

Physics at the Compact Linear Collider (CLIC)

Ulrike Schnoor (CERN & University of Glasgow)

10.02.2021 Seminar Birmingham

Outline

[Current state of particle physics](#page-1-0)

[CLIC accelerator](#page-10-0)

[CLIC detector model](#page-19-0)

[CLIC physics potential](#page-27-0)

[Summary and Outlook](#page-51-0)

The Large Hadron Collider and the Higgs boson

LHC: proton-proton collider CME 7 8 13 TeV **Taking data** since 2010 **4 experiments** ATLAS, ALICE, CMS, LHCb

- \blacktriangleright Discovery of a Higgs boson (2012) at CMS & ATLAS
- \blacktriangleright Sparked investigation of the nature of electroweak symmetry breaking \Rightarrow far from completed!

Phys. Rev. Lett. 114 (2015) 191803

Open Questions

- ▶ Dark Matter
- ▶ Dark Energy
- Origin of baryon asymmetry
- \triangleright Origin of neutrino masses
- \blacktriangleright Why are we not seeing new physics around the TeV scale?
	- \blacktriangleright mass scale beyond LHC reach?
	- \blacktriangleright mass scale within LHC reach, but final states are elusive?
- Need for
	- **⇒** precision measurements
	- **⇒** sensitivity to elusive signatures
	- **⇒** extended energy/mass reach

New probe: the Higgs boson

- \triangleright experimental results leave room for wide range of BSM EWSB scenarios
- \blacktriangleright still open aspects, including
	- \blacktriangleright Higgs couplings to lighter particles
	- \blacktriangleright Higgs self-coupling \rightarrow shape of potential
	- \triangleright possible other particles coupled to the Higgs

Proposed electron-positron colliders at the energy frontier

Linear e + e [−] colliders

▶ Compact Linear Collider CLIC

CERN $\sqrt{s} = 380$ GeV, 1.5 TeV, 3 TeV $\ell = 11$ km, 29 km, 50 km

\blacktriangleright International Linear Collider ILC

Japan √ s =250 GeV (500 GeV, 1 TeV) $\ell = 17$ km (31 km, 50 km)

Circular e + e [−] colliders

CERN \sqrt{s} = 90 − 350 GeV

 $\ell = 98$ km

F Circular Electron Positron Collider

China $\sqrt{s} = 90 - 240$ GeV $\ell = 100$ km

HL-LHC physics program

- ▶ Search for physics beyond the SM
- \triangleright Continuation of top, Higgs, electroweak physics program of the LHC

Proton-proton collider

- \blacktriangleright Proton is compound object
	- \blacktriangleright Initial state unknown
	- \blacktriangleright Limited achievable precision
- \blacktriangleright High rates of QCD backgrounds
	- \blacktriangleright Complex triggers
	- \blacktriangleright High levels of radiation
- \blacktriangleright High-energy circular colliders possible

Electron-positron collider

- ► e^+ , e^- are elementary
	- \triangleright Initial state well-defined (\sqrt{s} , polarization)
	- \blacktriangleright High-precision measurements
- \blacktriangleright Clean experimental environment
	- \blacktriangleright Less/ no need for triggers
	- \blacktriangleright Lower radiation levels
- ^I High energies ([√] s *>* 350 GeV) require linear colliders

Interesting physics processes in pp and ee collisions

<https://mcfm.fnal.gov/mcfm-Edep.pdf> Interesting events suppressed by ≥ 8 orders of magnitude

Electron-positron collider

[http://clicdp.web.cern.ch/sites/clicdp.web.cern.ch/files/](http://clicdp.web.cern.ch/sites/clicdp.web.cern.ch/files/CCcli3_09_16.jpg)

[CCcli3_09_16.jpg](http://clicdp.web.cern.ch/sites/clicdp.web.cern.ch/files/CCcli3_09_16.jpg)

More "clean", all events usable

Circular and linear colliders

- \blacktriangleright Beam passes only once
- \blacktriangleright Few magnets, many accelerating cavities
- \blacktriangleright High energy \rightarrow need high accelerating gradient
- \blacktriangleright High luminosity \rightarrow high beam power (high bunch repetition)

Electron-positron colliders

Circular e + e [−] colliders

- \blacktriangleright Energy limited by synchrotron radiation
- \blacktriangleright Large luminosity at lower energies
- Luminosity decreases with energy

Linear e + e [−] colliders

- \blacktriangleright Can reach highest energies
- Luminosity rises with energy
- Beam polarization possible at all energies

