

New (*) Neutrino Oscillation Results from T2K

Costas Andreopoulos STFC, Rutherford Appleton Laboratory

Birmingham Univ., 19/10/2011

(*) Run1+2 (1.431E+20 protons on target) dataset

Technology

Outline

- Neutrino oscillations
- The T2K experimental setup \rightarrow arXiv:1106.1238v2, accepted for publication by Nucl.Instrum.Meth. A
- Measuring oscillation parameters at T2K
- Data-taking operations (*Physics Runs 1+2, January 2010 March 2011*)
- Data reduction & Oscillation analysis strategy (2010)
- Electron-neutrino appearance results → Phys.Rev.Lett.107,041801(2011)
- Muon-neutrino disappearance results → Phys.Rev.Lett. in preparation
- Summary

Neutrino Oscillations

Neutrino oscillation ($v_{\alpha} \rightarrow v_{\beta}$) probability

Depends on:

Mixing matrix elements (determined experimentally) Squared neutrino mass splittings (determined experimentally)

 $P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i>i} \operatorname{Re}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{2}L}{4E}\right) + 2\sum_{i>i} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin\left(\frac{\Delta m_{ij}^{2}L}{2E}\right)$

Sensitivity to oscillations by matching the L / E (baseline to energy) ratio to a particular Δm^2

What do measure in neutrino oscillation experiments?

- With 3 neutrinos, any 2 squared mass splittings Δm^2
- 3 mixing angles, θ_{12} , θ_{23} , θ_{13}
- 1 CP violating phase δ

1997-2010

First age of neutrino-mixing exploration

Results from the first age of neutrino-mixing exploration

Next big questions in neutrino physics...

T2K Experiment Overview

Almost pure v_{μ} beam Peak at 600 MeV. L/E tuned to the `atmospheric' Δm^2 scale.

Super-Kamiokande 50 kton water-Cherenkov detector

Tokai, Naka District, Ibaraki Prefecture, Japan

© 2011 ZENRIN Europa Technologies 011 Mapabc.com

J-PARC 30 GeV proton beam (design) power of 750 kW

280m detector suite

INGRID

ND280

J-PARC facility (KEK / JAEA)

The neutrino beam-line

The `off-axis' trick

T2K is first accelerator neutrino experiment employing the `off-axis' trick.

Exploit kinematical properties of pion decay to create a narrow neutrino beam peaked at a particular energy (chosen to maximise oscillation probability at the SuperK location)

Super-K (IV)

Water Cherenkov imaging

First T2K neutrino event at SuperK

280m Near Detector complex

280m Near Detector complex

Off-axis near detector (ND280)

Off-axis near detector (ND280)

ND280 off-axis detector event (in the Tracker)

CCQE

Science & Technology Facilities Council

ND280 off-axis detector event (in the Tracker)

ND280 off-axis detector event (in the Tracker)

ND280 off-axis detector event (in the P0D)

On-axis near detector (INGRID)

- 10 m x 10 m beam coverage
- ~700 neutrino interactions day at 50 kW
- Monitor neutrino beam direction
 - Off-axis angle precision goal < 1 mrad
 - 1 mrad \rightarrow 2% SuperK flux change at peak energy

Disappearance channel: Measuring $\sin^2 2\theta_{23}$ and Δm_{23}^2

Appearance channel: Measuring $sin^2 2\theta_{13}$

T2K ultimate (5 yrs x 750 kW) sensitivity

 v_{e} appearance:

sin²2θ₁₃ < 0.008 (90% CL)

v_" disappearance:

Data-taking operations & beam stability

T2K data-taking operations

Expect to restart data-taking operations late in 2011 / early in 2012

Number of protons delivered by MR

Primary proton beam monitoring

1 Optical Transition Radiation detector (OTR)

Run1+2: Stable primary proton beam

n

-10

Science & Technology Facilities Council

10

x (mm)

Counts/pixe

35

30

25

20 υ

10

Secondary muon beam monitoring

Secondary muon beam monitoring (MUMON) spill-by-spill.

Detector intrinsic resolution < 1.5 mm

Beam direction is controlled within 1 mrad

Secondary beam intensity stable to ~1%

Run1+2: Stable targeting & focusing systems

Neutrino beam monitoring

Run1+2: Stable neutrino intensity & direction verified by INGRID

Science & Technology Facilities Council

T2K-SuperK event reduction

1 mu-e decay

Times (ns)

SuperK – Beam spill time synchronization

Record all hits in +/- 500 µs window around the beam spill arrival to SuperK.

