Neutrino Interactions in the GeV Regime

Xianguo LU/ 卢显国 University of Oxford

Particle Physics Seminar University of Birmingham Birmingham, 13 March 2019

Neutrino Interactions in the GeV Regime

Outline

• Neutrino Oscillations

– An identity-changing game – Underlying math – Seeing is believing

- Oscillation Measurements
- Accelerator-based neutrino experiments #measured ν / #produced ν
 - Beam flux, v and \overline{v} interactions
 - -v and \overline{v} interactions Impact of v and \overline{v} interactions
 - Interaction Measurements

- MINERvA

- Inclusive 'low-recoil' analysis Inclusive to exclusive
 - Exclusive Measurements
 - Why particle spectra won't work

• Transverse Kinematic Imbalance (TKI)

– Principle – Analysis – Future experiments – The very idea
 – Initial-state kinematics – Neutron initial-state kinematics – Proton initial-state kinematics

• Neutrino-Hydrogen Interactions

– Review – The very idea – Perspective

Physics Beyond Standard Model via Neutrino Oscillations

Quarks Forces Higgs boson τ Massless Leptons

Neutrinos have mass

Distance

oscillation between flavor states as a function of *time* ~distance/energy

Only 2 flavors, same oscillation behavior

*3-flavor paradigm

е

Neutrino oscillations depend on mixing parameters and mass differences.

Pontecorvo–Maki–Nakagawa–Sakata PMNS matrix

- What is the absolute neutrino mass?
- Why is this mass so small?
- How is the different mass ordered?
- Are there more than 3 types of neutrino?

Neutrino oscillations depend on mixing parameters and mass differences.

Neutrino oscillations depend on mixing parameters and mass differences.

Xianguo Lu, Oxford

* neglecting matter effects

Neutrino oscillations depend on mixing parameters and mass differences.

Xianguo Lu, Oxford

* neglecting matter effects

Neutrino Oscillations – Seeing is believing

Charge–Parity symmetry Violation (CPV)?

Matter

Antimatter

Neutrino Oscillations – Seeing is believing

Charge–Parity symmetry Violation (CPV)?

http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov

Oscillation Measurements – *Accelerator-based neutrino experiments*

Nuclear β decay MeV regime

 ν beam: " β decay" of highly boosted collision products GeV regime

* also the cross section is larger at GeV

Oscillation Measurements – Accelerator-based neutrino experiments

Oscillation Measurements – #measured v / #produced v

Oscillation Measurements – Beam flux, v and v interactions

Xianguo Lu, Oxford

Oscillation Measurements – Beam flux, v and v interactions

• Now@**T2K**: [flux (9%) + interaction (15%)] → 8% after Near Detector constraint

- Target CP violation sensitivity requires total sys. uncertainty < 1-2%
- Neutrino interactions, if not understood, would be fatal

Oscillation Measurements – v and v interactions

Intrinsic difference in v and \overline{v} event rates without CPV

Oscillation Measurements – v and v interactions

Nuclear effects like "2p2h" make it worse

Nuclear effects: all effects due to target A>1 Proton and neutron have VERY different experimental signatures

Oscillation Measurements – v and v interactions

Interaction Measurements – MINERvA

Only dedicated experiment for v and \overline{v} interactions currently running

Various targets: He, CH, O, Fe, Pb

Interaction Measurements – MINERvA

Scintillator tracker: Hydrocarbon (CH) target Homogeneous non-magnetized active tracker

Interaction Measurements – MINERvA

Run 3493 Event 41075, October 23rd, 2015

Homogeneous non-magnetized active tracker → same as LAr detector What do we do with such great detail in final states?

Xianguo Lu, Oxford

75 cm

31

Nucl.Instrum.Meth. 676 (2012) 44-49, Nucl.Instrum.Meth. A743 (2014) 130-159

Interaction Measurements – Inclusive 'low-recoil' analysis

~ single proton kinetic energy spectrum in QE ~ π (+p) kinetic energy spectrum in RES

Base Model (GENIE + pion reweight + RPA + 2p2h)

Base Model + Neutrino Tune = MnvGENIE-v1

Base Model + Neutrino Tune = MnvGENIE-v1

- Apply neutrino tune directly to anti-neutrino Tuned 2p2h = (1+G)·Valencia 2p2h,
 G: 2D Gaussian(q0, q3) determined in fit to neutrino data
- *Empirical* modification to 2p2h