Past colliders: LEP2 (209 GeV) peak luminosity $\mathcal{L} = 10^{32}$ cm $^{-2}$ s $^{-1}$

CLIC accelerator

Goal High gradient, efficient energy transfer (wall-plug to beam) **Means** High-frequency RF maximizes field in cavities for given energy **Challenge** Standard RF sources inefficient at high frequencies **CLIC solution** Use standard low-frequency RF sources to accelerate a drive beam; bring it to high frequency; transfer energy to main beam

Two-beam acceleration scheme

Dense, low energy drive beam RF power extracted to accelerate less particles per bunch to higher energy per particle

Drive beam high current (100 A); lower energy (2.4 GeV); 12 GHz after CRs & loops Power Extraction and Transfer Structures decelerate the beam → extract its energy \rightarrow guide it via waveguides to the main beam accelerating structures **Main beam** High energy up to 1.5 TeV; lower current 1.2 A

CTF3, the CLIC Test Facility

Successful demonstration of

- \blacktriangleright Drive beam generation
- \blacktriangleright RF power extraction
- \triangleright Gradient up to 145 MV/m

C-band facilities using CLIC technology (SwissFEL)

The two-beam module

Test module without beam for tests of

- \blacktriangleright thermo-mechanical effects
- \blacktriangleright engineering
- \blacktriangleright alignment and support
- \blacktriangleright vacuum, etc.

X-band test facility

test and development of high-gradient accelerating structures

CLIC staged implementation and map

⇒ stages can be adapted to possible discoveries at the LHC

Even further in the future: Upgrade with Plasma Wakefield technology possible

Beam properties and experimental conditions

CLIC bunch structure and experimental conditions

- Linear colliders operate in bunch trains
- Bunch separation drives timing requirements of the detector
	- \blacktriangleright 10 ns hit time-stamping in tracking
	- \blacktriangleright 1 ns accuracy for calorimeter hits
- Low duty cycle \rightarrow power pulsing of detectors possible

Beam-beam interaction

High luminosities achieved by using extremely small beam sizes

- \blacktriangleright At 3 TeV: bunch size $\sigma_x = 40$ nm, $\sigma_y = 1$ nm, $\sigma_z = 44$ μm
- \blacktriangleright Flat beams: high luminosity while minimizing electromagnetic fields
- ► Electromagnetic interaction of e^+ and e^- beams \rightsquigarrow synchrotron radiation: beamstrahlung
- ▶ Collective (beam) effect; real photons

Beamstrahlung:

- \ldots modifies energy spectrum of the colliding e^+e^- pairs
- \dots produces $e^{\pm} \gamma$ and $\gamma \gamma$ collisions
- **...** drives detector requirements to a large extend

Coherent and incoherent e^+e^- **pairs**

19k particles per bunch train (3 TeV) High occupancies \rightarrow impact on detector granularity and design

γγ **→ hadrons**

17k particles per bunch train (3 TeV) Main background in calorimeters and trackers \rightarrow impact on detector granularity, design and physics measurements

- \blacktriangleright Bunch trains with 312 bunches every 0.5 ns
- $\blacktriangleright \gamma\gamma \rightarrow$ hadrons suppressed with **timing cuts**

CLIC detector

Detector requirements

+ Momentum resolution:

Higgs recoil mass, $H \rightarrow \mu\mu$, leptons from BSM processes

$$
\frac{\sigma(\rho_{\mathcal{T}})}{\rho_{\mathcal{T}}^2} \approx 2 \times 10^{-5} \text{GeV}^{-1}
$$

+ Energy resolution for light quarks: W/Z/H separation

$$
\frac{\sigma(E)}{E} \approx 3.5 - 5\% \text{ for } E = 50...1000 \,\text{GeV}
$$

+ Impact parameter resolution: b/c tagging, e.g. Higgs couplings

$$
\sigma(d_0)=\sqrt{a^2+b^2\mathrm{GeV}^2/(\rho^2\sin^3\theta)},
$$

 $a \approx 5 \mu m$, $b \approx 15 \mu m$ **+ Lepton identification, very forward e/***γ* **tagging + Requirements from beam-induced backgrounds**

Overview of the detector

Designed for Particle Flow Analysis and optimized for CLIC environment

- \triangleright 4 T B-field
- \blacktriangleright Vertex detector (3 double layers)
- **Large Silicon tracker** $R=1.5m$
- \blacktriangleright Highly granular calorimeters:
	- \blacktriangleright Si-W-FCAL 40 layers (22 X_0)
	- \triangleright Scint-Fe-HCAL 60 layers $(7.5 \lambda_1)$

