Direct searches for a scalar top partner with the ATLAS detector at 13TeV

Vasiliki Kouskoura

November 23, 2016 University of Birmingham

Standard Model

Very successful theory

Precise predictions, verified by experiments

$\overline{\Delta} pp \rightarrow t\overline{t}$

7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C 74:3109 (2014) 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C 74:3109 (2014) 13 TeV, 3.2 fb⁻¹, arXiv:1606.02699

$\mathbf{\overline{5}} pp \rightarrow tq$

7 TeV, 4.6 fb⁻¹, PRD 90, 112006 (2014) 8 TeV, 20.3 fb⁻¹, ATLAS-CONF-2014-007 13 TeV, 3.2 fb⁻¹, ATLAS-CONF-2015-079

$5 pp \rightarrow WW$

7 TeV, 4.6 fb⁻¹, PRD 87, 112001 (2013) 8 TeV, 20.3 fb⁻¹, arXiv:1608.03086 13 TeV, 3.2 fb⁻¹, ATLAS-CONF-2016-090

$\overline{2} pp \rightarrow WZ$

7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C (2012) 72:2173 8 TeV, 20.3 fb⁻¹, PRD 93, 092004 (2016) 13 TeV, 3.2 fb⁻¹, arXiv:1606.04017

$\overline{\mathbf{O}} pp \to H$

7 TeV, 4.5 fb⁻¹, Eur. Phys. J. C76 (2016) 6 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C76 (2016) 6 13 TeV, 13.3 fb⁻¹, ATLAS-CONF-2016-081

\checkmark pp \rightarrow ZZ

7 TeV, 4.6 fb⁻¹, JHEP 03, 128 (2013) 8 TeV, 20.3 fb⁻¹, ATLAS-CONF-2013-020 13 TeV, 3.2 fb⁻¹, PRL 116, 101801 (2016)

Vasiliki Kouskoura (BNL)

Univ. of Birmingham

23 Nov 2016

So why care about SUSY?

Dark Matter

 Strong evidence for the existence of Dark Matter from astronomical and cosmological observations

astro-ph/0608407

- What is the particle content of DM?
- Can we produce it at the LHC?
- SUSY provides a DM candidate

Hierarchy problem and unification

Presence of scalar top partner cancels quadratic radiative corrections and protect Higgs mass (providing a solution to the hierarchy problem)

Unification with gravity

Vasiliki Kouskoura (BNL)

Brief introduction to SUSY

- Features of SUSY
 Superpartner for every SM particle
 Scalar partner for SM fermion
 Fermion for SM gauge boson
- R-parity: R=(-1)^{3(B-L)+2S}
 - ✓ if conserved:
 - Sparticles are produced in pairs
 - ✓ Lightest Supersymmetric Particle (LSP) serves as DM candidate
 - ✓ stable, electrically neutral which interacts weakly with SM particles → ETmiss signature
 - If SUSY was an exact theory, we would have observed Superpartners
 - SUSY must be a broken symmetry
 - ~100 free parameters in SUSY

SUSY parameter space

SUSY is very broad, masses and scales not specified of production cross section of SUSY particles depend only on

mass assumptions

A typical SUSY spectrum involves
 many sparticles with different masses
 many different possible ways to decay

Vasiliki Kouskoura (BNL)

Simplified models

- Focus on the experimental signature
- emphasize on the basic kinematic properties that affect signal acceptance
- Ieave aside competing productions and decay processes

- Interpretations are done with Simplified Models
- ✓ production of 2 sparticles: e.g. 2 stops
- If ix decay branching fraction: $BR(\tilde{t} \to t + \tilde{\chi}_1^0) = 100\%$
- \checkmark fix mass relations between sparticles: $m(\tilde{\chi}_1^{\pm}) = 2m(\tilde{\chi}_1^0)$
- ✓ forget about all other sparticles

Vasiliki Kouskoura (BNL)

pMSSM interpretations from Run I

- Re-interpretation of 22 ATLAS SUSY analyses in a 19 parameter pMSSM model
- To be taken *cum grano salis*

assumptions

 R-parity conservation with neutralino being the LSP
 minimal flavor violation and no CP violation

500 millions pMSSM points randomly sampled, with ~300,000 models surviving theory and non-LHC experimental constraints

Vasiliki Kouskoura (BNL)

SUSY production cross sections at the LHC

Vasiliki Kouskoura (BNC)