Xianguo Lu, Oxford

Transverse Kinematic Imbalance (TKI) – *Principle*

http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/ Xianguo Lu, Oxford

 \vec{p}_{v} por. $\vec{p}_{\mathbf{N}'}$ $\delta \alpha$ η Neutrino Shadow Play $\vec{p}_{\nu/\bar{\nu}}$ $\vec{p}_{\mathbf{Y}}$ **Z**TT

Transverse Kinematic Imbalance (TKI) – *Principle*

http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/ Xianguo Lu, Oxford

Transverse Kinematic Imbalance (TKI) – Principle

Details can be found in:

- > **XL** *et al*. Phys.Rev. D92, 051302 (2015)
- > XL et al. Phys. Rev. C94 015503 (2016)
- **XL**, J. T. Sobczyk, arXiv:1901.06411

http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/ Xianguo Lu, Oxford

Transverse Kinematic Imbalance (TKI) – Analysis

Experimental measurements on single-TKI:

- **T2K**: K. Abe *et al*. Phys.Rev. D98, 032003 (2018)
- MINERvA: XL et al. Phys.Rev.Lett. 121, 022504 (2018)

		🛟 Fermilab	Home About Science Jobs Contact Phone Book
			New
SC Home Organization	Jobs Contact	Newsroom News and features DOE Home >	SI: Neutrinos cast no shadows uary 4, 2019 Xianguo Lu
Programs You are here: SC Home » Pro	Laboratories User Facilities Universities Funding Opportunities ograms > HEP Home > Science Highlights > 2019 > CSI: Neutrinos Cast No Shadows	SC Site Search GO News About news Wise	For Journalist For Members LOGIN or SIGN UP
High Energy F	Physics (HEP)	DOE News after a three-year sprint and taken ap MicroBooNE, Mach	ine Learning, and Liquid Argon and says app Building a foundation and says app
HEP Home	01.30.19 CSI: Neutrinos Cast No Shadows		
About	New crime scene investigation technique offers a hard look	at the tra	
Facilities	particles leave before fleeing the scene.		
		The DOE Science News Source is a Newswise initiative to pr public and news media.	omote research news from the Office of Science of the DOE to the
		2019-02-01 14:55:05 * Article ID: 707258	🗘 Add to Favorites 🛛 💌 🗖 🔹 🐇
		CSI: Neutrinos Cast No Shadows	MORE NEWS FROM
guo Lu, Oxford		New crime scene investigation technique offe at the traces that particles leave before fleeing	ers a hard look MEDIA CONTACT 43

Xianguo Lu, Oxford

Stationary nucleon target

Stationary nucleon target

Still back-to-back after changing:

- Flux
- Nucleon structure (form factors)
- Feynman diagram

Imbalances **NOT** due to

- Flux
- Nucleon structure (form factors)
- Feynman diagram

But

- Fermi motion
- Final-state interaction (FSI)
- 2p2h

Stationary nucleon target

 $\delta \vec{p}_{\rm T} = \vec{p}_{\rm T}^{\rm N} - \Delta \vec{p}_{\rm T}$

- Fermi motion
- final-state interaction (FSI)
- 2p2h

Cartoon by Marco Del Tutto

The initial-state kinematics of the interaction depend on:

1. Fermi motion of struck nucleon (*static*)

- 2. Coupling of W+/- to neutron/proton Fermi-motion dependent weighting (*dynamic*)
- 1. \rightarrow could be determined by electron scattering (target specific)
- 2. \rightarrow needs neutrinos

→ How to measure initial state *in situ* in neutrino scattering?

 $\delta p_{_{\rm T}}$ is Fermi motion transverse projection

Xianguo Lu, Oxford

Transverse projection of Fermi motion

Transverse projection of Fermi motion

Still back-to-back after changing:

- Nucleon structure (form factors)
- Feynman diagram

Stationary nucleon target

u candidate

Stationary nucleon target

Xianguo Lu, Oxford

Still back-to-back after changing:

- Flux
- Nucleon structure (form factors)
- Feynman diagram: Large uncertainty

$\nu 0\pi N \mathbf{p}: \ \nu \mathbf{A} \to \ell^- \mathbf{p} \mathbf{X}$	
ν n $\rightarrow \ell^-$ p	not applicable.
Quasi-elastic	Quasi-elastic
$\nu 1\pi N \mathbf{p} : \ \nu \mathbf{A} \to \ell^{-} \mathbf{p} \pi^{+} \mathbf{X}$ $\nu \left(\mathbf{p} \right) \to \ell^{-} \ \Delta^{++} \to \ell^{-} \ \mathbf{p} \ \pi^{+}$ Resonant production	$\bar{\nu}1\pi N p: \ \bar{\nu}A \to \ell^+ p\pi^- X$ $\bar{\nu} p \to \ell^+ \Delta^0 \to \ell^+ p \pi^-$ Resonant production

neutrino

antineutrino

- Neutron Fermi motion can be probed by QE, but only in neutrino scattering
- Proton Fermi motion in RES with both neutrino and antineutrino → *direct comparison of dynamic aspect of initial state, to remove possible confusion with CPV!*

