THE H TO TAUTAU CHANNEL AT ATLAS

30 Sept 2015 Birmingham Particle Physics Seminar Kathryn Grimm

30 Sept 2015 Katy Grimm Lancaster University

OUTLINE

- Higgs boson searches at the LHC
- **The H** \rightarrow $\tau\tau$ search at ATLAS in Run 1
- Brief comparison with CMS
- Latest Run 1 Higgs combination
- Prospects for Run 2 and beyond

Photograph: Maximilien Brice

Time line of Higgs evidence:

$$\blacksquare H \rightarrow ZZ \rightarrow \ell\ell\ell\ell$$

$$\blacksquare H \rightarrow \tau \tau$$

Higgs Decay Branching Ratios:

Time line of Higgs evidence:

■ H→WW

•
$$H \rightarrow \tau \tau$$

Higgs Decay Branching Ratios:

- Time line of Higgs evidence:
- $\blacksquare H \rightarrow ZZ \rightarrow \ell \ell \ell \ell$

- **H** \rightarrow **WW** Summer 2012
- $\blacksquare H \rightarrow \tau \tau$

Higgs Decay Branching Ratios:

- Time line of Higgs evidence:
- $\blacksquare H \rightarrow ZZ \rightarrow \ell\ell\ell\ell$

• $H \rightarrow \tau \tau$ Fall 2013

- Time line of Higgs evidence:
- $\blacksquare H \rightarrow ZZ \rightarrow \ell\ell\ell\ell$

•
$$H \rightarrow \tau \tau$$

H
$$\rightarrow$$
bb 2 σ in Run 1

TODAY: $H \rightarrow \tau \tau$

theguardian

News Sport Comment Culture Business Money Life & style Travel Environment

News \rangle Science \rangle Life and Physics \rangle

Previous

Blog home

The Higgs boson does a new trick (probably)

Today the ATLAS experiment at CERN announced the strongest evidence so far that the Higgs gives mass to leptons

A collision event in the CERN LHC, as measured by the ATLAS detector, looking very much like a Higgs boson decaying to a pair of tau leptons

8+1 62 *Platt* 2 in Share 9 Email

Share <278

Tweet (100

Science Higgs boson · Cern · Physics

Google™ Custo

Why taus?

 In the SM the Higgs mechanism spontaneously breaks the ElectroWeak gauge symmetry and generates masses for the W and Z gauge bosons as well as for the charged fermions via Yukawa couplings

More from Life and

TODAY: $H \rightarrow \tau \tau$

theguardian

News Sport Comment Culture Business Money Life & style Travel Environment

News \rangle Science \rangle Life and Physics \rangle

Previous

Blog home

The Higgs boson does a new trick (probably)

Today the ATLAS experiment at CERN announced the strongest evidence so far that the Higgs gives mass to leptons

A collision event in the CERN LHC, as measured by the ATLAS detector, looking very much like a Higgs boson decaying to a pair of tau leptons Google™ Custo

Why taus?

In the SM the Higgs mechanism spontaneously breaks the ElectroWeak gauge symmetry and generates masses for the W and Z gauge bosons as well as for the charged fermions via Yukawa couplings

Direct Evidence for the Higgs Decaying to Fermions, and specifically to Leptons

More from Life and

A Share <278

Tweet 100

8+1 62

Pinit 2

Posted by Jon Butterworth Tuesday 26 November 2013 21.02 GMT theguardian.com

(14)

= < g

Science Higgs boson · Cern ·

Physics

Article history

in Share < 9

How is the Higgs produced at the LHC?

$H \rightarrow \tau \tau$ at ATLAS: SIGNAL REGION CATEGORIES

Take advantage of the unique signature of VBF production!

Category	Selection	$\tau_{\rm lep} \tau_{\rm lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
	$p_{\mathrm{T}}(j_1) > (\text{GeV})$	40	50	50
VBF	$p_{\mathrm{T}}(j_2) > (\mathrm{GeV})$	30	30	30/35
	$\Delta \eta(j_1, j_2) >$	2.2	3.0	2.0
	b -jet veto for jet $p_T > (GeV)$	25	30	-
	$p_{\rm T}^H > ({\rm GeV})$	-	-	40
	$p_{\mathrm{T}}(j_1) > (\text{GeV})$	40	-	-
Boosted	$p_{\rm T}^H > ({\rm GeV})$	100	100	100
	b -jet veto for jet $p_T > (GeV)$	25	30	-