Unig. of Big mingham

23 Nov 2016

 \tilde{g}

Signals of interest: stop decays

Vasiliki Kouskoura (BNL)

Experimental setup

Vasiliki Kouskoura (BNL)

Run II 13TeV dataset

LHC has shown excellent performance in Run II
 pile-up increases with luminosity

The ATLAS detector

Vasiliki Kouskoura (BNL)

Univ. of Birmingham

23 Nov 2016

15

Detector performance

- Understanding the detector: very important task!
- Use Run I knowledge to extrapolate systematic uncertainties for Run II
- b-jets: improvements in algorithms and new IBL
- b-tagging efficiency increase by 10% for the same light-flavor rejection

Vasiliki Kouskoura (BNL)

Univ. of Birmingham

23 Nov 2016

16

Detector performance

Missing transverse momentum:

 $E_{\mathrm{T}}^{\mathrm{miss}} = \sqrt{(E_x^{\mathrm{miss}})^2 + (E_y^{\mathrm{miss}})^2}$

where $E_{x(y)}^{\text{miss}} = -\sum E_{x(y)}$ summed over all calibrated e, γ, μ, τ and jets plus a track-based "soft" term (TST)

Strong discriminating power for R-parity conserving SUSY with LSP escaping detection

E⊤^{miss} trigger (offline ≥ 250. GeV)

Vasiliki Kouskoura (BNL)

SUSY Analysis Primer

or typical workflow of a SUSY search

- Divide signal grid into Signal Regions (SR) with similar final state kinematics
- Optimize for S/B using variables describing topology and kinematics

- For main irreducible backgrounds (tt, V+jets)
- High purity Control Regions (CR)(normalization factors from data)
- Validation regions (VR) closer to
 - the SR to test extrapolation (normalization and shape)
- Predict yields in blinded SRs

Unblind the data and look for excesses

Vasiliki Kouskoura (BNL)

SM backgrounds

Semi-leptonic tt

 W-bosons decay into τ + E^T_{miss} (E^T_{miss} near τ jet)
 τ decay hadronically, they mimic jets but have less tracks
 associated with jets
 only 1 reconstructed to ¹/_τ

(a)

Vasiliki Kouskoura (BNL)

How to discriminate signal from background?

- E^Tmiss: strong discriminator
- Remove (hadronic) tt and multijets
- \blacksquare E^T_{miss} depends on the mass splittings, varies from 250 to 500 GeV

- Top reconstruction
- ensures background rejection (except for tt+V)
- semi-leptonic tt should have only 1 top
- ✓ W/Z+jets should have 0 tops

How to discriminate signal from background?

τ-veto

- ✓ semi-leptonic tt rejection
- τ identified by:
- \checkmark Jet with \leq 4 tracks
- $\ \, \blacksquare \ \, \Delta \phi(jet,E_T^{miss}) \, {\rm small} \ \,$

Vasiliki Kouskoura (BNL)

Univ. of Birmingham

Signal Regions definitions

SRs aiming high mass splitting (high E_T^{miss})

SRA and SRB sets of SRs

at high stop masses, tops can have high pT and be boosted $\mathbf{\overline{\mathbf{V}}}$

300

200

100

- jets from top become collimated $\mathbf{\overline{\mathbf{V}}}$
- Top reconstruction from jets within a certain cone size
- ✓ anti-kT algorithm but with R=1.2
- for W candidates R=0.8
- SR categories according to top reconstruction

Signal Regions definitions

SRs aiming very compressed region (low E_T^{miss})

(including 3-body decays)

- ISR boost of the di-top-squark system in the transverse plane
- Jigsaw technique is used to decide which jets belong to the ISR system vs. the sparticle system

 $m(\tilde{t})$ GeV

Lab State

Decay States

Vasiliki Kouskoura (BNL)

Univ. of Birmingham

600

800

200

24

Signal Regions definitions

• SRs aiming at $\tilde{t} \to b \tilde{\chi}_1^{\pm}$

best sensitivity when vetoing top events

Vasiliki Kouskoura (BNL)

Other: single top, dibosons and multi jet

Control Regions

Vasiliki Kouskoura (BNL)

Univ. of Birmingham

23 Nov 2016

 Distributions of variables used in SRs are checked in VRs to validate the extrapolation

Vasiliki Kouskoura (BNL)

Results: unblinding examples

Vasiliki Kouskoura (BNL)

