

7

- Nova
- Daya Bay
- Future frontiers
- The Next Big Measurement

Long-baseline/ accelerator $\theta_{23,}\theta_{13}$, MSW effects, δ

K2K (ended 2005) **MINOS** MiniBooNE Icarus and Opera **T2K** Nova

Birmingham 2010

8

Double Chooz

2 identical detectors
Near: 400m; Far: 1.05 km
Expected limits:
Phase 1 2010

- FD 1.5 yrs $\sin^2 2\theta_{13} < 0.08$.
- Phase 2 2012

9

ND+FD, 3 yrs $\sin^2 2\theta_{13} < 0.03$.

Chooz: $\sin^2 2\theta_{13} < 0.10 \ (\theta < 9.2^\circ)$

Double Chooz

2 identical detectors
Near: 400m; Far: 1.05 km
Expected limits:
Phase 1 2010
FD 1.5 yrs sin²2θ₁₃< 0.08.

Phase 2 2012

9

ND+FD, 3 yrs $\sin^2 2\theta_{13} < 0.03$.

DoubleChooz: $sin^2 2\theta_{13} < 0.03$

MINOS: Accelerator v_{μ} . Looking for v_e appearance, v_{μ} disappearance, sterile v Detect v_e + Fe \rightarrow e + X (CC) •NuMI beam from FNAL •Baseline: 735 km •Far detector in Soudan Mine •Near detector at 1 km.

- Neutrinos known and unknown
- Neutrino experiments
- Long and short baseline experiment
- Chooz/Double Chooz
- MINOS
- T2K
- Nova

10

- Daya Bay
- Future frontiers
- The Next Big Measurement

MINOS detectors

Steel/scintillator sampling calorimeters, magnetised ~1.3T Near Detector:

1km downstream of target, ~1kT total mass, shaped as squashed octagon 4.8x3.8x15m³, partially instrumented (282 steel, 153 scintillator planes) Far Detector:

735km downstream of target, 5.4kT with 2 supermodules shaped as octagonal prism 8x8x30m³, 486 steel, 484 scintillator planes)

Lancaster University Birmingham 2010

Variable used to select v_e -like event topologies Best Fit Signal corresponds to the amount of signal needed to account for the 0.7 σ excess

Far Detector selected v_e candidate events Best Fit Signal corresponds to the amount of signal needed to account for the 0.7 σ excess

MINOS $\nu_{\mu} \rightarrow \nu_{e}$ Search with 7x10²⁰ POT exposure

Background Prediction $49.1 \pm 7.0 \text{ (stat.)} \pm 2.7 \text{ (syst.) events}$

Events in Far Detector Data 54 events

0.7σ excess above background

Exclusion limits based on the selected v_e candidate events Allowed values are to the left of the curves

MINOS disappearance highlights

MINOS search for active neutrino disappearance PRL 101, 221804 (2008)

Z-decay width \rightarrow 3 active ν flavours.

Sterile v do not interact via weak force.

Sterile $v \rightarrow$ deficit of NC events in MINOS.

f = fraction of disappearing v_{μ} that could convert to v_{s} .

Birmingham 2010

- SuperKamiokande
 - Neutrinos known and unknown
 - Neutrino experiments
 - Long and short baseline experimentations
 - Chooz/Double Chooz
 - MINOS
 - T2K
 - Nova

16

- Daya Bay
- Future frontiers
- The Next Big Measurement

SK: 50,000 tons water-Cherenkov cylindrical detector in the Kamioka mountains.

Fuzzy

edge

Super-Kamiokande IV

T2K Beam Run 0 Spill 1143942 Run 66498 Sub 160 Event 37004533 10-02-24:06:00:06 T2K beam dt = 2362.3 ns Inner: 1265 hits, 2344 pe Outer: 2 hits, 1 pe Trigger: 0x80000007 D_wall: 650.8 cm

Time(ns)

24th Feb 2010 06:00

Fírst

 T_2K

Event

at

SK

1st ring + 2nd ring Invariant mass : 133 MeV/c² (close to π⁰ mass) momentum : 148 MeV/c

Predicted sensitivity to θ_{13} (ν_e appearance) and θ_{23} (ν_μ disappearance) after 5 years (750 kW)of beam (end 2014) 21

v_{u} disappearance

Current status:

- taking v data until summer shutdown (Jul-Sep).
- beam group working to improve intensity/stability.
- everyone working to develop/refine analyses.
- just finished initial detector calibrations.