Largest production mode

H→TT CANDIDATE EVENT IN HAD-HAD CHANNEL

TAUS AT ATLAS: RUN 1

- $\mathbf{m}_{\tau} = \mathbf{1.78} \text{ GeV}$; Decay length = $87 \mu \text{m}$
- Decay to Hadrons(65%) or Leptons (35%)
- Hadronic decays are highly collimated and have low track multiplicity – 1 or 3 charged pions
- TauID (and lepton suppression) uses Multivariate Techniques that take advantages of shower-shape and track information

>1 Prong (BR = 49.5%): Corresponds mostly to: $\tau^{\pm} \rightarrow \pi^{\pm} v_{\tau}$ $\tau^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{0}\pi^{\pm}) v_{\tau}$ >3 Prong (BR = 15.2%): Corresponds mostly to: $\tau^{\pm} \rightarrow a_{1}^{\pm} (\rightarrow \rho^{0}\pi^{\pm} \rightarrow 3\pi^{\pm}) v_{\tau}$

TAUS AT ATLAS: RUN 1

- ATLAS uses a BDT to identify taus, based on tracking and shower-shape calorimeter training inputs
- A separate BDT is trained purely for tau electron veto.

$H \rightarrow \tau \tau$ at ATLAS

- The H→ττ analysis includes all final states of tau channels:
 - $H \rightarrow \tau \tau \rightarrow$ lepton lepton + 4v, BR = 12.4%
 - $H \rightarrow \tau \tau \rightarrow$ lepton hadron + 3v, BR = 45.6%
 - $H \rightarrow \tau \tau \rightarrow hadron hadron + 2v, BR = 42\%$

- The search uses a Multivariate approach (Boosted Decision Trees)
- The analysis was framed to specifically test for the 125 GeV Standard Model Higgs decaying to taus
- Final sensitivity is determined with a likelihood fit comparing data to µ × [125 GeV SM Higgs signal]

ANALYSIS STRATEGY

- The three channels have different background compositions
- Major background contributions from Z→ττ and "Fake taus". Both are modeled with data.
- The other backgrounds are modeled with Monte Carlo. In the case of ttbar in leplep and lephad, normalization is found in data Control Regions.

$Z \rightarrow \tau \tau$ MODELING: EMBEDDING

Embedding:

- Select $Z \rightarrow \mu \mu$ data
- Replace muons with simulated taus (including spin)

Z-boson kinematics, jets, MET resolution, pile-up, and VBF/EWK production are directly modeled by data

Presently published in JINST

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2014-09/

MODELING FAKE TAUS AND MULTIJET BACKGROUND

- Hadron Hadron Channel: Background from jets is made almost entirely of multijet QCD
- Model the Shape of the background with data: taus that fail the isolation and oppositesign charge requirements

Normalization: the fit is performed for the distribution of the difference in pseudorapidity between the two hadronic tau candidates, $\Delta \eta(\tau_{had}, \tau_{had})$.

MODELING FAKE TAUS AND MULTIJET BACKGROUND

- LepHad Channel: Background from jets faking hadronic taus = QCD, Z(l)+jets, W+jets, ttbar)
 - Model with data events that pass Loose Tau ID but fail Medium ID
 - Use the "Fake factor" method to account for differences according to: Tau candidate pT

Tau track multiplicity: 1-track vs 3-track tau candidates.

Sources with Quark-dominated jets:

W+jets: mT > 70 GeV

semileptonic ttbar: inverted b-jet veto

 $Z(\ell)$ +jets: require 2 leptons w/(80 GeV<m_{II}<100 GeV)

Sources with Gluon-dominated jets:

QCD: relax lepton selection: Loose requirement

with au loose-but-not-medium ID

MISSING MASS CALCULATOR

- **Good** $m_{\tau\tau}$ resolution provides separation between H and $Z \rightarrow \tau \tau$
- Final state neutrinos make invariant mass calculation tricky. Use the Missing Mass Calculator (MMC)
 - Find the most probable neutrino momentum based on tau kinematics and Missing Transverse Energy

INPUTS TO THE BOOSTED DECISION TREE

6 separate BDTs are trained, for each channel and category

- **H** $\tau\tau$ Resonance properties: m($\tau\tau$), Δ R($\tau\tau$)
- VBF topology: m_{jj}, Δη_{jj}, Centrality
- Event activity: sum pT from all objects
- **Event topology:** \mathbf{m}_{T} , $\mathbf{p}_{T}(\tau_{1})/\mathbf{p}_{T}(\tau_{2})$

BOOSTED DECISION TREE OUTPUT

24

RESULTS

Visualize the total result:

Calculate the S/B expected in each bin of the BDTs.

