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The focus in this talk is to understand the SM top, not
on the many new-physics models involving the top

introduction • top as a window to new physics

top pair production • theory status

• inclusive vs. exclusive quantities

• issues regarding top quark mass

• spin correlations

single top • theory status

• non-factorizable corrections

• spin correlations

• determination of CKM matrix elements

conclusions
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outline

why top ?

• top is a window to physics beyond the Standard Model

• in most, if not all, extensions of the SM, top plays a special role (Technicolor, topcolor
SUSY, little Higgs)

• Yukawa coupling yt ∼
√

2 mt/v ≃ 1, as it should

• width Γt ∼ 1.4 GeV ≫ ΛQCD =⇒ : top behaves like a “free quark”

• spin information of top is transformed to decay products =⇒ spin correlations

• the top is the white sheep in a herd of black sheep

Focus on precise and detailed SM investigations and hope for a deviation

current “deviations” (e.g. forward-backward asymmetry) are not convincing
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overview top

eQ; T3; spin; SU(Nc)
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test indirect constraints

not main motivation

�
�

�
�t → Wb; pp → tt̄γ

mt (what mass?)

�




�

	
input for (EW) precision

THE measurement

�
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tt̄ production
other possibilities?

Yukawa coupling yt
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direct test of Higgs mech.
important

�
�

�
�pp → tt̄H

CKM element Vtb
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(only) direct measurement

nice

�

�

�

�
single top production

width Γt
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SM theory accurate at 1%
(would be) really nice

�
�

�
�only at ILC ??

anom. coupl; BSM

�
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we are desperate for it

no comment

�




�

	

spin correlations, rare
decays, single top ...
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tt̄ theory status

general

• width known at α2
s and one-loop electroweak ⇒ theoretical uncertainty ∼ 1% [Czarnecki,

Melnikov; Chetyrkin et.al; Denner, Sack; Eilam et.al.]

• mt,pole/mt(mt) known at α3
s [Chetyrkin, Steinhauser]

top quark pair production

• fully exclusive known at ∼ one-loop
electroweak corrections known [Bernreuther et.al.]
spin correlations included [Bernreuther et.al., Melnikov et.al.]
included in MC@NLO and POWHEG [Frixione, Nason, Webber . . . . . . ]
two-loop corrections on their way . . .

non-factorizable corrections on their way . . .

• inclusive cross section(s) known at ∼ two-loop
two-loop nearly known [Czakon et.al, Moch et.al, . . .]
bound-state effects computed [Hagiwara et.al., Kiyo et.al.]
non-factorizable corrections computed [Beenakker et.al.]
resummation of logs under control [Ahrens et.al]
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tt̄ total cross section

• total cross section (LHC dominated by σ̂gg , beyond LO we also need σ̂qg )

σ̂ij = σ̂
(0)
ij

»

1 +
αs

4π
σ̂

(1)
ij +

α2
s

(4π)2
σ̂

(2)
ij + . . .

–

• NLO QCD (and EW) corrections known [Dawson et.al.; Beenakker et.al.; Kao, Wackeroth,
Bernreuther et.al; Kühn, Scharf, Uwer . . .]

σ̂
(1)
ij =

a
(1,−1)
ij

β
| {z }

Coulomb

+ b
(1,2)
ij log2 β + b

(1,1)
ij log β

| {z }

soft gluon

+ c
(1)
ij

• NNLO QCD corrections not (yet) fully known [Czakon et.al, Moch et.al, Beneke et.al,
Ahrens et.al, Körner et.al. . . . (Hathor)]

σ̂
(2)
ij =

#

β2
+

# log2 β + # log β + #

β
| {z }

Coulomb

+ # log4 β + # log3 β + . . .
| {z }

soft gluon

+ c
(2)
ij

• problematic terms from threshold and soft gluon region
q

1 − 4m2
t /s ≡ β → 0
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tt̄ total cross section

resummation of soft logs

• resummation of soft logs ( in threshold region
q

1 − 4m2
t /s ≡ β → 0 )

initially to NLL [Bonciani, Czakon, Catani, Mangano, Mitov, Nason . . . . . .]

now NNLL [Czakon et.al., Beneke et.al., Ahrens et.al., . . . . . .]