State-of-the-art neutrino interaction event generators: GiBUU and NuWro $p_{_{\rm N}}$: 3D generalization of $\delta p_{_{\rm T}}$ [Furmanski, Sobczyk, Phys.Rev. C95 (2017) 065501]

Neutrino Interactions in the GeV Regime

– Review – The very idea – Perspective

Neutrino-Hydrogen Interactions – Review

- Pure hydrogen
 - Technical requirement: bubble chamber (historical: 73, 79, 78, 82, 86)

- Due to buoyancy, more dangerous for underground experiments
- Neutrino interactions on hydrogen:
 - In the last ~30 years there has been no new measurement
 - No nuclear effects → much desired for flux constraint and nucleon cross section input for oscillation analysis
 - Nucleon structure \rightarrow new frontier of hadron physics

Neutrino-Hydrogen Interactions – *The very idea*

l p interaction \rightarrow 3 charged particles: *l* p \rightarrow *l'* X Y

[XL, et al. Phys. Rev. D 92, 051302 (2015), XL, JPS Conf. Proc. 12, 010034 (2016)]

Neutrino-Hydrogen Interactions – *The very idea*

{X, Y} = {p, π^+ } for $\nu + p \rightarrow \ell^- + \Delta^{++}$ or {p, π^- } for $\bar{\nu} + p \rightarrow \ell^+ + \Delta^0$

l p interaction \rightarrow 3 charged particles: *l* p \rightarrow *l*' X Y

[XL, et al. Phys. Rev. D 92, 051302 (2015), XL, JPS Conf. Proc. 12, 010034 (2016)]

Neutrino-Hydrogen Interactions – *The very idea*

l p interaction \rightarrow 3 charged particles: *l* p \rightarrow *l*' X Y

[XL, et al. Phys. Rev. D 92, 051302 (2015), XL, JPS Conf. Proc. 12, 010034 (2016)]

Double-transverse momentum imbalance $\delta p_{_{\rm TT}}$

- H: 0
- Heavier nuclei: irreducible symmetric broadening
 - by Fermi motion *O*(200 MeV) and FSI
- CH_n: vH interaction can be extracted
 - vH $\delta p_{TT} \sim O(<10 \text{ MeV})$ after detector smearing
 - vC $\delta p_{\rm TT} \sim 200 \text{ MeV}$

Xianguo Lu, Oxford

Neutrino-Hydrogen Interactions – *Perspective*

Toy simulation of T2K performance (T2K neutrino flux on CH target) > Realistic detector resolution as T2K gas TPC (~10% at 1 GeV/c)

 When tracking resolution improves, only signal distribution gets narrower, background still wide due to Fermi motion and FSI! → Signal/background improves Measurements on-going...Stay tuned!

Neutrino-Hydrogen Interactions – Perspective

- State-of-the-art tracking resolution in gas TPC ALICE TPC (~1% at 1 GeV/c)
- DUNE Near Detector High Pressure gas TPC can achieve 95% vH purity with

50% He + 50% CH₄ or 50% He + 50% C₂H₆

Summary

- 1) Neutrino interaction allows measurements of oscillations
 - > profound questions of the existence of cosmos
 - > Nuclear effects, if not well understood, will forbid such measurements.
- 2) Neutrino interaction measurements: inclusive 'low-recoil' analysis and Transverse Kinematic Imbalances (TKI)
 - > v-fit 2p2h-like enhancement directly applicable to \overline{v}
 - > TKI cancel nucleon-level baseline physics, remove beam energy dependence, reveal various nature of nuclear effects
- 3) Neutrino interaction on hydrogen needed for flux constraint and nucleon cross section input for oscillation analysis.
 - > TKI (δp_{TT}) provides safe access to vH interaction.
 - > DUNE Near Detector HPgTPC with δp_{TT} can achieve 95% purity with careful choice of gas mixture.

Summary

Thank you!

