Towards LHC Phenomenologybeyond Leading Order

Gudrun Heinrich

University of Durham

Institute for Particle Physics Phenomenology

Birmingham, 25.11.09

. . . has been planned long time ago . . .

Linear Colliders also seem to have been supported . . .

. . . so why do we say we are entering ^aNew Era in Particle Physics?

. . . so why do we say we are entering ^aNew Era in Particle Physics?

. . . because instead of hunting buffaloes, we are now hunting Higgs bosons . . .

The Large Hadron Collider

- will shed light on the <mark>origin of mass</mark> ("Higgs mechanism")
- may discover supersymmetry or extra dimensions
- provide information about dark matter \bullet

The Large Hadron Collider

- will shed light on the <mark>origin of mass</mark> ("Higgs mechanism")
- may discover supersymmetry or extra dimensions
- provide information about dark matter
- ∼ ~ 1000 hadronic tracks in detector per event
preter remarts et high energy interactions between guarks/gluens proton remnants or high energy interactions between quarks/gluons (QCD)⇒ strong interactions play key role:

enormous backgrounds !

The Large Hadron Collider

- will shed light on the <mark>origin of mass</mark> ("Higgs mechanism")
- may discover supersymmetry or extra dimensions
- provide information about dark matter
- ∼ ~ 1000 hadronic tracks in detector per event
preter remarts et high energy interactions between guarks/gluens proton remnants or high energy interactions between quarks/gluons (QCD)
	- ⇒ strong interactions play key role:

enormous backgrounds !

strong interactions

basic principles of Quantum Chromo-Dynamics (QCD):

asymptotic freedom: coupling $\alpha_{\rm s}(Q^2)\rightarrow~0$ for $^2) \rightarrow 0$ for Q^2 $\rightarrow \infty$

constituents of hadrons (quarks and gluons)can be considered as freely interacting at high energies (i.e. short distances)

factorisation: systematic separation of long-distanceeffects (non-perturbative) and short-distance cross sections ("hard scattering")

factorisation

$$
\sigma_{pp \to X} = \sum_{a,b,c} f_a(x_1, \mu_f^2) f_b(x_2, \mu_f^2) \otimes \hat{\sigma}_{ab}(p_1, p_2, \frac{Q^2}{\mu_f^2}, \frac{Q^2}{\mu_r^2}, \alpha_s(\mu_r^2))
$$

$$
\otimes D_{c \to X}(z, \mu_f^2) + \mathcal{O}(1/Q^2)
$$

 f_a, f_b : parton distribution functions (universal), model proton structure $\hat{\sigma}_{ab}$: partonic hard scattering cross section, \mid calculable order by order in perturbation theory $D_{c \rightarrow X}(z, \mu_f^2)$: describing the final state e.g. fragmentation function, jet observable, etc.

 $\hat{\sigma}=\alpha_s^k$ $s^k_s(\mu)\,\left[\,\hat{\sigma}^{\rm LO}+\alpha_s(\mu)\,\hat{\sigma}^{\rm NLO}(\mu)+\alpha_s^2\right]$ $\int_s^2(\mu)\,\hat{\sigma}^{\rm NNLO}(\mu)+\ldots\,]$ ˜ calculation at ${\displaystyle n}$ -th order: ${\displaystyle d\hat{\sigma}^{(n)}}/{\displaystyle d\ln(\mu)}$ $2) = \mathcal{O}(\alpha_s^{n+1})$ $\binom{n+1}{s}$

truncation of perturbative series at LO

⇒ large renormalisation/factorisation scale dependence

 $\hat{\sigma}=\alpha_s^k$ $s^k_s(\mu)\,\left[\,\hat{\sigma}^{\rm LO}+\alpha_s(\mu)\,\hat{\sigma}^{\rm NLO}(\mu)+\alpha_s^2\right]$ $\int_s^2(\mu)\,\hat{\sigma}^{\rm NNLO}(\mu)+\ldots\,]$ ˜ calculation at ${\displaystyle n}$ -th order: ${\displaystyle d\hat{\sigma}^{(n)}}/{\displaystyle d\ln(\mu)}$ $2) = \mathcal{O}(\alpha_s^{n+1})$ $\binom{n+1}{s}$

truncation of perturbative series at LO

Q [GeV]

• poor jet modelling

• poor jet modelling

cases where shapes of distributions are not well predicted by LO

(new partonic processes become possible beyond LO)

P poor jet modelling

. . .

cases where shapes of distributions are not well predicted by LO(new partonic processes become possible beyond LO)

Minimal Supersymmetric Standard Model (MSSM): would be ruled out already without radiative corrections: mass of lightest Higgs boson at LO: $M_h\leq min(M_A,M_Z)\cdot|\cos2\beta|$

peak: easy, backgrounds can be measured

- peak: easy, backgrounds can be measured
- shape: hard need signal/background shapes from theoryshape in general well described by Monte Carlo tools combining(LO) matrix elements and parton shower (Sherpa, Alpgen, Helac, . . .)

