# FIRST OSCILLATION RESULTS FROM THE NOVA EXPERIMENT



European Research Council Established by the European Commission

University of Sussex

Bruno Zamorano Birmingham - 20<sup>th</sup> January 2016



# Why study neutrino oscillations?

## The Particle Universe



- Second most abundant particle in the Universe and yet the worst understood
- Dark Matter aside, the only measured confirmation of Physics beyond the Standard Model
- ~20 000 neutrino papers since the discovery of neutrino oscillations
- Nobel prize 2015 and Breakthrough prize 2016
- Many open questions: CP violation (matter-antimatter asymmetry), mass ordering and mass scale, Dirac or Majorana...
- Oscillation parameters are, to our best knowledge, fundamental constants of Nature

US

## Neutrino oscillations overview

PMNS matrix

| $\left(\mathbf{v}_{e}\right)$    | $(U_{e1})$   | $U_{e2}$    | $U_{e3} \bigvee v_1$        | $P_{u_0} = \sum U^* U_{u_j} U^* U_{u_j} U_{u_j} \exp\left(-i\frac{\Delta m_{jk}^2 L}{2\pi}\right)$ |
|----------------------------------|--------------|-------------|-----------------------------|----------------------------------------------------------------------------------------------------|
| $ v_{\mu}  =$                    | $U_{\mu 1}$  | $U_{\mu 2}$ | $U_{\mu 3} \  \mathbf{v}_2$ | $1 \mu e \sum_{j,k} \circ e_j \circ \mu j \circ \mu k \circ e_k \circ h p \left( 2E \right)$       |
| $\left(\mathbf{v}_{\tau}\right)$ | $U_{\tau 1}$ | $U_{	au2}$  | $U_{\tau 3} / v_3$          | Oscillations                                                                                       |



## Importance of reactor result

$$\times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \\ CP \text{ violation } \Longleftrightarrow \theta_{13} \neq 0$$

**θ**<sub>13</sub>: from unknown to best measured

 $\sin^2 \theta_{13} = 0.0219 \pm 0.0012$  $\theta_{13} \sim 8.5^{\circ}$ 

## A new door to probing CP violation, the mass ordering and the octant of $\theta_{23}$

## Importance of reactor result

$$\times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \\ CP \text{ violation } \iff \theta_{13} \neq 0$$

**θ**<sub>13</sub>: from unknown to best measured

A new door to probing CP violation, the mass ordering and the octant of  $\theta_{23}$ 



B. Zamorano - First oscillation results from the NOvA experiment

 $\sin^2 \theta_{13} = 0.0219 \pm 0.0012$ 

 $\theta_{13} \sim 8.5^{\circ}$ 

# The NOvA experiment

## Muon neutrino disappearance

## Electron neutrino appearance



About 150 physicists from 6 countries (list growing...) 2 UK institutions: Sussex (8 people, since 2012) and UCL (6 people, just joined) New collaborators and institutions welcome!



## NuMI beam





- Reliably running at ~500 kW
- World record 521 kW for 1 hour
- Full power by mid 2016
- 6.4  $\times$  10<sup>20</sup> POT delivered



**Neutrinos** 

to Far Det.

NOVA

Near Det.

Deca

 $\bullet$  NuMI Off-Axis  $\nu_{\rm e}$  Appearance, the leading neutrino oscillation experiment in the NuMI beam



- NuMI Off-Axis v<sub>e</sub> Appearance, the leading neutrino oscillation experiment in the NuMI beam
- Two highly active scintillator detectors:
  - Far Detector: 14 kT, on surface
  - Near Detector: 300 T, 105 m underground



US

- NuMI Off-Axis v<sub>e</sub> Appearance, the leading neutrino oscillation experiment in the NuMI beam
- Two highly active scintillator detectors:
  - Far Detector: 14 kT, on surface
  - Near Detector: 300 T, 105 m underground
- I4 mrad off-axis narrowly peaked muon neutrino flux at 2 GeV, L/E ~ 405 km/ GeV
- $v_{\mu}$  disappearance channel:  $\theta_{23}$ ,  $\Delta m^{2}_{32}$
- $v_e$  appearance channel: mass hierarchy,  $\delta_{CP}$ ,  $\theta_{13}$ ,  $\theta_{23}$  and octant degeneracy



Also: neutrino cross sections at the ND, sterile neutrinos, supernovae...