Event number : 1609 | Partition : 63 | Run number : 2593 | Spill : 7205 | SubRun number : INVALID | Time : Fri 2010-02-05 01:57:45 JST

candidate v event -magnet on. -all inner detectors operating.

- Nova: Accelerator v_{μ} . Looking for v_e appearance, v_{μ} disappearance, δ , mass hierarchy. Detect $v_{\mu} + N \rightarrow \mu + N'$ (CC) •NuMI beam from FNAL •Baseline: 810 km
 - off-axis 0.8°, 2 GeV
 - Neutrinos known and unknown
 - Neutrino experiments
 - Long and short baseline experiment
 - Chooz/Double Chooz
 - MINOS
 - T2K

23

- Nova
- Daya Bay
- Future frontiers
- The Next Big Measurement

Nova: Accelerator v_{μ} . Looking for v_a appearance, v_{μ} disappearance, δ , mass hierarchy. Detect $v_{\mu} + N \rightarrow \mu + N'$ (CC) •NuMI beam from FNAL •Baseline: 810 km • off-axis 0.8°, 2 GeV •Far detector 15 kT Ash River MN Identical Near detector • 215 T at 1 km. •3 years v_{μ} , 3 years anti- v_{μ} .

ND taking data on surface spring 2010. Move UG autumn 2011. FD construction 2011–2013. Modular \rightarrow data after 1st few kT. Sensitivity ~ T2K, reactor experiments.

Lancaster University Birmingham 2010

- Neutrinos known and unknown
- Neutrino experiments
- Long and short baseline experiments
- Chooz/Double Chooz
- MINOS
- ◆ T2K
- Nova

25

- Daya Bay
- Future frontiers
- The Next Big Measurement

- 70 km NE of
 - Hong Kong airport.
- Detectors underground in the hills.

Daya Bay - Reactor anti- V_e search for θ₁₃.

- 2 power plants, 2 ND, 1 FD.
- 8 moveable, identical, interchangeable 20 T, anti-nu detector (AD) modules.
- Each ND has 2 modules.
- FD has 4 modules.
- Expect 1% sensitivity.
- Peak $E_v = 4$ MeV.

•
$$V_e + p \rightarrow n + e^+$$

Daya Bay - Reactor anti- V_e search for θ_{13} .

27

Baselines in meters

sites			
reactors	DYB	LA	far
Daya Bay	363	1347	1985
Ling Ao I	857	481	1618
Ling Ao II	1307	526	1613

Expected number of IBD events, hall depth, expected muon and background rates.

	DYB	LA	far
IBD Event/AD/day	840	760	90
Hall depth (m)	98	112	350
Muon Rate/AD (Hz)	36	22	1.2
Accidental B/S (%)	< 0.2	< 0.2	< 0.1
Fast neutron B/S (%)	0.1	0.1	0.1
⁸ He/ ⁹ Li B/S (%)	0.3	0.2	0.2

- Civil construction started 2007.
- First pair of ADs to Daya Bay 2009.
- Data 2010.
- 3 years to reach sensitivity goal.

3 years 90% CL. Green band is 90% Confidence region on Δm_{13}^2 .

- Civil construction started 2007.
- First pair of ADs to Daya Bay 2009.
- Data 2010.
- 3 years to reach sensitivity goal.

- What does the future hold?
 * Many new experiments coming online now or in the next 5 years.
 * Possible upgrades (depending on what we find)
 * T2HK, T2HKK,
 * DUSEL
 * β-beams, v-factories
 - * All-purpose neutrino/DM/0v $\beta\beta$ sites.
- Neutrinos known and unknown
- Neutrino experiments
- Long and short baseline experiments
- Chooz/Double Chooz
- MINOS
- T2K
- Nova
- Daya Bay
- Future frontiers The Next Big Measurement

- Neutrinos known and unknown
- Neutrino experiments
 - Long and short baseline experiments
 - Chooz/Double Chooz
 - MINOS
 - T2K
 - Nova
 - Daya Bay
 - Future frontiers
 - The Next Big Measurement

θ₁₃ constrains existing models
 (GUT, tribimaximal mixing, flavour models).
 If large enough, we next measure δ.
 (It could be why we're all here....)

- Neutrinos known and unknown
- Neutrino experiments
 - Long and short baseline experiments
 - Chooz/Double Chooz
 - MINOS
 - T2K
 - Nova
 - Daya Bay
- Future frontiers
- The Next Big Measurement