- peak: easy, backgrounds can be measured
- shape: hard need signal/background shapes from theoryshape in general well described by Monte Carlo tools combining(LO) matrix elements and parton shower (Sherpa, Alpgen, Helac, . . .)
- rate (e.g. $H \to W^+W^-$): very hard
	- need both shape and normalisation from theory \Rightarrow leading order (LO) is not sufficient !

- peak: easy, backgrounds can be measured
- shape: hard need signal/background shapes from theoryshape in general well described by Monte Carlo tools combining(LO) matrix elements and parton shower (Sherpa, Alpgen, Helac, . . .)
- rate (e.g. $H \to W^+W^-$): very hard need both shape and normalisation from theory ⇒ leading order (LO) is not sufficient !
- problem: typically multi-particle final states ⇒ calculations of higher orders increasingly difficult until recently: LO tools highly automated, whereasNLO calculations tedious case-by case exercises

- peak: easy, backgrounds can be measured
	- shape: hard need signal/background shapes from theoryshape in general well described by Monte Carlo tools combining(LO) matrix elements and parton shower (Sherpa, Alpgen, Helac, . . .)
- rate (e.g. $H \to W^+W^-$): very hard need both shape and normalisation from theory ⇒ leading order (LO) is not sufficient !
- problem: typically multi-particle final states ⇒ calculations of higher orders increasingly difficult until recently: LO tools highly automated, whereasNLO calculations tedious case-by case exercises
- **•** now paradigm change:

we are moving towards automated NLO tools

(heavy) SUSY particles:

- decay through cascades emitting quarks and leptons
- signatures: energetic jets and leptons, missing E_T
- QCD radiation generates additional hard jets

�-

ingredients for ^m**-particle observable at NLO**

virtual part (one-loop integrals): $\mathcal{A}_{NLO}^{V}=A_{2}/\epsilon^{2}+A_{1}/\epsilon+A_{0}$ $d\sigma^V\sim$ $\sim Re\left(\mathcal{A}_{LO}^{\dagger}\, \mathcal{A}_{NLO}^{V}\right)$

real radiation part: soft/collinear emission of massless particles \Rightarrow need subtraction terms

$$
\Rightarrow \int_{\text{sing}} d\sigma^{S} = -A_2/\epsilon^2 - A_1/\epsilon + B_0
$$

$$
\sigma^{NLO} = \underbrace{\int_{m+1} \left[d\sigma^R - d\sigma^S \right]_{\epsilon=0}}_{\text{numerically}} + \underbrace{\int_m \left[d\sigma^V \right]_{\text{cancel poles}} + \underbrace{\int_s d\sigma^S}_{\text{analytically}} \right]_{\epsilon=0}}_{\text{numerically}}
$$

Modular structure

calculations increasingly difficult for more particles in final state

example for time scale to add one parton:

 $pp \rightarrow$ \rightarrow 2 jets at NLO (4-point process):
is (Sexten 1086 Ellis/Sexton 1986 $pp \rightarrow$ \rightarrow 3 jets at NLO (5-point process):
re at al. Kupezt at al. 4002.05 Bern et al, Kunszt et al. 1993-95

 $pp \rightarrow$ → 4 jets at NLO (6-point process):
t vet available not yet available

- more efficient techniques to calculate <mark>loop amplitudes</mark> \bullet
	- **c** unitarity-based methods e.g. BlackHat, Rocket, CutTools, analytic, . . .
	- improved methods based on Feynman diagramse.g. GOLEM, Denner et. al, ...