Limits from 0L and 1L channels on $\tilde{t} \rightarrow t \ \tilde{\chi}_1^0$

Limits from 0L on $\tilde{t} \to b \tilde{\chi}_1^{\pm}$

Vasiliki Kouskoura (BNL)

Future prospects

- Will more data provite from the insight gacy p HL-LHC foresees 3000 fb⁻¹
- What if there is no hint of SUSY by the end of Run II?
- Discovery reach growth will be slower
- We can try to be more clever with:
- More sophisticated techniques that may yield greater sensitivity
- Could benefit from better top reconstruction $\mathbf{\overline{\mathbf{V}}}$
- More boosted top decays at high stop mass

Vasiliki Kouskoura (BNL)

Ions

global Feature Extractor (gFEX) in a nutshell

- ATLAS L1 Jet Trigger designed in Run I for narrow jets, with limited acceptance for large objects
- E^Tmiss</sub> trigger pile-up dependent

- gFEX reads in the entire calorimeter on a single module!
- Identifies events with large-radius jets and substructure
 - ✓ improves acceptance for boosted objects
 - ✓ jet-level pile-up subtraction

Vasiliki Kouskoura (BNL)

- Searches for direct stop production with the ATLAS detector
- $ec{}$ main decay modes $\tilde{t} \to t \; \tilde{\chi}_1^0$ and $\tilde{t} \to b \tilde{\chi}_1^\pm$
- First time approaching the very compressed region
- Unfortunately, no evidence for new physics found yet
- Set limits on \tilde{t} and $\tilde{\chi}_1^0$ masses
- $rightarrow m(\tilde{t})>800 \text{GeV}$ for low m($\tilde{\chi}_1^0$)
- More Run II results (full dataset 2015+2016) in early 2017!

Vasiliki Kouskoura (BNL)

ATLAS and CMS stop search status (ICHEP 2016)

SRA and SRB (high and bulk region)

Signal Region		TT	TW	Т0		
	$m_{\text{jet},R=1.2}^{0}$	> 120 GeV	> 120 GeV	> 120 GeV		
	$m^{1}_{\text{jet},R=1.2}$	> 120 GeV	60 - 120 GeV	$< 60 { m GeV}$		
	$m_{\text{jet},R=0.8}^0$	> 60 GeV				
	<i>b</i> -tagged jets		≥ 2			
\mathbf{SRA}	$m_{\mathrm{T}}^{b,\mathrm{min}}$	> 200 GeV				
	au-veto	yes				
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 400 GeV	> 450 GeV	> 500 GeV		
	<i>b</i> -tagged jets	≥ 2				
	$m_{ m T}^{b,{ m min}}$	> 200 GeV				
	$m_{\mathrm{T}}^{b,\mathrm{max}}$	> 200 GeV				
\mathbf{SRB}	au-veto	yes				
	$\Delta R\left(b,b ight)$	> 1.2				
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 250 GeV				

Vasiliki Kouskoura (BNL)

SRD for compressed regions

Variable	SRD1	SRD2	SRD3	SRD4	SRD5	SRD6	SRD7	SRD8
min $R_{\rm ISR}$	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60
$\max R_{\rm ISR}$	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75
b-tagged jets	≥ 2				≥ 1			
$N_{ m jet}^{ m S}$	≥ 5							
$p_{\mathrm{T}}^{\mathrm{ISR}}$	> 400 GeV							
$p_{\mathrm{T}}^{b ext{-tag},S}$	> 40 GeV							
$p_{\mathrm{T}}^{\mathrm{jet}4,S}$	> 50 GeV							
M_{T}^S	> 300 GeV							
$\Delta \phi_{ m ISR}$	> 3.0 radians							

Vasiliki Kouskoura (BNL)

Univ. of Birmingham

23 Nov 2016

Variable	SRC-low	SRC-med	SRC-high			
m _{bjj}	> 250 GeV					
<i>b</i> -tagged jets	≥2					
p_{T}^{0}	> 150 GeV	> 200 GeV	> 250 GeV			
p_{T}^{1}	> 100 GeV	> 150 GeV	> 150 GeV			
$m_{ m T}^{b,{ m min}}$	> 250 GeV	> 300 GeV	> 350 GeV			
$m_{\mathrm{T}}^{b,\mathrm{max}}$	> 350 GeV	> 450 GeV	> 500 GeV			
$\Delta R(b,b)$	> 0.8					
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$	$[5, 12]\sqrt{\text{GeV}}$	$[5, 12]\sqrt{\text{GeV}}$	$[5, 17]\sqrt{\text{GeV}}$			
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 250 GeV					