• resummation of log β does not yield large numerical contributions, but considerably
improves the scale dependence of the cross section

• resumation more important for Tevatron than LHC

• note: different kind of logs for different quantities

total cross section: log(1 − 4m2/s)

pT distribution: log(1 − 4(m2 + p2
t )/s)

invariant mass distribution: log(1 − Mtt̄/ŝ)

• resummation for “fully exclusive” quantities ??
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tt̄ invariant mass

Resummation of logs: for invariant mass [Ahrens et.al. arXiv:1003.5827]
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tt̄ total cross section

bound-state effects

• near threshold Coulomb potential is dominating effect:

colour singlet: V (r) ≃ −αs
CF

r
attractive

colour octet: V (r) ≃ −αs
CF − CA/2

r
repulsive

• for Γt → 0 collections of bound states (as for bottom), for Γt ≃ 1.4 GeV a single “bump” in
invariant mass remains.

• resummation of (α/β)n (from Coulomb potential → “bound-state” effects) [Hagiwara et.al.,
Kiyo et.al.] results in modification of invariant mass spectrum

• effect small for colour octet, i.e. Tevatron (qq̄ is pure octet at LO), but “large” (for a theorist)
at the LHC

• “bump” is impossible to be seen, but effect on total cross section should be taken into
account.
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Mtt̄ invariant mass
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tt̄

more realistic quantities

• impressive progress for inclusive quantities, well under control

• what does this have to do with measured quantities ??

• final state is not t, but ℓ ν Jb or J1 (J2, ) Jb

• include top decay, allow for cuts
• NLO QCD corrections in production and decay taken into account [Bernreuther et.al.,

Melnikov et.al.]
• electroweak corrections included, generally quite small [Bernreuther et.al.]
• non-factorizable corrections not included (only in inclusive case [Beenakker et.al.])

• cancellations for non-factorizable corrections [Fadin et.al; Melnikov et.al] disturbed if cuts
applied

• small effects might be important for a mass determination with δmt . Γt
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pp → tt̄X

mt measurements from top decay products measurement of pole mass, potentially a problem if

δmt . Γt ∼ 1.5 GeV

• top as final state
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pp → tt̄X

mt measurements from top decay products measurement of pole mass, potentially a problem if

δmt . Γt ∼ 1.5 GeV

• top decay taken into account
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pp → tt̄X

mt measurements from top decay products measurement of pole mass, potentially a problem if

δmt . Γt ∼ 1.5 GeV

• top decay taken into account

• NLO corrections to production and decay [Bernreuther et.al, Melnikov et.al.]

Birmingham 2010 – p. 12/29



pp → tt̄X

mt measurements from top decay products measurement of pole mass, potentially a problem if

δmt . Γt ∼ 1.5 GeV

• top decay taken into account

• NLO corrections to production and decay [Bernreuther et.al, Melnikov et.al.]

• bound-state effects not taken into account in “exclusive” case
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pp → tt̄X

mt measurements from top decay products measurement of pole mass, potentially a problem if

δmt . Γt ∼ 1.5 GeV

• top decay taken into account

• NLO corrections to production and decay [Bernreuther et.al, Melnikov et.al.]

• bound-state effects not taken into account in “exclusive” case

• non-factorizable corrections not taken into account in “exclusive” case
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pp → tt̄X

mt measurements from top decay products measurement of pole mass, potentially a problem if

δmt . Γt ∼ 1.5 GeV

• top decay taken into account

• NLO corrections to production and decay [Bernreuther et.al, Melnikov et.al.]

• bound-state effects not taken into account in “exclusive” case

• non-factorizable corrections not taken into account in “exclusive” case

• (non-perturbative) colour connection to proton remnants: rough estimate ∆mt ∼ 0.5 GeV

[Skands, Wicke]
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pp → tt̄X

mt measurements from top decay products measurement of pole mass, potentially a problem if

δmt . Γt ∼ 1.5 GeV

−→ mt??

−→ mt??

• top decay taken into account

• NLO corrections to production and decay [Bernreuther et.al, Melnikov et.al.]