- more efficient techniques to calculate <mark>loop amplitudes</mark>
	- **c** unitarity-based methods e.g. BlackHat, Rocket, CutTools, analytic, . . .
	- **Independent on Feynman diagrams** e.g. GOLEM, Denner et. al, ...
- automatisation of IR modules

- more efficient techniques to calculate <mark>loop amplitudes</mark>
	- unitarity-based methodse.g. BlackHat, Rocket, CutTools, analytic, . . .
	- **Independent methods based on Feynman diagrams** e.g. GOLEM, Denner et. al, ...
- automatisation of IR modules
- use existing technology from leading order tools LO tools can provide:
	- **e** event generation
	- **•** phase space integration
	- histogramming tools \bullet
	- subtraction terms for soft/collinear radiation

- more efficient techniques to calculate <mark>loop amplitudes</mark>
	- unitarity-based methodse.g. BlackHat, Rocket, CutTools, analytic, . . .
	- **Independent methods based on Feynman diagrams** e.g. GOLEM, Denner et. al, ...
- automatisation of IR modules
- use existing technology from leading order tools LO tools can provide:
	- **e** event generation
	- **•** phase space integration
	- histogramming tools
	- subtraction terms for soft/collinear radiation
- matching NLO amplitudes with parton showers
as MC@NLO BOWHEG e.g. MC@NLO, POWHEG, ...

2009 status of NLO wishlist for LHC

Interface

details worked out at Les Houches 2009 workshop on TeV colliders

One-loop methods

reduction to set of basis integrals (4-, 3- and 2-point functions)

GOLEM

General One-Loop Evaluator of Matrix elements

[Binoth, Cullen, Guillet, GH, Karg, Kauer, Pilon, Reiter, Rodgers, Wigmore]

Golem strong points

- can deal with an arbitrary number of mass scales link LoopTools for finite massive boxes
- colour does not add additional complexity
- rational parts are "f<mark>or free"</mark>
- **efficient use of recursive structure** caching system
- projection onto <mark>helicity</mark> states exploit spinor helicity techniques, gauge cancellations, smaller building blocks
- **•** collaboration has several independent programs \Rightarrow strong checks
- **•** can avoid spurious singularites from Gram determinants \Rightarrow numerically robust

Golem development

Golem results:

$pp \rightarrow WW, ZZ, \gamma \gamma j, HH, HHH, Hjj$ (interference)
 $ZZi \ \bar{b} \bar{b} \bar{b} \bar{b}$ $ZZj, b\bar{b}b\bar{b}$

Golem development

Golem results:

 $pp \rightarrow WW, ZZ, \gamma \gamma j, HH, HHH, Hjj$ (interference)
 $ZZi \ \bar{b} \bar{b} \bar{b} \bar{b}$ $ZZj, bbbb$ ¯

- \bullet under construction:
	- allow for complex masses ⇒ deal with unstable
particles particles
	- validation for multi-leg calculations within SUPETSYMMEtric models [GH, T. Kleinschmidt, M. Rodgers]
	- interface to ${\tt FeynRules}$, producing model files from arbitray Lagrangians [C. Duhr et al.]
	- user-friendly public interface, detailed documentation
	- **combination with parton shower** [Sherpa, F. Krauss et al.]

six-photon amplitude

[Mahlon 94] (special helicity configurations only)[Nagy, Soper 06; Gong, Nagy, Soper 08] (numerically)[Binoth, Gehrmann, GH, Mastrolia 07] [Ossola, Pittau, Papadopoulos 07] [Bernicot, Guillet 08]

- rational parts shown to be zero [Binoth, Guillet, GH 06]
- used both <mark>unitarity cuts</mark> and Golem

ZZ **⁺ jet production: scale dependence**

NLO excl.: jet veto: no additional jets with $p_T > 50$ GeV

ZZ **⁺ jet production**

$pp \rightarrow$ $\rightarrow b\bar{b}b\bar{b}$ at NLO

 $q\bar{q} \rightarrow$ $\to b\bar{b}b\bar{b}$ oth. Grein [Binoth, Greiner, Guffanti, Guillet, Reiter, Reuter '09]

prompt photons

The PHOX Family

<mark>NLO</mark> Monte Carlo programs (partonic event generators) to calculate cross sections for the production of large- p_T photons, hadrons and jets

http://wwwlapp.in2p3.fr/lapth/PHOX FAMILY/main.html

F. Arleo, P. Aurenche, T. Binoth, M. Fontannaz, J.Ph. Guillet,

GH, E. Pilon, M. Werlen

DIPHOX

 $h_1 h_2 \rightarrow \gamma \gamma + X$, $h_1 h_2 \rightarrow \gamma h_3 + X$, $h_1 h_2 \rightarrow h_3 h_4 + X$

JETPHOX

 $h_1 \ h_2 \to \gamma$ jet $+ \ X$, $h_1 \ h_2 \to \gamma \ + X$ $h_1 h_2 \rightarrow h_3$ jet $+ X$, $h_1 h_2 \rightarrow h_3 + X$