Precise timing for background suppression

Particle Flow Calorimetry

Particle Flow principle

Average jet composition

- \triangleright 60% charged particles
- \triangleright 30 % photons
- \blacktriangleright 10% neutral hadrons

Always use the best information

- \triangleright charged particles \rightarrow tracker
- $photons \rightarrow ECAL$
- \triangleright neutral hadrons \rightarrow HCAL

<http://www.hep.phy.cam.ac.uk/linearcollider/calorimetry/>

- \blacktriangleright Traditional approach: jet energy measured in ECAL and HCAL
- \blacktriangleright Particle Flow: Need very good spacial resolution to avoid confusion \Rightarrow highly granular calorimeters
- **⇒** Hardware + Software

Timing resolution to suppress backgrounds

 $γγ$ → hadrons background: uniformly distributed in bunch train (unlike signal) \rightarrow can be efficiently suppressed with pT-dependent timing cuts on reconstructed particles $(=$ particle flow objects)

*t***** \overline{t} **event at 3 TeV with background from** $\gamma\gamma \rightarrow$ **hadrons from bunch train**

1.2 TeV background in the reconstruction window > 10 ns around physics event

Timing resolution to suppress backgrounds

γγ → hadrons background: uniformly distributed in bunch train (unlike signal) \rightarrow can be efficiently suppressed with pT-dependent timing cuts on reconstructed particles $(=$ particle flow objects)

*t***** \overline{t} **event at 3 TeV with background from** $\gamma\gamma \rightarrow$ **hadrons from bunch train**

1.2 TeV background in the reconstruction window > 10 ns around physics event

100 GeV background after timing cuts

Detector performance in full simulation

Tracking performance: Momentum resolution

Full detector simulation

- ▶ Simulation based on Geant4
- Reconstruction chain including tracking, particle flow, identification, flavor tagging

- **Performance parameters based on full simulation of CLICdet documented in** [arXiv:1812.07337](https://arxiv.org/abs/1812.07337)
- \triangleright Workflow: tracking and identification efficiencies, momentum and calorimeter resolutions, jet clustering, flavor tagging, isolation, particle flow
- \blacktriangleright Linear collider jet algorithm VLC implemented in DELPHES
- \triangleright Separate cards for the 3 energy stages to mimic effect of beam-induced background on jet energy resolution

[1909.12728](https://arxiv.org/abs/1909.12728)

CLIC physics

Simulation

Ingredients specific to linear collider Monte Carlo generation

- Beam polarization
- Hard processes for e + e − , e ± *γ*, *γγ*
- Simulation of ISR
- \blacktriangleright Capabilities to include beamstrahlung from parametrization (e.g. CIRCE2) or beam-beam event files

Main generator: Whizard+Pythia

- Correlations between beams are important [\[1309.0372\]](https://arxiv.org/abs/1309.0372v3)
- Impact on cross section measurements and lab-frame observables
- $Simulation$ with beam-beam interactions tool $GUNEAPIG$

- **I** Lepton colliders: $[E, \theta]$; hadron colliders: $[p_T, y]$
- $\triangleright \gamma\gamma \rightarrow$ hadrons is forward peaked, reduce forward size for background robustness

CLIC physics in three stages

- 25-30 years physics programme
- Electron polarisation scenario:

- **Stage 1** ► Higgs physics: single Higgs production in HZ and VBF
	- Top physics: $t\bar{t}$ production and threshold scan
	- **⇒** precision far beyond that of the HL-LHC
- **Stage 2** \triangleright ttH production
- **Stage 2,3 ► Searches for new particles**
	- Precision FW measurements providing indirect sensitivity to new physics at higher scales
	- Higgs self-coupling

 e^+

 $\gamma^*/$ Z^{0*}

t¯tH production

Maximum *σ* near 800 GeV LC lumi higher at higher energy \rightarrow CLIC Stage 2 close to maximum ttH rate

 VBF $t\bar{t}H$ w Benefits from highest energies

- \blacktriangleright Top mass
	- Top electroweak couplings
- \blacktriangleright Rare top decays
- \blacktriangleright Top Yukawa coupling
- ▶ CP properties of $t \rightarrow H$ coupling
- BSM in H/t sectors