• bound-state effects not taken into account in “exclusive” case

• non-factorizable corrections not taken into account in “exclusive” case

• (non-perturbative) colour connection to proton remnants: rough estimate ∆mt ∼ 0.5 GeV

[Skands, Wicke]
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pp → tt̄X

beyond pp → tt̄ → W+W−bb̄ have to consider the decay for experimental cuts

• off-shell and off-resonance effects studied at tree level [Kauer, Zeppenfeld]

in general: p2 = m2
t ⇒ singularity ⇒ include width ⇒ gauge invariance issues

importance of these effects crucially depends on final state cuts

• non-factorizable corrections studied for (inclusive) invariant mass distribution → small
effect ∆mt ∼ 100 MeV [Beenakker, Berends, Chapovsky]

• cancellation theorems for NF corrections in inclusive case [Fadin et.al, Melnokov et.al]

• NF corrections become more important when cuts are applied (→ single top case)

• no general purpose MC avaliable including all these effects,
invariant mass of top decay products is treated at tree level.
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tt̄ top mass

The mass is simply a parameter of the theory (renormalization scheme dependent!)
The pole mass has an intrinsic uncertainty of order ΛQCD in perturbation theory (infrared
sensitivity, renormalon ambiguity)

consider (fictitious) meson:

M
| {z }

well def. pole mass

= mQ
|{z}

pert. ambiguity

+ mq + V (q2)
| {z }

pert. ambiguity

There is a principal limitation of the usefulness of the pole mass
δmt > ΛQCD =⇒ probably not relevant for LHC, only linear collider
could be solved in principle [Hoang, Stewart]

mt sensitive

observable

EW precision

observable

mpole

m(m)

∆ = 8 + 1.7 + 0.5 GeV
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tt̄ top mass

renormalization scheme

• at tree level, in principle any renormalization scheme is equivalent, but
mMS − mpole ∼ 10 GeV ??

• mt extracted using decay products is “something like” the pole mass (small higher-order
corrections)

• “something like” means propagator has to be resonant for p2
t ≃ m2

t → ambiguity of O(Γt)

• this is a purely perturbative problem !!

• there are also many further (smaller) problems, some non-perturbative (renormalon
ambiguity of pole mass, colour reconnection)

• alternative ways to measure mt desperately needed, even if (apparently) not competitive

• care has to be taken when interpreting mexp
??
= mpole
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tt̄ top mass

determination of m(m) through cross section [Langenfeld, Moch, Uwer]

compare σtot expressed in terms of pole and MS mass (for µF ∈ {0.5, 1, 2} × mt)
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• MS scheme more reliable (bands overlap, smaller uncertainty)

• direct extraction of MS mass m(m) with δm ≃ 3 GeV

• PDF uncertainties etc... ??
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tt̄ top mass

determination of mpole through cross section [Biswas, Melnikov, Schulze, 1006.0910]

find observable with large mt sensitivity and
compute beyond LO

e.g. Eℓ + Eℓ′ in lab frame

compare δthm (PDF, higher order) with mt

sensitivity

example here: evaluate 〈Eℓ + Eℓ′〉 for
{MRST, CTEQ} ×µ ∈ {0.5, 0.75, 1, 1.25}mt

claimed δthm: 1.7 (LO) → 1 GeV (NLO)
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tt̄ spin correlations

• decay of top not (much) affected by hadronisation → information of spin in decay products

• desperate hope for non-SM top decay

• obviously, this needs decay of top implemented, with NLO corrections in production and
decay [Bernreuther et.al.]

• at LHC, mostly gg → tt̄, this has more complicated helicity structure than qq̄ → tt̄.

• for low (high) Mtt̄ like (opposite) helicity gluons dominate [Mahlon, Parke]

• make cut Mtt̄ < 400 GeV (∼ 10% of cross section survives) and investigate ∆φℓ ℓ′ , angle
between leptons

• compare true correlated top decay to uncorrelated top decay (spherically in rest frame) →
next slide

• only punishment for 14 TeV → 7 TeV is smaller cross section
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tt̄ spin correlations

correlations ±40% [Mahlon, Parke, arXiv:1001.3422]

cannot get true Mtt̄ < 400 GeV due to ambiguity from ν in leptonic decay →
cut on average of reconstructed Mtt̄ < 400 GeV (right)
or: use semi-leptonic decay (→ ambiguity on which jet is d jet)
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single top

Theory status

• NLO QCD corrections, production and hadronic decay for t–, s–channel and Wt known
[. . ., Harris et.al; Campbell, Ellis, Tramontano (MCMF)]

• all channels included in MC@NLO and POWHEG [Frixione, Laenen, Motylinski, Nason,
Re, Webber, White . . . . . . ]

• EW corrections known [Beccaria et.al; Macorini et.al]

• non-factorizable corrections known [Falgari et.al.]

