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Outline 
n  Evidence for dark matter (1 slide). 
n  Candidates for dark matter (1 slide). 
n  WIMPs: parameters and detection principles. 
n  Features of different techniques. 
n  Xenon detectors. 
n  LUX results. 
n  LZ: 

o  Detector, 
o  Backgrounds and their suppression/rejection strategies, 
o  Sensitivity. 

n  Neutrino floor and beyond. 
n  Summary. 
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Evidence for (non-baryonic) dark matter 

n  Galactic rotation curves. 
n  Dynamics of galaxy clusters. 
n  Gravitational lensing effects; bullet cluster. 
n  Large-scale structure of the Universe. 
n  Fluctuations in the temperature of cosmic microwave background. 
n  Primordial (big-bang) nucleosynthesis -> non-baryonic (unless 

primordial black holes). 
n  Modified gravity or Modified Newtonian dynamics (MOND). 
n  … Add your stuff here. 
n  Generally accepted (from Planck results): about 27% of the matter-

density of the Universe is ‘dark matter’, 67% dark energy and 5% 
normal (baryonic) matter. 
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Candidates to (non-baryonic) dark matter 

n  Weakly interacting massive particles (WIMPs). 
o  Satisfy all requirements. 
o  Explain most observations. 
o  Well motivated by Supersymmetry – neutralino or lightest 

supersymmetric particle (but no evidence of supersymmetry at 
LHC yet). 

n  Axions and axion-like particles (ALPs) – not covered here. 
n  Sterile neutrinos – not covered here. 
n  … Add your stuff here. 
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WIMPs 
n  Stable. 
n  Neutral. 
n  Weakly interacting. 
n  Should have been produced in large numbers at early stages of the 

Universe. 
n  A good candidate is provided by the Supersymmetry (SUSY) – 

lightest supersymmetric particle, neutralino. 
n  Mass ~1-1000 GeV/c2. 
n  Velocities ~200 km/s; energies – ~keV or tens of keV. 
n  If WIMPs are responsible for all dark matter in the Galactic halo, then 

their flux at the Earth should be about 105 – 107 particles/cm2/s 
(compared to the solar neutrino flux of about 1011 neutrinos/cm2/s). 
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Neutralino as dark matter 
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Roszkowski et al. JHEP 1408 
(2014) 067. 
Good arguments for considering 
WIMPs as neutralinos in SUSY.  
However, we are looking for 
WIMPs, which are not necessarily 
neutralinos. 
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Principles of dark matter detection 
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Direct detection: 
WIMP scattering 

Indirect detection: 
WIMP annihilation 

Colliders: 
WIMP production 
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DRIFT, CS2+F
(Boulby) and 
some other 
directional
 searches

XMASS, LXe
(Kamioka)

EDELWEISS, Ge
(Modane)

SuperCDMS, Ge
(Soudan/SNOLab)

CRESST, CaWO4
(Gran Sasso)

DAMA, NaI
(Gran Sasso)

XENON, LXe
(Gran Sasso)

WIMP

NUCLEUS

Ionisation

Phonons Scintillation

Target 
Signal 

Discrimination 

WIMP 
detection 

DEAP-3600, LAr
(SNOLab)

LUX, LXe
(SURF)
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Requirements for WIMP detectors 
n  High mass. 
n  Preferably high atomic mass. 
n  Low energy threshold. 
n  Radio-pure materials – extensive screening campaign. 
n  Underground location, > 2.5 km w. e. 
n  Shielding against radioactivity in rock. 
n  Target material purification. 
n  Control of surface events (from radon daughters). 
n  Reduced activation. 
n  Rejection of multi-hit events. 
n  Anticoincidence (active veto) systems. 
n  Fiducialisation. 
n  Discrimination between nuclear and electron recoils. 
n  Good understanding of backgrounds – simulations based on screening. 
n  Calibrations: electron recoils (ER) and nuclear recoils (NR). 
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Why liquid xenon 

n  Good scintillator. 
n  Two-phase -> TPC with good position 

resolution. 
n  Self-shielding. 
n  Good discrimination between ERs and 

NRs. 
n  High atomic mass: spin-independent 

cross-section 
n  Presence of even-odd isotopes (odd 

number of neutrons) for spin-
dependent studies. 

n  Other physics:  
o  Axion search (not covered here), 
o  Neutrinoless double-beta decay. 
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∝ A2

10 



Two-phase noble detectors 

n  S1 – primary 
scintillation. 

n  S2 –secondary 
scintillation, 
proportional to 
ionisation. 
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LUX: detector 

Vitaly Kudryavtsev Seminar, Birmingham, 26 October 2016 

A. Manalaysay 
(LUX). Talk at 
IDM2016. 
 
Sanford 
Underground 
Research 
Facility  
(SURF), 
South Dakota 
(USA) 
~4200 m w. e. 
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LUX: calibrations 
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•  83mKr – uniform distribution, 1.8 hours half-life, weekly. 
•  CH3T (tritiated methane) – uniform, removed by purification, 2-3 

times a year (left figure), D. Akerib et al. (LUX Collaboration), Phys. 
Rev. D93 (2016) 072009. 