Top threshold scan

- Goal: Highest precision top mass measurement
- Dedicated runs of CLIC in several steps around 350 GeV (tt threshold), total 100 fb $^{-1}$
- Expected measurement precision on 1S mass : \approx 50 MeV
	- \blacktriangleright Theoretical uncertainties: parametric $\textsf{uncertainties}\ \mathsf{from}\ \alpha_{\mathsf{s}}\ \mathsf{perturbative}\ \mathsf{QCD}$ uncertainty (dominant)
	- \blacktriangleright Experimental uncertainties: beam energy and luminosity spectrum, remaining background predictions
	- \triangleright Statistical uncertainty: 20 MeV
- \blacktriangleright CLIC beam parameters optimised for lower beamstrahlung

Higgs physics at CLIC

mechanisms \rightarrow reduces uncertainties and guarantees model-independence

Double Higgs production

ZHH: second stage VBF: benefits from highest energies

Higgsstrahlung

$Z \rightarrow ee, \mu\mu$

I dentify HZ events from the Z recoil mass

 $M^2 = s - 2E_{q\bar{q}}\sqrt{s} + M_{q\bar{q}}^2$

⇒ model-independent measurement of the g_{HZZ} coupling

$Z \rightarrow q\bar{q}$

Measurement of $g_{HZZ} \rightsquigarrow$ substantial improvement in precision possible

$H \rightarrow$ **invisible**

Find invisible Higgs decays in a model-independent way BR(H→inv.)*<*0.97 % at 90 % C.L. for CLIC at 350 GeV

Full simulation study with Whizard+Pythia and CLICdet detector model [\[arXiv:1911.02523\]](https://arxiv.org/abs/1911.02523)

Eur. Phys. J. C77, 475 (2017)

Higgsstrahlung at CLIC

plays a large role in the determination of g_{HZZ} at the 380 GeV energy stage using the recoil method

- \triangleright Cross section much lower at 3 TeV
- \blacktriangleright Promising impact of this channel on BSM through Effective Field Theories (EFT)
- \rightarrow possible to make use of fully hadronic channel to gain statistics?
- **→** possible to utilize boosted jets and jet substructure?
- investigate HZ with $Z \rightarrow q\overline{q}$
- Goal: decay angles for EFT

- **►** HZ \rightarrow \overline{b} \overline{q} at $\sqrt{s}_{\text{eff}} > 2500$ GeV characterised by 2 high-energy boosted fat jets, back-to-back in azimuth, each containing 2 sub-jets
- \blacktriangleright Excellent jet mass resolution \rightarrow discriminate signal from background
- I Jets: VLC *β* = *γ* = 1.0, *R* = 0.7, exclusive clustering $n = 2$ plus tight timing and p_T cuts on particle flow objects
- \triangleright Correct for impact of neutrinos in b decays by projecting the MET on the boosted jets
- \triangleright Use BDT based on jet observables and substructure observables

jets ordered by mass: H jet higher mass than Z jet

Results for HZ at 3 TeV

CLICdp-Note-2020-003

- \rightarrow make use of fully hadronic channel to gain statistics \checkmark
- \rightarrow utilize boosted jets and jet substructure \checkmark
	- Statistical uncertainty on the cross setion is 4.4% for negative beam polarisation run (4000 fb $^{\rm -1})$ and 8.8 % for positive beam polarisation run $(1000\,{\rm fb}^{-1}) \rightarrow$ combined 4.0 $\%$
	- Statistics sufficient for extracting angular $\,$ observables for <code>EFT</code> study $(\theta_1\!\!: \,$ angle <code>between</code> positively charged quark and original Z direction in the Z rest frame)

Global fits to $\sigma \times \text{BR}$ measurements in HZ and VBF production in various $channels \rightarrow model-independent$ and model-dependent

Eur. Phys. J. C 77, 475 (2017), updated [1812.01644](https://arxiv.org/abs/1812.01644)

Model-dependent global fit

Model-dependent:

- \blacktriangleright 10 free parameters
- \triangleright Total width is sum of partial widths \Rightarrow No decays to non-SM particles
- \blacktriangleright Comparison to LHC results

- \blacktriangleright Self-coupling determines shape of the Higgs potential
- Implications for vacuum metastability, hierarchy problem, electroweak phase transition, baryogenesis

Higgs self-coupling at linear colliders

- \triangleright No HH production channel accessible below 500 GeV in e^+e^-
- ► Sizable ZHH production starts at $\sqrt{s} \gtrsim 500$ GeV
- \blacktriangleright HH $v_{\rm e}$ $\overline{v_{\rm e}}$ production grows with energy
- \blacktriangleright Influence of **beam polarisation:** $P(e^{-}) = -80\%$ (+80%): HH $v_e\overline{v}_e$ rate modified by factor 1.8 (0.2)