Order the bins according to their S/B.

RESULTS

- To determine the signal strength of the analysis, a PDF of each background and predicted signal is made.
- A simultaneous fit is done in all channels to extract the signal strength
 - The backgrounds and signals are allowed to move within their systematic uncertainties
 - The normalizations for many backgrounds are floated

Signal strength $\mu = \frac{\sigma_{measured}}{\sigma_{sM}}$

 $\mu = 1.43 \stackrel{+0.27}{_{-0.26}}(\text{stat.}) \stackrel{+0.32}{_{-0.25}}(\text{syst.}) \pm 0.09(\text{theory syst.})$

The data corresponds to a deviation from the background-only hypothesis at the level 4.5σ (3.4 σ expected)

ATLAS m _H = 125.36 GeV	$-\sigma$ (statistical) $-\sigma$ (syst. excl. theory) $-\sigma$ (theory)	Total uncertainty
$H \to \tau \tau$ $\mu = 1.4^{+0.4}_{-0.4}$	+ 0.3 - 0.3 + 0.3 - 0.2 + 0.1 - 0.1 + 0.1 - 0.2 + 0.1 + 0.4 + 0	
Boosted $\mu = 2.1^{+0.9}_{-0.8}$	+ 0.5 - 0.5	.
VBF $\mu = 1.2^{+0.4}_{-0.4}$	+ 0.3 - 0.3	
7 TeV (Combined) μ = 0.9 $^{+1.1}_{-1.1}$	+ 0.8 - 0.8	
8 TeV (Combined) $\mu = 1.5^{+0.5}_{-0.4}$	+ 0.3 - 0.3	
$\textbf{H} \rightarrow \tau_{\text{lep}} \tau_{\text{lep}} \mu = 2.0^{+1.0}_{-0.9}$	+ 0.7 - 0.7 + 0.6 - 0.5 + 0.1 - 0.5 + 0.1	
Boosted $\mu = 3.0^{+2.0}_{-1.7}$	+ 1.4	
VBF $\mu = 1.7^{+1.0}_{-0.9}$	+ 0.8	
$\textbf{H} \rightarrow \tau_{\text{lep}} \tau_{\text{had}} \mu = 1.0^{+0.5}_{-0.5}$	+ 0.4 - 0.3 + 0.4 - 0.3 + 0.4 - 0.3 + 0.1 + 0.1 + 0.1 + 0.4 - 0.3 + 0.4 - 0.3 + 0.4 - 0.3 + 0.4 +	
Boosted $\mu = 0.9^{+1.0}_{-0.9}$	+ 0.6	
VBF $\mu = 1.0^{+0.6}_{-0.5}$	+ 0.5	
$\textbf{H} \rightarrow \tau_{had} \tau_{had} \mu = 2.0^{+0.9}_{-0.7}$	+ 0.5 - 0.5 + 0.8 - 0.5 + 0.1 + 0.1	
Boosted $\mu = 3.6^{+2.0}_{-1.6}$	+ 1.0 - 0.9	
VBF $\mu = 1.4^{+0.9}_{-0.7}$	+ 0.6 - 0.5	
	0 2	4
$\sqrt{s} = 7 \text{ TeV}, 4.5 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$	Sig	nal strength (μ)

SEPARATION BY HIGGS PRODUCTION

- The H→ττ selection is such that a large part of the sensitivity is to H produced via VBF (much more so than other Higgs channels)
- We can separate our sensitivity into the vector-bosonmediated VBF and VH processes gluonmediated ggF process.

COMPARISON WITH CMS RUN 1 $H \rightarrow \tau \tau$

- Evidence for $H \rightarrow \tau \tau$ at CMS came out at nearly the same time as ATLAS
- CMS does not use a multivariate analysis
- Otherwise, many similarities in the searches

