Seminar at University of Birmingham: 19 January 2011

The Properties of Ultra High Energy Cosmic Rays and the Problems that they pose

Alan Watson

University of Leeds

a.a.watson@leeds.ac.uk

OVERVIEW

- Why there is interest in cosmic rays > 10^{19} eV
- The Auger Observatory
- Description and discussion of measurements:-

Energy Spectrum

Arrival Directions

Primary Mass (not photons or neutrinos)

• Can we learn anything about Particle Physics?

Why the interest?

(i) Cosmic Ray Astronomy above 10¹⁹ eV? Deflections ~ 10⁹ for protons at 10¹⁹ eV

(ii) Spectral steepening above 5 x 10¹⁹ eV predicted

Greisen-Zatsepin-Kuz'min – GZK effect (1966)

These reactions lead to the <u>ONLY</u> firm prediction in cosmic rays: spectral steepening

(iii) How are particles accelerated?

Interaction Length of protons as function of energy

How are CR particles accelerated?

(i) Synchrotron Acceleration at CERN

 $E_{max} = ZeBR\beta c$

7 TeV in LHC (7 x 10¹² eV)

R = 10 km

 $B = 10^{12} Gauss (10^8 T)$

(ii) Single Shot Acceleration (e.g. Neutron Star)

$E_{max} = ZeBR\beta c$

(iii) Diffusive Shock Acceleration

E_{max} = kZeBRβc, with k<1

(e.g. Shocks near AGNs, near Black Holes, Supernova.....?)

Particles in region of predicted GZK-steepening could tell us about sources within 100 – 200 Mpc - depending on the energy.

IF particles are protons, the deflections are expected to be small enough above ~ $5 \ge 10^{19} \text{ eV}$ (~ 2°) that point sources might be seen – provided there are not too many.

So, measure:

- energy spectrum to look for GZK-prediction
- arrival direction distribution explore
- mass composition for interpretation

But rate at 10²⁰ eV is < 1 per km² per century - only detectable through extensive air showers

The Pierre Auger Collaboration

*Croatia	Argentina		
Czech Republic	Australia		
France	Brasil		
Germany	*Bolivia		
Italy	Mexico		
Netherlands	USA		
Poland	*Vietnam		
Portugal	*Associate Countries		
Slovenia			
Spain	~330 PhD scientists from		
United Kingdom	~100 Institutions and 18		
(until 31 Dec 2011)	Countries		

Aim: Find properties of UHECR with unprecedented precision First discussions in 1991 (Jim Cronin and Alan Watson)

A tank was opened at the Haverah Park 'end of project' party on 31 July 1987. The water shown had been in the tank for 25 years - but was quite drinkable!

ιJ

Campus of Auger Observatory in Argentina

Telecommunication system

Zenith Angle ~ 48° Energy ~ 7 x 10¹⁹ eV

Fluorescence telescopes: *Number of telescopes:* 24 *Mirrors:* 3.6 m x 3.6 m with field of view 30^o x 30^o, each telescope is equipped with 440 photomultipliers.

The essence of the hybrid approach

Precise shower geometry from degeneracy given by SD timing

Essential step towards high quality energy and X_{max} resolution

Times at angles, χ , are key to finding R_{p}

Angular Resolution from Central Laser Facility

A Hybrid Event

Results from Pierre Auger Observatory Data-taking started on 1 January 2004 with 125 (of 1600) water-Cherenkov detectors 6 (of 24) fluorescence telescopes more or less continuous operation since then 12,790 km² sr yr At end of 2009, > 10¹⁹ eV: 4440 (HiRes stereo: 307 > 5 x 10¹⁹ eV: 59 : 19 > 10²⁰ eV: 3 : 1)

HiRes Aperture: x 4 at highest energies

x 10 AGASA

Summary of systematic uncertainties

Source	Systematic uncertainty	
Fluorescence yield	14%	
P,T and humidity	7%	
effects on yield		
Calibration	9.5%	
Atmosphere	4%	
Reconstruction	10%	
Invisible energy	4%	
TOTAL	22%	

Fluorescence Detector Uncertainties Dominate

Above 3 x 10^{18} eV, the exposure is energy independent: 1% corrections in overlap region

Auger and HiRes Spectra

For the few events above 10²⁰ eV

Auger (3) and HiRes stereo (1)

Integral flux is $(2.4 \pm 1.9/1.1) \times 10^{-4} \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}$