## Far detector dataset

- During the construction era, we began collecting Physics data with each far detector "diblock" (64 detector planes) as soon as it was fully commissioned and Physics-ready
- Thus, the FD size is **not static** throughout our data set

Protons-on-target in data set: $3.45 \times 10^{20}$  POTFraction of detector operational:79.4% (POT-weighted average)

Full-detector-equivalent exposure: 2.74×10<sup>20</sup> POT-equiv





**Full Far Detector** (14 diblocks)

 Superb granularity for a detector this scale

 Outstanding event identification capability





## 10 µs of readout during NuMI beam pulse



## 10 µs of readout during NuMI beam pulse



## Full 550 µs readout (colours show charge)



## Zoomed on the 10 µs beam spill window



## Zoomed on the time slice



## Zoomed on the time slice



## Zoomed on the time slice

## Disappearance analysis in a nutshell...

Identify contained  $v_{\mu}$  CC events in both detectors



Measure both energy spectra



Infer on the oscillation mechanism from differences between near and far energy spectra

## Disappearance analysis in a nutshell...

Identify contained  $v_{\mu}$  CC events in both detectors







Infer on the oscillation mechanism from differences between near and far energy spectra

- Containment
- PID
- NC rejection
- Cosmic rejection

- Calibration
- Energy scale
- Hadronic energy

- Extrapolation
- Far / near ratio
- Best fit
- Contours
- Systematics

## Signal selection: $\nu_{\mu}$ CC

- First: basic containment cuts: require a buffer of no activity around the event
- Muon ID: 4-variable k-nearest neighbours algorithm to identify muons
  - Track length
  - dE/dx along track
  - Scattering along track
  - Track-only plane fraction
- Keep events with muon-ID > 0.75



## Cosmic rejection

- From beam timing: a factor 10<sup>5</sup> reduction
- From event topology: 10<sup>7</sup>
- For the remaining, a boosted decision tree is trained on data without beam
  - Direction
  - Position and length
  - Energy and number of hits in event
- Keep events with BDT > 0.535
- Final rate is measured directly using outof-time data



## Energy estimation

- Muon track: **length**  $\Rightarrow$   $E_{\mu}$
- Hadronic system:  $\Sigma$  Total visible E  $\Rightarrow$  E<sub>had</sub>
- Reconstructed neutrino energy is the sum of them:  $E_v = E_{\mu} + E_{had}$
- Energy resolution at beam peak: ~7%



muon

hadronic system









## Far detector prediction

- Estimate the underlying **true energy distribution** of selected ND events
- Multiply by expected Far/Near ratio and  $\nu_{\mu} \rightarrow \nu_{\mu}$  oscillation probability
- Convert FD true energy distribution into predicted FD reconstructed energy distribution
- Systematic uncertainties assessed by varying all MC-based steps





- Hadronic energy (21%, equiv. to 6% in neutrino energy)
- Neutrino flux (NA49 + beam transportation model)
- Absolute, relative normalisation (1%, 2%)
- Neutrino interactions (GENIE / Intranuke model)

- NC and tau neutrinos (100% each)
- Multiple calibration and light level systs. (Hit energy, fibre attenuation, threshold effects)
- Oscillation parameter uncertainties (current world knowledge)

## Some of the selected candidates (zoomed views, not showing the whole detector)





![](_page_30_Figure_1.jpeg)

Clear observation of  $v_{\mu}$  disappearance

## Oscillation parameters

![](_page_31_Figure_2.jpeg)

NOvA measurement already compelling with less than 8% of nominal exposure!