CMS Categories

VBF & GluonFusio	, 1 1 1 1		p _T π > 100 GeV	,	m _{jj} > 500 GeV Δη _{jj} > 3.5	m _{jj} > 700 GeV Δη _{jj} > 4.0			
		$p_T^{\tau h} > 45 \text{ GeV}$	high-p _T ^{τh}	high-p _τ ^{τh}	high-p _T boosted	rh d	loose	tight VBF tag	\setminus
	μτ _h	baseline	$low-p_T^{Th}$	low-	$p_T^{ au h}$		VB⊦ tag	(2012 only)	
84 categories									
Variables used in		$p_T^{\tau h} > 45 \text{ GeV}$	high- p_T^{Th}	-high-p ₁ ^{τh} -	high-r _T boosted	rh d	loose	tight VBE tag	
cutting:	eτ _h	baseline	$\text{low-}p_{T}{}^{\text{th}}$	low-	·p _T ^{τh}		VBF tag	(2012 only)	
Jet Multiplicity DiJet Mass &				$E_{\mathrm{T}}^{\mathrm{miss}}$ > 30	GeV				
Separation		р _т ^µ > 35 GeV	$high-p_{T}^{\mu}$	high	-p _T µ		loose	tight	
DiTau pT	eµ	baseline	$low-p_T^\mu$	low	-p _T µ		VBF tag	(2012 only)	
H p1, Tau or lep p1 Central Jet Veto									
	J	p _T ' > 35 GeV	high-p _T I	high	ו-p _T			iot	
	ee, µµ	baseline	low-p _T	low-p _T I		2-jet		jet	
	T _h T _h (8 TeV only)	baseline		boosted	highly booste	, d	VBF	tag	
				p _T ^{ττ} > 100 GeV	p _T ^π > 170 GeV	/	p _T ^π > 100 GeV m _{jj} > 500 GeV Δη _{ji} > 3.5	29	

0-jet

1-jet

L

2-jet

p_T^π > 100 GeV

CMS $H \rightarrow \tau \tau$ RESULTS

- Evidence at 3.8 standard deviations, when 4.4 are expected.
 The best fit of the observed H→TT signal cross section for mH=
- 125 GeV is 0.78±0.27 times the standard model expectation

LATEST LHC HIGGS COMBINATION

Earlier this month the latest CMS+ATLAS Higgs combination was released. Combined measurements from the following channels:
 H→ΥΥ, H→ZZ, H→WW, H→ττ, VH→Vbb, H→μμ, H→ZΥ, ttH→tt(bb, ℓℓ, ΥΥ)

LATEST LHC HIGGS COMBINATION

Significance of combined observations

• Comparing likelihood of the best-fit with likelihood assuming $\mu_{prod}=0$ or $\mu^{decay}=0$ we obtain:

Production process	Observed Significance(σ)	Expected Significance (σ)
VBF	5.4	4.7
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
Η→ττ	5.5	5.0
H→bb	2.6	3.7

Combining CMS and ATLAS data gives $H \rightarrow \tau \tau$ evidence at 5.5 σ

VBF production and $H \rightarrow \tau \tau$ now established at over 5 σ . ggF and $H \rightarrow ZZ, \gamma \gamma, WW$ already established by each experiment CERN Seminar by Wouter Verkeke 21/09/2015

ONE MORE NOTE ON LEPTONS FROM RUN 1

H→µµ Higgs decaying to muons not seen: Higgs does not couple evenly to all leptons

120 125 130 135 140 145

150 m_H [GeV]

<u>±</u>2σ

30

20

10

O

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-07/

AND NOW: RUN 2!

We have now collected > 1 fb^{-1} of 13 TeV data Somewhat slower LHC start than expected, now running well.

$H \rightarrow \tau \tau$ IN RUN 2

LHC season 2: New frontiers in physics

Restarting the physics programme for the Large Hadron Collider at the unprecedented energy of 13 TeV

Now that $H \rightarrow \tau \tau$ has been observed at the 5 sigma level, what are the goals for Run 2?

- Precision: $H \rightarrow \tau \tau$ will be the most sensitive measurement of the H-fermion coupling.
- Properties: CP measurements with H→ττ, develop selfcoupling analysis
- New Physics: $h \rightarrow aa \rightarrow 2\tau 2\mu$, $H/A \rightarrow \tau\tau$, $H^{+-} \rightarrow \tau\nu$, $HH \rightarrow \tau\tau bb$

Enalish

HIGGS PROPERTIES MEASUREMENTS: CP-MIXING MEASURED IN $H \rightarrow \tau \tau$:

- In the Standard Model the Higgs is Spin 0 CP-even. Evidence for Spin-0 nature has been published.
- The Higgs could yet be a mixture of CP-even & CP-odd.
- In the H→ττ channel the CP can be measured from two sides: Production and Decay angles
- Production: Correlate jet and H decay angles in VBF
- Decay: In Higgs-Fermion coupling CP-even/odd components enter at tree level

HIGGS PROPERTIES MEASUREMENTS: CP-MIXING MEASURED IN $H \rightarrow \tau \tau$:

- In the Standard Model the Higgs is Spin 0 CP-even. Evidence for Spin-0 H has been published.
- The Higgs could yet be a mixture of CP-even & CP-odd.
- Some theorize: CP-mixing suppressed in H-boson channels (CP odd only enters in loops). H-Fermion could be our portal to see BSM CP-mixing?
- In the $H \rightarrow \tau \tau$ channel the CP can be measured from two sides: Production and Decay angles
- Production: Correlate jet and H decay angles in VBF (H-Boson)
- Decay: In Higgs-Fermion coupling CP-even/odd components enter at tree level

Higgs VBF production: HVV vertex

CP-MIXING MEASURED IN $H \rightarrow \tau \tau$ <u>DECAY</u>:

- In H $\rightarrow \tau \tau$ decay the spin of the Higgs is correlated to the spin of the tau.
- Measure polar angle distribution of the H-decay products (H-ff vertex) Will allow us to distinguish between CP-even, CP-odd, or CP-mixed states

Two strategies :

- Via reconstruction of H rest frame: Acoplanarity between decay products in tautau rest frame
 - Requires reconstruction of neutrino 4-vectors
 - Could be helped by tau-vertex reconstruction
- Via reconstruction of τ impact parameters: Angle between impact parameter vectors in $\pi\pi$ rest frame

CP-MIXING MEASURED IN H $\rightarrow \tau \tau$ <u>**DECAY</u>:</u>**

- In $H \rightarrow \tau \tau$ decay the spin of the Higgs is correlated to the spin of the tau.
- Measure polar angle distribution of the H-decay products (H-ff vertex) Will allow us to distinguish between CP-even, CP-odd, or CP-mixed states
- Two strategies :
 - Via reconstruction of H rest frame: Acoplanarity between decay products in tautau rest frame

HH→ττbb

The Higgs self-coupling will be an important measurement for Run 2 or 3 that will allow for reconstruction of the Higgs potential.

Triple Higgs Coupling
$$\lambda_{HHH} = 6\eta v = \frac{3m_H^2}{v}$$
.

HH→ττbb

Higgs Pair production is also sensitive to a range of BSM models.

Non-resonant. theories modifying hhtt; composite Higgs, 4th generation models

Resonant enhancement:

- E-dim, G -> hh -> 4b [Gouzevitch et al. 1303.6636]
- Higgs portal [No, Ramsey-Musolf 1310.6035]

MSSM / NMSSM models: mixing effects due to presence of second Higgs doublet can generate 15% to 25% deviations from the Standard Model of λ_{HHH} .

SUSY, H -> hh

Searches have begun in bbbb, bbgammagamma, bbtautau channel. The $\tau\tau$ bb is sensitive to a wide mass range compared to the other channels 41

SUPERSYMMETRY SEARCHES

- In many supersymmetric models Higgs has a high branching ratio
- Active Run 2 searches include:
- $A/H \rightarrow TT$
- nMSSM H→aa→μμττ;
- A->ZH->bbtautau
- H→τµ
 (LeptonFlavorViolation)

SUMMARY

- **H** $\rightarrow \tau \tau$ seen at ATLAS and CMS in Run 1.
- **New LHC combination gives 5.5** observation of $H \rightarrow \tau \tau$
- Lots ahead in Run 2
- $H \rightarrow \tau \tau$ will be the best direct measurement of the Higgs to fermion coupling
- Unique CP measurement opportunities
- Lots of places to look for BSM physics

BACKUP

LEADING SYSTEMATIC UNCERTAINTIES

- Determination of Tau Energy Scale
- Normalization of backgrounds
- Theory uncertainties: modeling of underlying event and parton showering

Signal strength $\mu = \frac{\sigma_{measured}}{\sigma_{SM}}$

Source of Uncertainty	Uncertainty on μ
Signal region statistics (data)	$+0.27 \\ -0.26$
Jet energy scale	± 0.13
Tau energy scale	± 0.07
Tau identification	± 0.06
Background normalisation	± 0.12
Background estimate stat.	± 0.10
BR $(H \to \tau \tau)$	± 0.08
Parton shower/Underlying event	± 0.04
PDF	± 0.03
Total sys.	$+0.33 \\ -0.26$
Total	$+0.43 \\ -0.37$