EPHOX

 $\gamma \, p \to \gamma$ jet $+ \, X$, $\gamma \, p \to \gamma \, + X$
expanding to X and X $\gamma p \to h$ jet $+ X$, $\gamma p \to h + X$

TWINPHOX

 $\gamma \gamma \rightarrow \gamma$ jet $+ X$, $\gamma \gamma \rightarrow \gamma + X$

PHOX programs

partonic event generators

- produce ntuples _(PAW) or histograms
- fragmentation component included fully at NLO
- new: Frixione isolation criterion is being implemented designed to suppress fragmentation component

$$
E_{T,\max} = \epsilon_{\gamma} p_T^{\gamma} \left(\frac{1 - \cos \delta}{1 - \cos \delta_{\max}} \right)^n
$$

$$
f(\delta)
$$

 $\lim_{\delta\to 0} f(\delta) = 0$

but: no hadronic energy in isolation cone experimentally never realised \Rightarrow better:

$$
f(\delta) = \begin{cases} f(\delta) & \text{for } \delta > \delta_{\min} \\ f(\delta_{\min}) & \text{for } \delta \le \delta_{\min} \end{cases}
$$

Frixione isolation

even better: "onion type cones" (now being implemented) six cones of radius 0.1 to 0.4 in steps of 0.05

Prompt photons at CDF

 $p_T^\gamma>30$ GeV, $E_{T,{\rm max}}=2$ GeV, $R=0.4$

Prompt photons at RHIC

two different methodsof photon isolation

(a) cone: $\epsilon_{\gamma} = 0.1, R = 0.5$

(b) statistical:

direct photon yield Y_{dir} $Y_{dir}=$ $r\,$ $r_{\gamma} Y_{incl}$ $\frac{c}{r_{\gamma}-1}^{c}$ $r\,$ $' \gamma$ $=\frac{(\gamma/\pi^0)^{\rm data}}{(\sqrt{0})^{\rm sim}}$ $(\gamma/\pi^0)^\text{sim}$

photon isolation at RHIC

 $\Delta \phi$: azimuthal angle between photon and charged hadrons

Summary

in order to understand "New Physics" at TeV colliders:
... theory predictions for signals and backgrounds must be well under control

need accuracy beyond Leading Order

Summary

in order to understand "New Physics" at TeV colliders:
... theory predictions for signals and backgrounds must be well under control

need accuracy beyond Leading Order

we are moving towards automated tools for NLO predictions

GOLEM approach:

- setup valid for massive and massless particles
- keeps spin information
- combination with <mark>parton shower</mark> in progress
- tensor integral library publicly available at \bullet http://lappweb.in2p3.fr/lapth/Golem/golem95.html

"Well, either we've found the Higgs boson, or Fred's just put the kettle on"

backup slides

phase space effects enhanced by cuts

Higgs+2 jet one-loop interference

- semi-numerical approach does best
- example: one-loop interference between vector-bosonfusion and gluon fusion in Higgs+2 jet production

100

[Andersen, Binoth, GH, Smillie 07]

- investigate impact of interference on extraction of HZZ coupling from Higgs+2jet events
- calculation of new master integrals involving several mass scales

asymptotic complexity

 \bullet unitarity based methods: complexity of colour ordered amplitudes:

$$
\tau_{\mathrm{tree}} \times \tau_{\mathrm{cuts}} \sim N^4 \times \left(\begin{array}{c} N \\ 5 \end{array}\right) \text{ N } \overrightarrow{\text{large}} \text{ } N^9
$$

• Feynman diagram reduction: $\tau_{\rm diagrams}\times\tau_{\rm form\,factors}\sim 2^N$ $^N\times \Gamma(N)$

NLO results presented at the RADCOR ²⁰⁰⁹ conference:

number of talks presenting results:

Unitarity methods: 4

 $(W+3)$ jets, $Z+3$ jets, $t\bar{t}bb$, cut constructible part of $H+2$ jets) ¯

Feynman diagrams: 8 ⁺ all SUSY/BSM (4) ⁺ all electroweakcorrections (3)

 $(WWj,ZZj,t\bar{t}b\bar{b},b\bar{b}b\bar{b},WW\gamma,ZZ\gamma,W\gamma j,W\gamma\gamma,Wb\bar{b},Zb\bar{b},VVjj$ + EW+BSM)

note:

unitarity methods prefer low number of mass scales

Future: expect to discover new heavy particles \Rightarrow rather need more mass scales \ldots