A new measurement of the electron edm

E.A. Hinds

Centre for Cold Matter Imperial College London

Birmingham, 26 October 2011

How a point electron gets structure

point electron

polarisable vacuum with increasingly rich structure at shorter distances:

(anti)leptons, (anti)quarks, Higgs (standard model) beyond that: supersymmetric particles?

If the electron has an EDM, nature has chosen *one* of these, breaking T symmetry *E*P

Our experiment uses a molecule - YbF

EDM interaction energy is a million times larger (mHz)
needs nG stray B field control

The lowest two levels of YbF $X^2\Sigma^+$ (N = 0, v = 0)

Goal: measure the splitting $2d_e\eta E$ to ~1mHz

How it is done

Modulate everything

9 switches:

512 possible correlations

- · Generalisation of phase-sensitive detection
- Switch periodically on short timescale but randomly on long timescale.
- Measure all 512 correlations.

** Don't look at the mean edm **

- We don't know what result to expect.
- Still, to avoid inadvertent bias we hide the mean edm.
- A random blind offset is added that only the computer knows.
- More important than you might think.
 - e.g. Jeng, Am. J. Phys. 74 (7), 2006.

Measuring the other 511 correlations

	correlation	mean	σ	mean/o
√ fringe slo <mark>p</mark> e	calibration	{-19.8038,	0.251037}	78.888
√ beam intens	sity {sig}	{150.576	, 1.9145}	78.6502
√ ∮ -switch ch	anges rf amplitude	{0.0781105,	0.00478208]	16.334
✓ E drift	{RF1F, RF2F}	{0.0709938,	0.00481574]	14.742
√ E asymme <mark>tr</mark>	Y {E, RF2F}	{0.0282234,	0.00457979)	6.16259
✓ E asymmetr	Y {E, RF1F}	{0.0239194,	0.00437301)	5.46978
\checkmark inexact π p	USe {DB, RF1A}	{-0.0212292,	0.00407424	} 5.21058

• Nearly all are zero (as they should be)!

The only systematic error correction

rf detuning from resonance

makes a (small) interferometer phase shift We measure this by the {rf1f.B} and {rf2f.B} correlations they are both ~ 100 nrad/Hz

 Electric field "reversal" changes magnitude of E (slightly) causing a Stark shift
We measure this by the {rf1f.E} and {rf2f.E} correlations

• Together \implies false EDM We measure and correct: (+5.5 ± 1.1) ×10⁻²⁸ e.cm. Magnetic field noise

B fluctuations have some component synchronous with E reversal:

We measure and correct: $(-0.3 \pm 1.7) \times 10^{-28}$ e.cm.

6194 measurements (~6 min each) at 10 kV/cm.

bootstrap method determines distribution

68% confidence level ?? \pm 5.7 \times 10⁻²⁸ e.cm

— includes blind offset

Current status

Previous result - Tl atoms
Regan *et al.* (PRL 2002)
Nataraj *et al.* (PRL 2011)
Dzuba/Flambaum (PRL 2009)

 $d_e < 2.0 \times 10^{-27}$ e.cm with 90% confidence

• New result - YbF - Hudson *et al.* (Nature 2011)

 $d_{e} = (-2.4 \pm 5.7 \pm 1.5) \times 10^{-28} \text{ e.cm}$ $\int \int \text{systematic - limited}$ 68% statistical $\int \text{by statistical noise}$

 $d_e < 1 \times 10^{-27}$ e.cm with 90% confidence

New cryogenic buffer gas source of YbF

15 × more molecules/pulse 3 × longer interaction time (slower beam) => 10 × better signal:noise ratio

=> access to mid 10⁻²⁹ e.cm range

Current status of EDMs

Summary

e-EDM is a direct probe of physics beyond SM

specifically probes CP violation (how come we're here?)

absence of EDM suggests no min. supersymmetry

Atto-eV molecular spectroscopy tells us about TeV particle physics!

EDM Group Members

Jony Hudson

Ben Sauer

EAH

Mike Tarbutt

Joe Smallman

Dhiren Kara

Engineering and Physical Sciences Research Council