## Appearance analysis in a nutshell...

Identify contained  $v_e$  CC events in both detectors

![](_page_32_Picture_3.jpeg)

Use ND candidates to predict beam backgrounds in the FD

![](_page_32_Picture_5.jpeg)

Interpret any FD excess over predicted backgrounds as V<sub>e</sub> appearance

## Appearance analysis in a nutshell...

Identify contained  $v_e$  CC events in both detectors

![](_page_33_Picture_3.jpeg)

Use ND candidates to predict beam backgrounds in the FD

![](_page_33_Picture_5.jpeg)

Interpret any FD excess over predicted backgrounds as V<sub>e</sub> appearance

- Containment
- PID
- NC rejection
- Cosmic rejection

- Extrapolation
- Far / near ratio
- Systematics

- Exclusions
- Significance

## Signal pre-selection: $v_e$ CC

- First: basic containment cuts: require sufficient distance from the largest reconstructed shower to the edges
- Then, cuts applied to
  - Shower length

US

- Number of hits in event
- Calorimetric energy
- All three related to the "size" of the event (we know well the range of energies any appearing V<sub>e</sub> might have)

![](_page_34_Figure_8.jpeg)

#### NOvA Preliminary

## Cosmic rejection

- Cut events with large transverse momentum (*Rejects downward-going cosmic showers*)
- $\bullet$  The  $\nu_{\rm e}$  selectors themselves are very efficient at rejecting cosmic background
- Achieve a 1 in 10<sup>8</sup> rejection

US

 Expected cosmic background; 0.06 events, measured directly using out-oftime data

![](_page_35_Figure_7.jpeg)

![](_page_36_Picture_0.jpeg)

#### $\nu_e$ CC event identification

## Two independent selection algorithms with very different designs

## LID: Likelihood identification

**dE/dX likelihoods** calculated for **longitudinal and transverse** slices of leading shower under multiple particle hypotheses

Likelihoods feed an artificial neural network along with **kinematic and topological info**: e.g., energy near vertex, shower angle, vertex-toshower gap, ...

![](_page_36_Figure_6.jpeg)

![](_page_36_Figure_7.jpeg)

#### LEM: Library event matching

**Spatial pattern** of energy depositions is compared to that of 10<sup>8</sup> simulated events (''library'')

Key properties of the **best matched library event** (e.g., fraction that are signal events) are input into a decision tree to form discriminant

• Identical performance as measured with efficiency,  $S/\sqrt{B}$  and sensitivity to oscillation parameters

#### *Left panels*: candidate event, both views *Right panels*: best-matched library event, both views *Middle panels*: an intermediate step in calculating the match quality

![](_page_37_Figure_6.jpeg)

## Prior to unblinding, decided to show both results and use LID as primary

![](_page_38_Figure_1.jpeg)

## Far detector prediction

- ND data are translated to FD background expectation in each energy bin, using far/near ratios from simulation
- FD signal expectation is pinned to the ND-selected vµ - CC spectrum
- Most systematics are assessed via variations in the far/near ratios

Signal efficiency relative to containment cuts: 35% Expected overlap in LID/LEM samples of 62% (Expected differences in which events each technique selects)

![](_page_39_Figure_6.jpeg)

After all selection, **0.7% of NC** events remain, relative to those after containment

## Far detector selected events

LID: 6  $\nu_e$  candidates

 $3.3\sigma$  significance for  $\nu_e$  appearance

![](_page_40_Figure_4.jpeg)

LEM: 11  $\nu_e$  candidates

 $5.5\sigma$  significance for  $\nu_{\rm e}$  appearance

(All 6 LID events present in LEM set)

![](_page_40_Figure_8.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_0.jpeg)

## Result using LID selector

For allowed regions of  $\delta_{CP}$  and  $\theta_{13}$ 

- Feldman & Cousins procedure applied
- Solar oscillation parameters varied
- $\Delta m^{2}_{32}$  varied by new NOvA result
- $\sin^2 \theta_{23} = 0.5$

![](_page_44_Figure_7.jpeg)

## Result using LID selector

Applying global reactor constraint of  $\sin^2\theta_{13} = 0.0219 \pm 0.0012$ 

- Again, apply Feldman-Cousins to interpret -2ΔInL
- Converted into significance (steps due to discrete nature of counting experiment)
- Using  $\mathbf{v}_{\mu}$  constraint for sin<sup>2</sup> $\mathbf{\theta}_{23}$

![](_page_45_Figure_6.jpeg)

## Inverted hierarchy for $\delta_{CP} \in [0, 0.9\pi]$ is mildly disfavoured (>1 $\sigma$ )

![](_page_46_Figure_1.jpeg)