SYSTEMATIC UNCERTAINTIES

	Relative signal and background variations [%]											
Source	$ au_{ m lep} au_{ m lep}$		$ au_{ m lep} au_{ m lep}$		$ au_{ m lep} au_{ m had}$		$ au_{ m lep} au_{ m had}$		$ au_{ m had} au_{ m had}$		$ au_{ m had} au_{ m had}$	
bource	VE	3F	Boosted		VBF		Boosted		VBF		Boosted	
	S	В	S	В	S	В	S	В	S	В	S	В
Experimental												
Luminosity	± 2.8	± 0.1	± 2.8	± 0.1	± 2.8	± 0.1	± 2.8	± 0.1	± 2.8	± 0.1	± 2.8	± 0.1
Tau trigger [*]	-	-	-	—	—	—	—	—	$^{+7.7}_{-8.8}$	< 0.1	$^{+7.8}_{-8.9}$	< 0.1
Tau identification	-	-	-	—	± 3.3	± 1.2	± 3.3	± 1.8	± 6.6	± 3.8	± 6.6	± 5.1
Lepton ident. and trigger [*]	$^{+1.4}_{-2.1}$	$^{+1.3}_{-1.7}$	$^{+1.4}_{-2.1}$	$^{+1.1}_{-1.5}$	± 1.8	± 0.5	± 1.8	± 0.8	—	—	-	-
b-tagging	±1.3	± 1.6	± 1.6	± 1.6	< 0.1	± 0.2	± 0.4	± 0.2	-	—	-	-
au energy scale [†]	-	-	—	—	± 2.4	± 1.3	± 2.4	± 0.9	± 2.9	± 2.5	± 2.9	± 2.5
Jet energy scale and resolution [†]	$+8.5 \\ -9.1$	± 9.2	$^{+4.7}_{-4.9}$	$^{+3.7}_{-3.0}$	$+9.5 \\ -8.7$	± 1.0	± 3.9	± 0.4	$^{+10.1}_{-8.0}$	± 0.3	$^{+5.1}_{-6.2}$	± 0.2
$E_{\rm T}^{\rm miss}$ soft scale & resolution	$^{+0.0}_{-0.2}$	$^{+0.0}_{-1.2}$	$^{+0.0}_{-0.1}$	$^{+0.0}_{-1.2}$	$^{+0.8}_{-0.3}$	± 0.2	± 0.4	< 0.1	± 0.5	± 0.2	± 0.1	< 0.1
Background Model												
Modelling of fake backgrounds [*] [†]	-	± 1.2	—	± 1.2	—	± 2.6	—	± 2.6	-	± 5.2	-	± 0.6
Embedding [†]	-	$^{+3.8}_{-4.3}$	-	$^{+6.0}_{-6.5}$	—	± 1.5	—	± 1.2	-	± 2.2	-	± 3.3
$Z \to \ell \ell$ normalisation [*]	-	± 2.1	-	± 0.7	-	—	-	-	-	—	-	-
Theoretical												
Higher-order QCD corrections †	$^{+11.3}_{-9.1}$	± 0.2	$^{+19.8}_{-15.3}$	± 0.2	$+9.7 \\ -7.6$	± 0.2	$^{+19.3}_{-14.7}$	± 0.2	$^{+10.7}_{-8.2}$	< 0.1	$^{+20.3}_{-15.4}$	< 0.1
UE/PS	± 1.8	< 0.1	± 5.9	< 0.1	± 3.8	< 0.1	± 2.9	< 0.1	± 4.6	< 0.1	± 3.8	< 0.1
Generator modelling	± 2.3	< 0.1	± 1.2	< 0.1	± 2.7	< 0.1	± 1.3	< 0.1	± 2.4	< 0.1	± 1.2	< 0.1
EW corrections	± 1.1	< 0.1	± 0.4	< 0.1	± 1.3	< 0.1	± 0.4	< 0.1	± 1.1	< 0.1	± 0.4	< 0.1
PDF †	$^{+4.5}_{-5.8}$	± 0.3	$^{+6.2}_{-8.0}$	± 0.2	$+3.9 \\ -3.6$	± 0.2	$^{+6.6}_{-6.1}$	± 0.2	$^{+4.3}_{-4.0}$	± 0.2	$^{+6.3}_{-5.8}$	± 0.1
BR $(H \to \tau \tau)$	± 5.7	-	± 5.7	—	± 5.7	—	± 5.7	—	± 5.7	—	± 5.7	—