11 AGASA events (6.4 \pm 1.9) x 10⁻³ km⁻² sr⁻¹ yr⁻¹

a factor of more than 25

Even a factor of x 2 increase in Auger energies would not be enough to explain difference

Consensus is that Auger and HiRes have got it right

Spectrum shape does **NOT** give insights into mass

Searching for Anisotropies

Exploratory scan: data until 27 May 2006

Largest significance for $E_{th} \sim 6 \times 10^{19} \text{ eV}$ $\psi \sim 3^{\circ}$ $D_{max} \sim 75 \text{ Mpc}$

12/15 events close to AGNs in Véron-Cetty & Véron Catalogue

Test Using Independent Data Set

Data from 27 May 2006 until 31 August 2007 8/13 events lined up as before: chance 1/600

Using Veron-Cetty AGN catalogue

First scan gave $\psi < 3.1^{\circ}$, z < 0.018 (75 Mpc) and E > 56 EeV

	ισται	hits	hits	Probability
1 Jan 04 - 26 May 2006	15	12	3.2	1 st Scan
27 May 06 – 31 August 2007	13 Eacl	8 1 exposur	2.7 e was 4500	1.7 x 10 ⁻³ km² sr yr

6 of 8 'misses' are with 12° of galactic plane

The degree of correlation has decreased, but still provides evidence for anisotropy of UHECRs @ E > 55 EeV at 99% C.L.

A clear message from the Pierre Auger Observatory is that we made it too small Rate of events that seem to be anisotropically distributed is only ~ 2 per month

Indications on Mass Composition

- Anisotropy suggests a proton fraction of ~ 40%
- Most unexpected result from Pierre Auger Observatory so far points in another direction
- Could it be indicative of interesting new physics (??)

How we try to infer the variation of mass with energy

Some Longitudinal Profiles measured with Auger

Mean X_{max} from 3754 events

RMS(X_{max)} for same events

47

Spectrum

- Clear evidence of ankle at $\sim 3 \times 10^{18} \text{ eV}$
 - *common assumption*: galactic to extragalactic cosmic rays
- Clear evidence of steepening at $\sim 5 \times 10^{19} \text{ eV}$
 - common assumption: GZK-effect seen

Arrival Direction Distribution

~ 40% of UHECR above 5.5 x 10¹⁹ eV are associated with AGNs

common assumption: large fraction of these CR are protons

Mass Composition

Measurements of <X_{max}> and rms X_{max} suggest: large fraction of heavier nuclei at highest energies

(But some disagreement with HiRes and TA)

Further Astrophysical Test

Lemoine and Waxman (2009 JCAP 11 009)

If anisotropy is due to heavy nuclei, then anisotropy expected at energy ~ E/Z

Statistics are greater at lower energies so this should be detectable

VERY preliminary results from Auger

Tentative Conclusion: Protons from Cen A

- Anisotropy might suggest protons
- X_{max} data suggest diminishing fraction of protons
 - Could cross-section (p-air) be much higher than from usual extrapolations?
 - Could leading particle take very little energy?
 - Could the multiplicity be unexpectedly high?

These features would give:-

- \mathbf{X}_{max} higher in atmosphere than current models
- Reduce fluctuations in X_{max}

Can the LHC help us?

CMS Rapidity Plots

Ostapchenko arXiv: 1010.01372

CMS Collaboration: PRL 105 022002 2010 $_{56}^{}$

LHCf: an LHC Experiment for Astroparticle Physics

The Cross-Section Problem

Aloiso, Berezinsky and Gazizov: arXiv 0907.5194 **"DISAPPOINTING" MODEL FOR UHECR**

based on interpretation of the Auger mass composition.

• At $1 \times 10^{18} \le E \le 3 \times 10^{18}$ eV: almost pure proton composition

• At $4 \times 10^{18} \leq E \leq 4 \times 10^{19}$ eV: A increases up to $A \approx 56$.

Model: very low acceleration energy $E_{\text{max}}^{\text{acc}} = 4 \times 10^{18} Z \text{ eV}.$

60

Also Calvez et al. PRL 105 091101 2010

GRBs in our galaxy about every 10⁵ years

Auger Large Scale Anisotropy: Submitted for publication, 061210

Next steps:

- Run Auger South until at least 2015
- Build Auger North (at least x7 AS) but NOT in South East Colorado
- Go into space: JEM-EUSO on ISS (2015) and free-flyer in 2020s?

There are still lots of questions to answer as the data pose several puzzles