GPS synchronization for J-PARC and SuperK times

SuperK live-time

SuperK good spill selection

- SK DAQ alive
- DAQ error check

Checking dark counts in ID and OD

- GPS error check
- Detector status check
- Pre-activity cut

No activity in the 100 μs before beam arri Removes accidental contamination

Integrated exposure:

• "Beam" good spills \rightarrow 1.446E+20 POT

• "SK & Beam" good spills \rightarrow 1.431E+20 POT

SuperK live fraction (for physics) > 99%

SuperK FC (fully contained) event reduction

SuperK FC neutrino event candidate timing

SuperK FCFV event reduction

FC event candidates

- * In fiducial volume (more than 2m away from the ID wall)
- * Visible energy > 30 MeV

FC (Fully Contained) FV (Fiducial Volume) event candidates (events used for physics analysis)

Estimated (from atmospheric neutrino rate) accidental background: 0.0028 events

2010 oscillation analysis with Run-1+2 (1.431E+20 POT) data

Oscillation Analysis Strategy (2010)

Oscillation Analysis Strategy (2010)

NA61 / SHINE experiment

Science & Technology Facilities Council

NA61 / SHINE measurements

Neutrino flux tuning v, at SuperK

$v_e^{}$ at SuperK

Oscillation Analysis Strategy (2010)

ND280: Inclusive muon neutrino CC analysis

Robust analysis using low-level reconstructed objects (FGD hits and tracks in single TPC)

ND280: Inclusive muon-neutrino CC

$$\frac{N_{ND}^{v\mu,DATA}}{N_{ND}^{v\mu,MC}} = 1.036 \pm 0.028 \text{ (stat.)}_{-0.037}^{+0.044} \text{ (det. syst.)} \pm 0.038 \text{ (phys. syst.)}$$

Electron-neutrino appearance results

SuperK v event selection: Strategy

Selecting v CCQE events. A water-Cherenkov detector sees a single e-like (fuzzy) ring

Main backgrounds

SuperK v_e event selection: Cut overview

All cuts were defined <u>before</u> the data-taking operations

SuperK v_e event selection

(1) Event has 1-ring

(41 events left after cut)

(2) Ring has e-like PID

(8 events left after cut)

SuperK v_e event selection

(3) Event has visible energy > 100 MeV

- Cut removes 14% of NC, 30% of v CC bkg
- 98% signal efficiency

(4) No delayed decay-electron signal

- Rejects events with invisible or mid-ID'ed μ or π
- 90% signal efficiency

SuperK v_e event selection

(5) Invariant mass cut (< 105 MeV/c²) [2-ring assumption, forced 2nd ring]

- Suppresses NC π⁰ background.
- Cut removes 71% of NC background
- 91% signal efficiency

(6) Reconstructed energy cut (< 1250 MeV)

- Reduces intrinsic beam contamination from K decays (signal: $v_u \rightarrow v_e$ and v_u flux peaks at 600 MeV)
- Cut removes 36% of intrinsic beam v_e
- 98% signal efficiency

SuperK v_e event selection

6 v event candidates were found after all cuts!

Signal efficiency: ~66% Background rejection: • ~77% for intrinsic beam v_e • ~99% for v_µNC MC predicts 1.5 background events

Background-only hypothesis: Systematic study

 $\begin{array}{l} \Delta m^2{}_{23} {=} 2.4 {\cdot} 10^{\text{-}3} eV^2 \\ sin^2 2\theta_{23} {=} 1.0 \end{array}$

Further v_e candidate event checks

Background fluctuation?

sin²20₂₃=1.0

Distribution of observed number of events Background-only hypothesis $(\sin^2 2\theta_{13} = 0)$

 $sin^{2}2\theta_{13} = 0$ excluded to 99.34% level (2.48 σ)

Science & Technology Facilities Council Number of $v_{_{\rm e}}$ events allowing for $v_{_{\mu}} \rightarrow v_{_{\rm e}}$

Allowed regions of $sin^2 2\theta_{13}$ as function of δ_{CP}

 $\Delta m_{23}^2 = 2.4 \cdot 10^{-3} eV^2$ sin²2 $\theta_{23} = 1.0$

Muon neutrino disappearance results

SuperK v_u event selection: Strategy

Selecting v_{μ} **CCQE events.** A water-Cherenkov detector sees a single μ -like (crisp) ring

Main background: v_{μ} CC π with unidentified π

(Background oscillates too, but energy reconstruction is systematically off due to unaccounted π)

SuperK v_u event selection: Cut overview

All cuts were defined before the data-taking operations

Expected sample composition: CCQE(61%) CCnQE (32%),NC(6%), v (<1%)

v_u-disappearance: MC expectation

In absence of oscillations, expect: 103.6 ± 10.2 (stat) + 13.8 (syst) 1-ring µ-like events - 13.4

0

0.2

0.4

0.8

1

0.6

 $sin^2(2\theta)$

v_{μ} -disappearance: Best-fit spectrum

2 independent fitting methods

- Likelihood ratio, w/o systematic param fitting $sin^{2}(2\theta_{23})=0.98$, $|\Delta m^{2}_{23}|=2.6 \times 10^{-3} \text{ eV}^{2}/\text{c}^{4}$
- Ext. max. likelihood ratio, w systematic param fitting $sin^{2}(2\theta_{23})=0.99$, $|\Delta m^{2}_{23}|=2.6 \times 10^{-3} \text{ eV}^{2}/c^{4}$

Repeated the analysis with 2 different neutrino MC generators (GENIE and NEUT): Very different cross-section model

Very good consistency between all fits.

