







- Single Top Production
- Why is it worth studying?
- Experience at the Tevatron
- Expected performance of ATLAS





| /            |                    |                        | Tevatron (pb) | LHC (pb)     |          |
|--------------|--------------------|------------------------|---------------|--------------|----------|
| $\searrow q$ | q'                 |                        | 1.96 TeV      | 10 TeV       | 14 TeV   |
|              |                    | t-channel              | 2.0 ± 0.3     | $120 \pm 10$ | 250 ± 10 |
|              |                    | <mark>s-channel</mark> | $0.9 \pm 0.1$ | 7 ± 1        | 11 ± 1   |
| ٢            | 7                  | Wt-channel             | -             | 33 ± 2       | 67 ± 2   |
|              | ZW                 | ttbar                  | $6.8 \pm 0.4$ | 400 ± 24     | 833 ± 52 |
| t-channel    | $\boldsymbol{L}$ t |                        |               |              |          |

Z Sullivan - Phys Rev D 70 (2004) 114012 M Pleier - hep-ph/0810.5226





#### Why Is It Important?









• Enables measurement of  $|V_{th}|$  element





### **Angular Distributions**



- Angular distribution of decay products
- Spin direction correlated with direction of d-quark







Ref: G Mahlon, hep-ph/0011349



#### **Experience at the Tevatron**





#### **Experience at the Tevatron**



...pretty good, given that they discovered it!



arXiv:0903.0850v1 [hep-ex] 2.3 fb<sup>-1</sup> data analysed  $\sigma_{\rm st}$ =3.94±0.88pb

arXiv:0903.0885v1 [hep-ex] 3.2 fb<sup>-1</sup> data analysed  $\sigma_{\rm st}$ =2.3 $^{+0.6}_{-0.5}$ pb





## DØ Approach



- Split into 12 channels
- Apply event selection
- Calculate multivariate discriminants
  - Recombine those with improved sensitivity
- Calculate cross
  section

Percentage of single top *tb+tqb* selected events and S:B ratio (white squares = no plans to analyze)



#### Major Backgrounds







- Data driven methods to normalise W+jets and QCD backgrounds
- Defined loose and tight selections based on lepton ID

$$N_{Data}^{loose} = \epsilon_W^{loose} N_W + \epsilon_{QCD}^{loose} N_{QCD}$$

$$N_{Data}^{tight} = \epsilon_W^{tight} N_W + \epsilon_{QCD}^{tight} N_{QCD}$$

- Solve for  $\rm N_{_W}$  and  $\rm N_{_{QCD}}$
- (Top Pair production from theory)



### **DØ** Selection



- Trigger
  - (e  $P_T > 15 \text{ GeV } \&\& 2 \text{ jets } P_T > 30 \text{ GeV}$ )
  - ( $\mu P_{T}$  > 3 GeV && 1 jet  $P_{T}$  > 35 GeV)
- 1 good lepton with  $P_{T} > 18 \text{ GeV}$

- Veto on others with  $P_{T} > 15 GeV$ 

• 2-4 jets with  $P_{T} > 15 \text{ GeV}$ 

- Leading jet  $P_{T} > 25 \text{ GeV}$ 

- 15 < MET < 200 GeV
- Various Δφ(I, MET) triangle cuts







Can't Cut 'n' Count

| – $\sigma_{_{\mathrm{back}}}$ | > | N<br>signal |
|-------------------------------|---|-------------|
|                               |   | -           |

|                  | 2 Jets    | 3 Jets      | 4 Jets   |
|------------------|-----------|-------------|----------|
| Signal           | 139 ± 18  | $63 \pm 10$ | 21 ± 5   |
| Total Prediction | 2615± 192 | 1294 ± 107  | 742 ± 80 |
| Data             | 2579      | 1216        | 724      |

• Use multivariate methods to obtain discriminants



- Boosted Decision Tree
- Neural Network
- Matrix Element
- Up to 64 input variables



### **Cross Section Measurement**



- Combine discriminants to get more precise estimate of cross section
- $P(H_0) = 2.5 \times 10^{-7}$ , significance > 5.0 $\sigma$
- |V<sub>tb</sub>| > 0.78 at 95%
  confidence level

• 
$$|V_{tb}| = 1.07 \pm 0.12$$









- ATLAS strategy similar to the Tevatron
- Expect to suffer the same backgrounds
- Gain from much higher cross section











- ATLAS strategy similar to the Tevatron
- Expect to suffer the same backgrounds
- Gain from much higher cross section





### **ATLAS** Expectations



- Early data considerations:
  - 10 TeV collision energy, ~200  $pb^{-1}$  data
  - Limited capacity of b-tagging
  - Large systematic uncertainties
- Limit study to t-channel







- Rely on simple lepton triggers
- Small overlap between electron and muon
  events





#### **Lepton Selection**



20/33

- Primary Lepton: 20 < Pt < 100 GeV
- Secondary Lepton: Pt < 10 GeV
- $M_{T}(I,MET) > 30 \text{ GeV and } M_{T}(I,I) < 70 \text{ GeV}$









- JetProb tagger suitable for early data
- Tag efficiency 30%
- Rejection factor of 60





### Jet Selection



- At least 1 b-tagged jet,  $P_{f} > 30 \text{ GeV}$
- Between 2-4 other jets,  $P_{_1} > 15 \text{ GeV}$





#### **Further Selection**



- Separation between primary objects
  - $-1.4 < \Delta \eta (j_1, j_b) < 5.0$



23/33



#### **Further Selection**



• Cut on centrality



## $-N_{sig} = 105 \pm 6$

- $-N_{back} = 369 \pm 11$
- S/B = 0.28

• After Selection:

- Systematic errors dominate...
  - B-tagging
  - Jet Energy Scale
  - Background Normalisation

$$\sigma_t = \frac{N_{Data}}{\epsilon_s L} - \sum \frac{\epsilon_b \sigma_b}{\epsilon_s}$$

 $\sigma_{t-chan} = 43.2 \pm 9.0 \ pb$ 







# b-tagging



- Expect 5% error in b-tagging efficiency
  - Corresponds to 7% variation in signal efficiency
- 10% error in light jet rejection
  - Corresponds to 3% variation in background





## Jet Energy Scale



- Scale between reconstructed and true jet energy poorly understood
- 6% effect on background acceptance





## **Other Dominant Systematics**



- Luminosity expected between 5-20%
- Theoretical background cross section errors up to 20%
  - Expected to drop to ~5% using Data Driven Methods
- Parton Density Functions also contribute
  - CTEQ6M error set gives 6% effect in background





Calculate Bayesian upper limit









Assume standard model





#### Simultaneous Fit



• Other single top channels are backgrounds!



B. Clément – Single Top Meeting – 25/11/2008



### Summary



- Electroweak top production long been predicted
- Discovered by the Tevatron
- ATLAS will benefit from higher statistics
- Evidence within first few years of LHC data