- 1) Neutrino interaction allows measurements of oscillations
 - > profound questions of the existence of cosmos
 - > Nuclear effects, if not well understood, will forbid such measurements.
- 2) Neutrino interaction measurements: inclusive 'low-recoil' analysis and Transverse Kinematic Imbalances (TKI)
 - \sim v-fit 2p2h-like enhancement directly applicable to \overline{v}
 - > TKI cancel nucleon-level baseline physics, remove beam energy dependence, reveal various nature of nuclear effects
- 3) Neutrino interaction on hydrogen needed for flux constraint and nucleon cross section input for oscillation analysis.
 - > TKI (δp_{TT}) provides safe access to vH interaction.
 - > DUNE Near Detector HPgTPC with δp_{TT} can achieve 95% purity with careful choice of gas mixture.
BACKUP

Low-Recoil Tune / 2p2h-like enhancement

[MINERvA, manuscript in preparation] $\times 10^3$ $0.00 < q_{g}/\text{GeV} < 0.20$ $0.20 < q_{3}/\text{GeV} < 0.30$ $0.30 < q_3/\text{GeV} < 0.40$ 80 Nominal Total Enhance Valencia 2p2h cross section as a function of (q0, q3) Nominal QE 60 Nominal Delta Nominal 2p2h **Best fit Total** 40 Best fit QE **Best fit Delta** Best fit 2p2h 20 **MINERvA LE data** 0 0.50 < q₃/GeV < 0.60 $0.40 < q_3/\text{GeV} < 0.50$ $0.60 < q_3/\text{GeV} < 0.80$ 80 60 40 20 Ø. 0.2 0.1 0.2 0.3 0.4 0.0 0.3 0.4 0.0 0.2 0.3 0.4 0.1 0 Reconstructed available energy (GeV)

Low-Recoil Tune / 2p2h-like enhancement

[MINERvA, manuscript in preparation]

- GiBUU models 2p2h events with weight (T+1), where T is nuclear isospin parameter.
- 2p2h in two model settings (T=0 and 1) at two different energies (0.6 and 3 GeV) all start at $\delta \alpha_{_{\rm T}} \rightarrow 0$ and then evolve towards $\delta \alpha_{_{\rm T}} \rightarrow 180^{\circ}$ with strong energy dependence.
- Gross feature of energy dependence confirmed by data; contradiction between preference on T at different energies indicates sub-leading order mis-modeling.

Xianguo Lu, Oxford

A more general analysis of kinematic imbalance

Transverse: $0 = \vec{p}_{T}^{\ell'} + \vec{p}_{T}^{N'} - \delta \vec{p}_{T}$ Longitudinal: $E_{\nu} = p_{L}^{\ell'} + p_{L}^{N'} - \delta p_{L}$ New variable: $p_{n} \equiv \sqrt{\delta p_{T}^{2} + \delta p_{L}^{2}}$ [Furmanski, Sobczyk, Phys.Rev. C95 (2017) 065501]
Neutrino energy is unknown (in the first place), equations are not closed.
Dual

Assuming exclusive µ-p-A' final states Use energy conservation to close the equations

$$E_{\nu} + m_{\rm A} = E_{\ell'} + E_{\rm N'} + E_{\rm A'}$$

 $E_{\rm A'} = \sqrt{m_{\rm A'}^2 + p_{\rm n}^2}$

p_{_}: recoil momentum of the nuclear remnant

final-state

For CCQE, A' = ${}^{11}C*$ No more unknowns p_n : neutron Fermi motion

initial-state

Using energy imbalance to solve longitudinal momentum imbalance [Phys. Rev. C 95, 065501 (2017)] $\delta p_T \rightarrow p_N$ Single TKL + p. – Final State Correlations

0

0

$$\begin{split} \delta \vec{p}_{\mathrm{T}} &= \vec{p}_{\mathrm{T}}^{\mathrm{N}} - \Delta \vec{p}_{\mathrm{T}} & \text{Only di} \\ p_{\mathrm{n}} &\equiv \sqrt{\delta p_{\mathrm{T}}^2 + \delta p_{\mathrm{L}}^2} & p_{\mathrm{n}}^{\mathrm{has b}} \end{split}$$

0.6

0.8

 $\delta \rho_{_{\rm T}} \, ({\rm GeV}/c)$

Only differ by longitudinal momentum imbalance p_n has better physics sensitivity: 3D Fermi momentum

0.4

0.6

0.2

Xianguo Lu, Oxford

0, [,]

0.2

0.4

 $d\sigma/d\delta p_T$ (cm²/GeV/*c*/nucleon)

0.8

 p_{n} (GeV/c)

- Base Model depends on 1p1h and Short Range Correlation (SRC) modeling
- Critical to separate QE and RES to reduce Base-Model-dependence

END