## LID/LEM consistency

- Both prefer normal hierarchy
- Both prefer  $\delta_{CP}$  near  $3\pi/2$
- Given the expected correlations, the observed event counts yield a reasonable mutual p-Value of 10%

![](_page_47_Figure_5.jpeg)

# The specific point IH, $\delta_{CP} = \pi/2$ is disfavoured at 1.6 $\sigma$ (LID), 3.2 $\sigma$ (LEM) for $\sin^2\theta_{23} \in [0.4, 0.6]$

- Potential to exclude maximal mixing, depending on Nature's choice
- Leading measurement in both  $\Delta m^{2}_{32}$ and sin<sup>2</sup> $\theta_{23}$  for nominal sensitivity
- Measurements in the anti-neutrino channel: CPT tests

![](_page_48_Figure_4.jpeg)

## **COMBINING MUON AND ELECTRON NEUTRINO ANALYSES**

![](_page_49_Figure_2.jpeg)

Best case scenario: NOvA simultaneously measures the mass ordering, CP violation and octant information!

## **COMBINING MUON AND ELECTRON NEUTRINO ANALYSES**

![](_page_50_Figure_2.jpeg)

Degenerate case: mass ordering and CP violation are coupled, but the octant information is not

## MASS HIERARCHY AND CP-VIOLATION

![](_page_51_Figure_2.jpeg)

3+3 years ( $v_{\mu}$  +anti- $v_{\mu}$ ): 2 sigma in about 30% of the  $\delta_{CP}$  range

Only 1.5 sigma in 10% of the range

## **COMBINATION WITH T2K**

![](_page_52_Figure_2.jpeg)

Combining with T2K: At least 1 sigma for the whole  $\delta_{\text{CP}}$  range

With T2K: 1.5 sigma in 25%

- Far and near detector completed in August 2014
- The NuMI beam intensity is steadily increasing, setting new records on a weekly basis
- First analysis dataset included 7.8% of full exposure (40% of a standard running year)
- Other NOvA physics: programme underway
  - Neutrino cross-sections
  - Sterile neutrinos, non-standard interactions, CPT tests
  - Supernova neutrinos
  - Dark matter and monopole searches
  - And more...

- Far and near detector completed in August 2014
- The NuMI beam intensity is steadily increasing, setting new records on a weekly basis
- First analysis dataset included 7.8% of full exposure (40% of a standard running year)
- Other NOvA physics: programme underway
  - Neutrino cross-sections
  - Sterile neutrinos, non-standard interactions, CPT tests
  - Supernova neutrinos
  - Dark matter and monopole searches
  - And more..

US

## With 2.74 x $10^{20}$ POT exposure...

- Unambiguous  $\nu_{\mu}$  disappearance signature
- 6.5% measurement of atmospheric mass splitting
- Consistent with maximal mixing
- $v_e$  appearance signal at 3.3 $\sigma$  for primary selector, 5.5 $\sigma$  for secondary selector
- At max mixing, disfavour IH for δ<sub>CP</sub> ∈
  [0,0.6π] at 90% with primary selector.
  Further preference for NH with secondary selector

## Much more to come!

 Both NOvA detectors are operational and taking high quality data in the NuMI beam

![](_page_55_Picture_2.jpeg)

 Both NOvA detectors are operational and taking high quality data in the NuMI beam

 Compelling measurement of muon neutrino disappearance with 8% of nominal exposure

 Both NOvA detectors are operational and taking high quality data in the NuMI beam

- Compelling measurement of muon neutrino disappearance with 8% of nominal exposure
- NOvA will use both appearance and disappearance channels to provide constraints on  $\delta_{\text{CP}}$ , and leading measurements on the mass ordering and the  $\theta_{23}$  octant

 Both NOvA detectors are operational and taking high quality data in the NuMI beam

• Compelling measurement of muon neutrino disappearance with 8% of nominal exposure

- NOvA will use both appearance and disappearance channels to provide constraints on  $\delta_{\text{CP}}$ , and leading measurements on the mass ordering and the  $\theta_{23}$  octant

Full FD with higher beam power: at least 2 x data next summer

# THANKYOU FOR YOUR ATTENTION

Public live event display: <u>http://nusoft.fnal.gov/nova/public/</u>

# www-nova.fnal.gov