A very robust oscillation result!

v_u-disappearance: Confidence regions

(and comparison with latest MINOS and SuperK results)

Both T2K analyses used the Feldman-Cousins method to construct confidence regions.

Conclusions

Reported results from an initial exposure of 1.431E+20 POT (just ~2% of expected final exposure)

- Electron-neutrino appearance:
 - Observed 6 single-ring electron-like event
 - Background (θ_{13} =0) = 1.5 ± 0.3
 - θ_{13} =0 excluded to 2.5 σ level
 - First strong indication for a non-zero $\theta_{_{13}}$
 - 3-flavour fit-results

For Normal (Inverted) hierarch, $\delta_{CP} = 0$ and global best-fit values of "23"-sector params:

- Best-fit value: sin²2θ₁₃ = 0.11 (0.14), 90% CL: 0.03 < sin²2θ₁₃ < 0.28
- 90% CL: 0.03 (0.04) < $\sin^2 2\theta_{13}$ < 0.28 (0.34)
- Muon-neutrino disappearance:
 - Observed 31 single-ring muon-like events.
 - Without oscillations, expect ~103.6 \pm 17.2 events (a ~4 σ deficit)
 - Consistent with MINOS / K2K / SuperK (atmospheric neutrinos).
 - Effective 2-flavour fit-results:
 - Best-fit values: sin²2θ₂₃=0.98, |Δm²₂₃|=2.6x10⁻³ eV²/c⁴
 - •90% CL : $\sin^2 2\theta_{23} > 0.84$, 2.1x10⁻³ $eV^2/c^4 < |\Delta m_{23}^2| < 3.1x10^{-3} eV^2/c^4$

Back-up slides

T2K Collaboration

59 institutions in 12 countries

Canada

TRIUMF U of Alberta U of B Columbia U of Regina U of Toronto U of Victoria York U

France

CEA Saclay IPN Lyon LLR E Poly LPNHE-Paris

Russia

INR

<u>Korea</u> Chonnam Nat'l U Dongshin U Seoul Nat'l U

Spain

IFIC, Valencia U.A. Barcelona **Poland**

A Soltan, Warsaw HNiewodniczanski T U Warsaw U of Silesia Warsaw U Wroclaw U Switzerland Bern

ETH Zurich U of Geneva

UK

U of Oxford Imperial C London Lancaster U Queen Mary U of L Sheffield U STFC/RAL STFC/Daresbury U of Liverpool U of Warwick Japan ICRR Kamioka ICRR RCCN KEK Kobe U Kyoto U Miyagi U of Ed Osaka City U U of Tokyo Italy INFN Bari INFN Bari INFN Roma Napoli U Padova U

USA

Boston U BNL Colorado State U Duke U Louisiana State U Stony Brook U U of California, Irvine U of Colorado U of Pittsburgh U of Rochester U of Washington Germany

RWTH Aachen U

Neutrino flux uncertainties

Neutrino flux uncertainties

Energy reconstruction for CCQE and non-CCQE

Cross sections – Survey of models

v_{μ} CCQE cross section – Survey of models

v_{μ} CC1 π cross section – Survey of models

$v_{_{\rm u}}$ NC π^0 (coherent) cross sections – Survey of models

Final State Interactions (FSI)

FSI effect on final state topologies

what was generated inside the nucleus

	Final-	Primary Hadronic System									
	State	$0\pi X$	$1\pi^0 X$	$1\pi^+X$	$1\pi^-X$	$2\pi^0 X$	$2\pi^+ X$	$2\pi^- X$	$\pi^0\pi^+X$	$\pi^0\pi^-X$	$\pi^+\pi^-X$
what we could see in a perfect detector	0πX	293446	12710	22033	3038	113	51	5	350	57	193
	$1\pi^0 X$	1744	44643	3836	491	1002	25	1	1622	307	59
	$1\pi^+X$	2590	1065	82459	23	14	660	0	1746	5	997
	$1\pi^-X$	298	1127	1	12090	16	0	46	34	318	1001
	$2\pi^0 X$	0	0	0	0	2761	2	0	260	40	7
	$2\pi^+ X$	57	5	411	0	1	1999	0	136	0	12
	$2\pi^- X$	0	0	0	1	0	0	134	0	31	0
	$\pi^0\pi^+X$	412	869	1128	232	109	106	0	9837	15	183
	$\pi^0\pi^-X$	0	0	1	0	73	0	8	5	1808	154
	$\pi^+\pi^-X$	799	7	10	65	0	0	0	139	20	5643

Analysis Flow (2010)