Vasiliki Kouskoura (BNL)

Control Regions definitions

Selection	CRZ	CRT	CRT-ISR	CRST	CRW			
Trigger	electron (muon)	$E_{\mathrm{T}}^{\mathrm{miss}}$						
N _ℓ	2		1					
p_{T}^{ℓ}			> 20 GeV					
$m_{\ell\ell}$	[86,96] GeV			-				
N _{jet}	≥ 4	\geq 4 (including leptons)						
jet <i>p</i> _T	(40, 40, 20, 20) GeV	(80, 80, 40, 40) GeV (80, 80, 20, 20) GeV						
$E_{ m T}^{ m miss}$	< 50 GeV	> 250 GeV						
$E_{\mathrm{T}}^{\mathrm{miss'}}$	> 70 GeV	_						
<i>b</i> -tagged jets	≥ 2	≥ 2	≥ 1	≥ 2	= 1			
$\left \Delta\phi\left(\text{jet}^{0,1}, E_{\text{T}}^{\text{miss}}\right)\right $	-			> 0.4	<u> </u>			
min $m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$	-	30 GeV	-	30 GeV	30 GeV			
$\max m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$	-	120 GeV	80 GeV	120 GeV	100 GeV			
$m_{\text{jet},R=1.2}^0$	-	> 70 GeV	-	> 70 GeV	< 60 GeV			
$m_{\rm T}^{b,{\rm min}}$	-	> 100 GeV	-	> 175 GeV	-			
$\Delta R(b,\ell)_{\min}$	-	< 1.5	< 2.0	> 1.5	> 2.0			
m _{bb}	-	-	-	> 200 GeV	-			
N ^S _{jet}	-	-	≥ 5	-	-			
N ^S _{b-tag}	-	-	≥ 1	-	-			
<i>p</i> _T ^{ISR}	-	-	≥ 400 GeV	-	-			

go back to slide 27

Vasiliki Kouskoura (BNL)

	Z + jets	$t\bar{t}$		W + jets	single top
	CRZ	CRT	CRT-ISR	CRW	CRST
SF	1.20±0.26	0.91±0.18	0.78±0.19	1.21±0.21	0.86 ± 0.33
SRA	34%-58%	9%-14%	-	10%-11%	6%-9%
SRB	22%-42%	22%-25%	-	9%-13%	10%
SRC	37%-39%	6%-17%	-	18%-25%	20%-26%
SRD1-4	0%	-	91%-92%	2%	1%-4%
SRD5-8	2%-10%	-	70%-84%	5%-9%	4%-8%

Control Regions

- Z CR used to estimate the normalization
- loose jet pT requirements to ensure rich statistics sample
- ✓ 2 b-jets, at least 4 jets

42

Control Regions: ttCR

I lepton CR
 2-bjets, E^T_{miss} > 250 GeV
 ✓ no top reconstruction

Vasiliki Kouskoura (BNL)

Control Regions: W and Single Top CRs

Validation Regions

Vasiliki Kouskoura (BNL)

Signal signature

Direct stop production with each t̃ → t χ̃₁⁰
 t̃ → b χ̃₁[±] and DM have the same signature but different kinematics

- ✓ tops decay to W+b-quarks
- ✓ at least 2 b-jets and additional jets from the W hadronic decays
- ✓ Large missing energy from LSPs

Ideally: 6 jets (2 b-jets) and missing energy
 2 Top masses can be reconstructed

Signals of interest: stop decays

- DM+HF is preferred, if mediator is a spin-0 (pseudo)scalar
- quark mass dependence in cross section: light quark coupling is suppressed
- Same signatures in direct stop production

Limits from 0L on $\,\varphi/\alpha\to\chi\chi$

- Limits are also set on g (numbers on plot)
- Similar reach for scalar and pseudo-scalar

- Same signature as stop decays but potentially different kinematics (softer)
- simplified models with four parameters (mass of mediator and DM, and the mediator-DM and mediator-SM coupling)
- ✓ Mediator-DM and mediator-SM coupling are set to be equal (g)
- ✓ Considered coupling ranging from 1-3.5 with limit curves using 3.5
- Both scalar and pseudo scalar sensitivity is considered

TDAQ system @Run II

- ✓ Level-1 Trigger @100kHz (with 2x more triggers)
- High Level Trigger @1kHz (with faster and robust against pile-up algorithms)