MC SAMPLES

	1	1					
Signal $(m_H = 125 \text{ GeV})$	MC generator	$\sigma \times BR \ [pb]$					
$\int \operatorname{Signal}\left(m_{H}-120\operatorname{GeV}\right)$		$\sqrt{s} = 8$	$\sqrt{s} = 8$ TeV				
ggF, $H \to \tau \tau$	Роwнед [36–39]	1.22	NNLO+NNLL	[42-47, 78]			
	+ Pythia8 [40]						
VBF, $H \to \tau \tau$	Powheg + Pythia8	0.100	(N)NLO	[51-53, 78]			
$WH, H \to \tau \tau$	Ρυτηία8	0.0445	NNLO	[56, 78]			
$ZH, H \rightarrow \tau \tau$	Pythia8	0.0262	NNLO	[56, 78]			
De chemoure d	MC monoration	$\sigma \times BR$	pb]				
Background	MC generator	$\sqrt{s} = 8$ TeV					
$W(\to \ell \nu), \ (\ell = e, \mu, \tau)$	Alpgen [71]+Pythia8	36800	NNLO	[79, 80]			
$Z/\gamma^*(\to \ell\ell),$	ALDCEN DVTHA8	3010	NNI O				
$60 \text{ GeV} < m_{\ell\ell} < 2 \text{ TeV}$	ALFGEN+1 11HIAO	3910	INITEO	[19, 80]			
$Z/\gamma^*(\to \ell\ell),$	$A_{\rm IDCEN} + H_{\rm FDWIC}$ [81]	13000	NNL O	[70 80]			
$10 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}$	ALFGEN-HERWIG [01]	13000	INITEO	[13, 00]			
VBF $Z/\gamma^*(\to \ell\ell)$	Sherpa [82]	1.1	LO	[82]			
$t\bar{t}$	Powheg + Pythia8	253^{\dagger}	NNLO+NNLL	[83-88]			
Single top : Wt	Powheg + Pythia8	22^{\dagger}	NNLO	[89]			
Single top : s -channel	Powheg + Pythia8	5.6^{\dagger}	NNLO	[90]			
Single top : t -channel	AcerMC [74]+Pythia6 [67]	87.8†	NNLO	[91]			
$q\bar{q} \rightarrow WW$	Alpgen+Herwig	54^{\dagger}	NLO	[92]			
$gg \rightarrow WW$	m GG2WW [73]+Herwig	1.4^{\dagger}	NLO	[73]			
WZ, ZZ	HERWIG	30^{\dagger}	NLO	[92]			
$H \to WW$	same as for $H \to \tau \tau$ signal	4.7^{\dagger}					

47

COMPATIBILITY WITH M_{H} =125 GEV

Signals at M_{H} =110, 125 and 150 GeV are shown at best fit μ ; post-fit background normalizations

- This analysis was not designed to measure the H mass. But we can look at how well the excess matches various mass hypotheses
- Each event is weighted by In(1+S/B) for corresponding bin in BDT-score
- Excess of data events is consistent with presence of Higgs at 125 GeV

CUT-BASED CROSS CHECK

YIELDS FOR TOP 3 BDT BINS

	Process/Category		VBF		Boosted			
	BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin	
	$Z \to \tau \tau$	589 ± 24	9.7 ± 1.0	1.99 ± 0.34	2190 ± 80	33.7 ± 2.3	11.3 ± 1.3	
	Fake background	57 ± 12	1.2 ± 0.6	0.55 ± 0.35	100 ± 40	2.9 ± 1.3	0.6 ± 0.4	
	Тор	131 ± 19	0.9 ± 0.4	0.89 ± 0.33	380 ± 50	9.8 ± 2.1	4.3 ± 1.0	
	Others	196 ± 17	3.0 ± 0.4	1.7 ± 0.6	400 ± 40	8.3 ± 1.6	2.6 ± 0.7	
	ggF: $H \to WW \ (m_H = 125 \ GeV)$	2.9 ± 0.8	0.12 ± 0.04	0.11 ± 0.04	7.7 ± 2.3	0.43 ± 0.13	0.24 ± 0.08	
	VBF: $H \to WW$	3.4 ± 0.4	0.40 ± 0.06	0.38 ± 0.08	1.65 ± 0.18	0.102 ± 0.017	< 0.1	
	$WH: H \to WW$	< 0.1	< 0.1	< 0.1	0.90 ± 0.10	< 0.1	< 0.1	
LepLep	$ZH: H \to WW$	< 0.1	< 0.1	< 0.1	0.59 ± 0.07	< 0.1	< 0.1	
	ggF: $H \to \tau \tau \ (m_H = 125 GeV)$	9.8 ± 3.4	0.73 ± 0.26	0.35 ± 0.14	21 ± 8	2.4 ± 0.9	1.3 ± 0.5	
	VBF: $H \to \tau \tau$	13.3 ± 4.0	2.7 ± 0.7	3.3 ± 0.9	5.5 ± 1.5	0.95 ± 0.26	0.49 ± 0.13	
	$WH: H \to \tau \tau$	0.25 ± 0.07	< 0.1	< 0.1	3.8 ± 1.0	0.44 ± 0.12	0.22 ± 0.06	
	$ZH: H \to \tau \tau$	0.14 ± 0.04	< 0.1	< 0.1	2.0 ± 0.5	0.21 ± 0.06	0.113 ± 0.031	
	Total background	980 ± 22	15.4 ± 1.8	5.6 ± 1.4	3080 ± 50	55 ± 4	19.2 ± 2.1	
	Total signal	24 ± 6	3.5 ± 0.9	3.6 ± 1.0	33 ± 10	4.0 ± 1.2	2.1 ± 0.6	
	Data	1014	16	11	3095	61	20	