• Note: s and t channel mix (beyond LO)
→ more aproproate to talk about (tJ), (tb) and (tW ) cross sections

= +

t − channel s − channel
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single top

4-flavour vs. 5-flavour scheme [Campbell et.al.]

b

b̄

b̄

LO 5 Flavour LO 4 Flavour

g g

5F scheme calculation is simpler and resums potentially large logs (due to collinear split g → bb̄.)
via PDF. Thus this is better than 4F scheme, unless we are interested in b spectator quark.
For NLO description of b spectator quark, need 4F (NLO) calculation.

LHC t LHC t̄

5F (153)156+4+3
−4−4 (89)93+3+2

−2−2

4F (143)146+4+3
−7−3 (81)86+4+2

−3−2

just about consistent, effects of logs?

(LO) NLO total cross section (in pb)
for LHC, 14 TeV, scale and pdf error

mb = 4.7 GeV, mass effects are not im-
portant for “normal” quantities
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single top

4-flavour (solid) vs. 5-flavour (dashed) scheme [Campbell et.al. 0903.0005]

generally reasonable agreement, ∼ 10 − 20 % difference, but b spectator quantities??
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single top

effect of non-factorizable corrections enhanced by cuts [Falgari, Mellor, AS]

u

b

d

b

W+

t

uu dd

bb

W+W+

bb

tt

(a)

(f)

(c)

(e)

(b)

(d)

u d

b

W+

b

t

u d

b

W+

b

t

u d

b

W+

b

t

LHC cross section 7 TeV with and without (reasonable) cuts: ∼ pT , E/T > 20 GeV

on-shell t off-shell t %

no cuts 84.9 86.3 + 1.7%

cuts 2.31 2.23 - 3.6%

full NLO corrections ∼ 15%
non-factorizable part is not (always)
negligible
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single top

effect of non-factorizable corrections [Falgari, Mellor, AS]

compare distributions with (solid) and without (dashed) non-factorizable corrections for e.g.
invariant mass and pT (ℓ); t-channel at LHC, with cuts:
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• note: large corrections (due to cuts)

• NLO outside LO-scale band mt/4 ≤ µ ≤ mt
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spin correlations

compare cos θ distributions with and without (dashed) spin correlations

cos θS =
~p∗s · ~p∗

ℓ

|~p∗s | |~p∗ℓ |
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~p∗s : momentum of spectator jet in top-quark rest frame
~p∗

b
: momentum of proton (beam) jet in top-quark rest frame
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CKM matrix elements

Disentangle Vtb, Vts, Vtd: LHC
√

s = 14 TeV with 10fb−1; [Aguilar-Saavedra, Onofre]

u

d, s, b

d

t

W

d, s, b

g

W

t

t

u

d

d, s, b

t

W

• consider (tJ), (tW ) and (tb)

• make use of top rapidity distribution (different for d quark contribution → next slide)

• impacts not only on Vtb but indirectly also on Vtd

• claimed limits (14 TeV, 10 fb−1): |Vtd| ≤ 0.12, |Vts| ≤ 0.27, 0.94 ≤ |Vtb| ≤ 1.05

• effect of jet definition, higher-order corrections, inclusion of decay ??
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CKM matrix elements
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rapidity of top: LHC
√

s = 14 TeV with 10fb−1; [Aguilar-Saavedra, Onofre 1002.4718]
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CKM matrix elements

t-channel, LHC 7 TeV NLO result [Falgari, Giannuzzi, Mellor, AS]

pT (Jb) > 20 GeV; pT (Jh) > 20 GeV;

if there is a b̄-jet, pT (Jb̄) < 15 GeV;

E/T + pT (ℓ) ≥ 60 GeV
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general picture not-affected by higher-order corrections
d-quark contribution top-quarks have different signature → useful ??
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conclusions

• at the LHC we won’t see a single top quark

• don’t be fooled by “NNLO” etc labels! A one-loop (two-loop) calculation does not describe
every quantity at NLO (NNLO)!

• if a very high (theoretical) precision is required, decay of top has to be considered

• many “small” effects require further work

• for a precise determination of the top mass, mpole 6=mMC

• a general purpose MC for tt̄ icluding all known effects (resummation, decay, electroweak
corrections, finite width effects . . .) would be most welcome

• “exclusive” NNLO will be next milestone

• need many different ways to measure top mass to get better (i.e. some) control on
non-perturbative effects
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