•  D-D – generator (right), 2.45 MeV neutrons, collimated, D. Akerib et 
al. (LUX Collaboration), arXiv:1608.05381 [physics.ins-det].  
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LUX: results 
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Data after cuts: 332 live days (left). 
Limits on spin-independent WIMP-nucleon cross-section (right). 
Akerib et al (LUX Collaboration), arXiv:1608.07648 [astro-ph.CO]. 
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LZ Collaboration, Oxford, August 2016 
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²  Brookhaven National Laboratory 
²  Brown University
²  Center for Underground Physics, Korea
²  Fermi National Accelerator Laboratory
²  Imperial College London
²  LIP Coimbra, Portugal 
²  Lawrence Berkley National Laboratory
²  Lawrence Livermore National Laboratory
²  MEPhl-Moscow, Russia
²  Northwestern University
²  SLAC National Accelerator Laboratory 
²  South Dakota School of Mines and Technology
²  South Dakota Science and Technology Authority
²  STFC Rutherford Appleton Laboratory
²  Texas A&M University
²  University at Albany, SUNY
²  University College London
²  University of Alabama
²  University of California, Berkeley 
²  University of California, Davis
²  University of California, Santa Barbara
²  University of Edinburgh

²  University of Liverpool
²  University of Maryland
²  University of Michigan 
²  University of Oxford
²  University of Rochester
²  University of Sheffield
²  University of South Dakota
²  University of Wisconsin-Madison
²  Washington University in St. Louis
²  Yale University 
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LUX-ZEPLIN: LZ 
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Xe	TPC	

Water	tank	

Gadolinium	
Loaded	Liquid	
Scintillator			

Liquid	Xe	
Heat	
Exchanger	

Neutron	calibration	
tube	and	external	
source	tubes	

494	TPC-PMTs	(253	top,	241	bottom)	
+	131	skin-PMTs	

120	Outer	
Detector	
PMTs		

Instrumentation	
conduits		

HV	feed-
through	

LZ Collaboration, arXiv:1509.02910[physics.ins-det] 
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TPC design 
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●  7-tonne	active	region	(cathode	→	gate),	5.6	tonne	Xiducial	volume.	
●  253	top	+	241	bottom	3”	ϕ	PMTs	(activity	~mBq;	high	quantum	efXiciency).	
●  TPC	lined	with	high-reXlectivity	PTFE	(RPTFE	≥	95%).	
●  Instrumented	“Skin”	region	optically	separated	from	TPC.	

146	c
m	

14
6	
cm
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TPC: Main parameters 
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n  5.8 keV nuclear recoil energy for the S1 threshold (4.5 keVnr LUX). 
n  0.7 kV/cm drift field, 99.5% ER/NR discrimination (already surpassed 

in LUX at 0.2 kV/cm) 
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Outer detector 
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n  Essential to maximize 
fiducial volume.  

n  60 cm thick, 17.5 tonnes 
gadolinium-loaded 
scintillator, similar to 
Daya Bay experiment. 

n  97% efficient for neutron 
detection.  
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Material screening 
n  High-purity Ge detectors: gamma-ray lines; SURF, Boulby. 
n  ICPMS: parent isotopes in the decay chains: 238U, 232Th, natK; UCL, 

Alabama, Korea. 
n  Neutron activation analysis: Alabama. 
n  Radon measurements: South Dakota, UCL, Maryland, Alabama. 

Vitaly Kudryavtsev Seminar, Birmingham, 26 October 2016 20 



Internal backgrounds 
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n  Rn (and Kr) are the dominant internal 
background sources. 

n  Rn:  
o  Emanates from most materials. 
o  20 mBq requirement, 1 mBq goal. 
o  Four measurement systems with ~0.1 

mBq sensitivity. 
o  Main assembly laboratory at SURF will 

have reduced radon air system.  
n  Kr: 

o  Remove Kr to <15 ppq (10-15 g/g) 
using gas chromatography (best LUX 
batch 200 ppq). 

o  Setting up to process 200 kg/day at 
SLAC. 
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External backgrounds in LZ 
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•  Extensive material screening campaign in the US and UK to select ultra-
radio-pure materials for detector components. 