	Process/Category		VBF		Boosted			
	BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin	
	Fake background	1680 ± 50	8.2 ± 0.9	5.2 ± 0.7	5640 ± 160	51.0 ± 2.5	22.3 ± 1.8]
	$Z \to \tau \tau$	877 ± 29	7.6 ± 0.9	4.2 ± 0.7	6210 ± 170	57.5 ± 2.8	41.1 ± 3.2	
	Тор	82 ± 15	0.3 ± 0.4	0.5 ± 0.4	380 ± 50	12 ± 4	4.8 ± 1.5	
LepHad	$Z o \ell \ell (\ell o au_{ m had})$	54 ± 26	1.0 ± 0.7	0.30 ± 0.28	200 ± 50	13 ± 4	8.6 ± 3.5	
-	Diboson	63 ± 11	1.0 ± 0.4	0.48 ± 0.20	430 ± 40	9.7 ± 2.2	4.7 ± 1.6	
	ggF: $H \to \tau \tau \ (m_H = 125 GeV)$	16 ± 6	1.0 ± 0.4	1.2 ± 0.6	60 ± 20	9.2 ± 3.2	10.1 ± 3.4	
	VBF: $H \to \tau \tau$	31 ± 8	4.5 ± 1.1	9.1 ± 2.2	16 ± 4	2.5 ± 0.6	2.9 ± 0.7	
	$WH: H \to \tau \tau$	0.6 ± 0.4	< 0.1	< 0.1	9.1 ± 2.3	1.3 ± 0.4	1.9 ± 0.5	
	$ZH: H \to \tau \tau$	0.16 ± 0.07	< 0.1	< 0.1	4.6 ± 1.2	0.77 ± 0.20	0.93 ± 0.24	
	Total background	2760 ± 40	18.1 ± 2.3	10.7 ± 2.7	12860 ± 110	143 ± 6	82 ± 6	
	Total signal	48 ± 12	5.5 ± 1.3	10.3 ± 2.5	89 ± 26	14 ± 4	16 ± 4	
	Data	2830	22	21	12952	170	92	50

YIELDS FOR TOP BDT BINS

HadHad

Process/Category		VBF		Boosted			
BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin	
Fake background	370 ± 18	2.3 ± 0.9	0.57 ± 0.29	645 ± 26	35 ± 4	0.65 ± 0.33	
Others	37 ± 5	0.67 ± 0.22	< 0.1	89 ± 11	15.9 ± 2.0	0.92 ± 0.22	
$Z \to \tau \tau$	475 ± 16	0.6 ± 0.7	0.6 ± 0.4	2230 ± 70	93 ± 4	5.4 ± 1.6	
ggF: $H \to \tau \tau \ (m_H = 125 GeV)$	8.0 ± 2.7	0.67 ± 0.23	0.53 ± 0.20	21 ± 8	9.1 ± 3.3	1.6 ± 0.6	
VBF: $H \to \tau \tau$	12.0 ± 3.1	1.8 ± 0.5	3.4 ± 0.9	6.3 ± 1.6	2.8 ± 0.7	0.52 ± 0.13	
$WH: H \to \tau \tau$	0.25 ± 0.07	< 0.1	< 0.1	4.0 ± 1.1	1.9 ± 0.5	0.41 ± 0.11	
$ZH: H \to \tau \tau$	0.16 ± 0.04	< 0.1	< 0.1	2.4 ± 0.6	1.13 ± 0.30	0.23 ± 0.06	
Total background	883 ± 18	3.6 ± 1.3	1.2 ± 1.0	2960 ± 50	143 ± 6	7.0 ± 1.8	
Total signal	20 ± 5	2.5 ± 0.6	3.9 ± 1.0	34 ± 10	15 ± 4	2.7 ± 0.8	
Data	892	5	6	3020	161	10	