•  Simulated background from detector components before (left) and after 
(right) cut on anticoincidence with xenon skin and outer detector (J. 
Dobson. Talk at IDM2016). 
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Neutrino background in Xe 
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Billard et al. PRD 89 (2014) 023524. 
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Background rejection: analysis cuts 

n  Region of interest: ~1.5 – 6.5 keV ER, ~6 – 30 keV NR (S1 = 0 – 20 
photons, 3-fold coincidences). 

n  Anticoincidence with xenon ‘skin’: skin pulse >100 keV  
     (3 photoelectrons) within 800 microseconds (max drift time). 
n  Anticoincidence with the outer detector (liquid scintillator): OD pulse 

>200 keV within 500 microseconds. 
n  Position resolution: 0.2 cm in z (drift direction), 3 cm in x–y plane. 
n  Fiducial volume: 4 cm from TPC (PTFE) cylindrical walls, 1.5 cm from 

cathode (bottom), 13.5 cm from gate (top). Fiducial mass 5.6 tonnes. 
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Total background 
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Source ER NR
Detector Components 6.2 0.07

Dispersed radionuclides 911 -

Lab and Cosmogenics 4.6 <0.06

Fixed surface 
contamination 0.19 0.37

136Xe 2νββ 67.0 -

Neutrinos 255 0.72

Total events 1244 1.22

WIMP background events 
(99.5 % discrimination, 

50% acceptance)
6.22 0.61

Total ER + NR* 6.83

* Counts per 1000 days, 5.6 ton fiducial volume

Simulation 
(LZSIM + NEST) 

Analysis Survival factors 
ER + NR  
count 

Screening  
(Ge, ICPMS etc) 

Analysis Activities 

Er, keVnr 

25 



Powerful simulation tools 
n  Based on LUX simulation tools. 
n  LZ geometry. 
n  Updated event generators. 
n  Background normalised to the 

screening results. 
n  Noble Element Scintillation 

Technique (NEST) used to 
produce S1 (primary 
scintillation) and S2 (secondary 
ionisation) signals. 

n  Profile Likelihood statistical 
analysis based on probability 
density functions in multi-
dimensional space: S1, S2, r, 
z. 
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× 500 

40 GeV/c2 
WIMP 

×	5	

×500 

40 GeV/c2 
WIMP 
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Calibrations 
•  Requirements for calibrations: 

•  Energy scale for S1 and S2. 
•  Position resolution. 
•  ER and NR bands for discrimination. 

•  83mKr – uniformly distributed low-energy gammas/electrons, 1.8 hours 
half-life; position reconstruction. 

•  CH3T (tritiated methane) – uniformly distributed betas, removed by 
purification; electron recoil band. 

•  D-D – generator, 2.45 MeV collimated neutrons, defines nuclear recoil 
band and independently light and charge yields for nuclear recoils. 

•  131mXe – uniformly distributed gammas but 11 day half-life; position 
reconstruction, xenon skin. 

•  220Rn – alphas, no long-lived daughters; xenon skin. 
•  AmLi, YBe – neutrons; low-energy NR response. 
•  Other standard sources. 
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Sensitivity predictions 
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5600	kg	,iducial	mass,	1000	live	days	

Baseline	best	sensitivity:		
2.5	×	10-48	cm2	@	40	GeV/c2	

Goal:	
1.3	×	10-48	cm2	@	40	GeV/c2	
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What lies beneath (the neutrino floor)? 
n  Very speculative! 
n  Improve on systematic uncertainties in calculation of the neutrino 

background. 
n  Very big detector (Xe, Ar). Many events, excess over neutrino 

background, spectrum information. Annual modulation; the phase is 
different for WIMPs and solar neutrinos. No (or small) modulation for 
other neutrino sources. 

n  Very big detector able to reconstruct nuclear recoil tracks (directional 
detection). Average track orientation is different for WIMP interactions 
compared to solar neutrinos. The target may be a low-pressure gas 
(for tracks to be reconstructed) and hence may require a huge 
detector in volume. 

n  All methods require very big detectors. 
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LZ: Timeline 
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n  March 2012 – LZ (LUX-ZEPLIN) Collaboration formed. 
n  September 2012 – DoE CD-0 for G2 dark matter experiments. 
n  November 2013 – LZ R&D report submitted. 
n  July 2014 – LZ project selected in the US and UK. 
n  April 2015 – DoE CD-1/3a approval, STFC funding for UK, 

procurement of critical items started (Xe, PMTs, cryostat). 
n  August 2016 – DoE CD-2/3b approval. 
n  March 2017 – LUX detector removed, water tank stays. 
n  August 2017 – Beneficial occupancy surface assembly building. 
n  June 2018 – Beneficial occupancy for underground installation. 
n  2019 – Underground installation. 
n  April 2020 – Start operations; planning for more than 5 years. 
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Conclusions 

n  Two-phase xenon technology has been proven to be the best suited for 
the first direct observation of WIMPs. 

n  LUX has currently the world-best limits on spin-independent WIMP-
nucleon cross-section. 

n  LUX will be removed from SURF within a year to free the space for LZ. 
n  LZ will use 7 t of liquid xenon inside the TPC to search for dark matter 

WIMPs with a sensitivity extending almost down to the neutrino floor. 
n  LZ has successfully passed CD2/3a approval by DoE (USA) and 

funding for construction has also been secured in the UK. 
n  The construction of various detector parts is ongoing. 
n  To secure radio-pure environment, an extensive material screening 

campaign, Monte Carlo modelling of backgrounds and cleaning and 
purification programme are in place. 

n  The full-scale operation of LZ is due to start in 2020. 
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