Analysis strategy

Full simulation study with WHIZARD+PYTHIA and CLIC_ILD detector model [Eur.](https://arxiv.org/abs/1901.05897v3) [Phys. J. C 80, 1010 \(2020\)](https://arxiv.org/abs/1901.05897v3)

Higgs self-coupling at CLIC

- \blacktriangleright Measure W-boson fusion di-Higgs production HH $v_e\overline{v}_e$ at 3 TeV in $b\overline{b}b\overline{b}$ and $b\overline{b}WW^*$
- Extract g_{HHH} from cross section and kinematics
- \blacktriangleright Take into account the smaller contributions from $7HH$ and $HHv_{e}\overline{v}_{e}$ at 1.4 TeV

Cross-section dependence on g_{HHH} : \rightarrow

- **⇒** Measurements of cross sections can be used to extract $g_{\sf HHH} / g_{\sf HHH}^{\rm SM}$
	- Ambiguity in $HHv_{e}\overline{v}_{e}$

@CLIC: resolved by using 2 production modes and differential information

Differential distributions help to distinguish different values of $κ_{HHH}$ [\[1309.7038\]](http://arxiv.org/abs/1309.7038) Shape differences in lower invariant mass M_{HH} region for

- \blacktriangleright different values of κ _{HHH}
- in particular, distinguish κ _{HHH} < 1 from $\kappa_{\text{HHH}} > 1$ even if similar cross section (\rightarrow resolve ambiguity)

3TeV HH $v_e \overline{v}_e \rightarrow b \overline{b} b \overline{b}$ analysis makes use of differential information

Signal selection: 4 b-tagged jets, missing E_T , Boosted Decision Tree **Signal region:** $Signal = 766$ events $Background = 4527$ events

Invariant mass of Higgs boson pair:

Measure g_{HHH} in di-Higgs events

From differential information in HHν_ε $\bar{\mathbf{v}}_e$ events

- \triangleright Use two observables sensitive to g_{HHH} : BDT score and M_{HH}
- \blacktriangleright Perform template fit for different g_{HHH}
	- \Rightarrow **-8%, + 11% precision on** g_{HHH}

Global fit including Higgs self-coupling

- \blacktriangleright HH production measurements can be influenced by more BSM effects other than modified Higgs self-coupling
- \triangleright Other BSM effects can be constrained in other measurements
- **⇒** estimate total effect: global SM-EFT fit
- **⇒** at CLIC: global and individual constraints on Higgs self-coupling very similar due to the comprehensive, high-precision Higgs programme at all three energy stages

Results from: The CLIC Potential for New **Physics**

[\[1812.02093, Sec. 2.2\]](https://arxiv.org/abs/1812.02093)

CLICdp full-simulation analysis with differential information $\Delta\chi^2=1$ corresponds to 68 % C.L.

Comparison to other proposed projects

- \blacktriangleright CLIC is earliest project where $\Delta \kappa$ _{HHH} $< 10 \%$ can be reached
- Direct access and two sizable production modes at CLIC
- ▶ Global and **exclusive** constraints very similar (see previous slide)

from [\[1910.11775\]](https://arxiv.org/pdf/1910.11775.pdf) $(\kappa_3 = \kappa_{\rm HHH})$

- \triangleright Shape of the Higgs potential connected to the phase transition of the early universe from the unbroken to the broken electroweak symmetry
- Baryogenesis with a Higgs $+$ singlet model: CLIC sensitive to the interesting regions

potential

--- CLIC 1.5 TeV $\epsilon_{b-ta\sigma} = 90\%$

 $-$ - constraint from $\Delta \kappa_{\text{HHH}} = 20\%$ at 95 % C.L. --- CLIC 3 TeV di-Higgs searches $\epsilon_{b-ta\sigma} = 90\%$ — CLIC 3 TeV di-Higgs searches $\epsilon_{b-ta\sigma} = 70\%$ ◦ regions compatible with unitarity, perturbativity, and absolute stability of the EW vacuum ● regions also compatible with baryogenesis Gray areas: indirect reach from other measurements at Stage 1 (dark), Stage 2 (middle), Stage 3 (light)

based on di-Higgs production at CLIC [\[No, Spannowski: 1807.04284\]](https://arxiv.org/abs/1807.04284) [\(using CLICdet Delphes card\)](https://cds.cern.ch/record/2649439)

CLIC high-energy stages at 1.5 and 3 TeV:

- \triangleright increases VBF Higgs production
- \blacktriangleright adds ttH and HH production
- precision top-quark physics
- \triangleright precision measurements of two-fermion and multi-boson processes

At low energy (
$$
\sqrt{s}=m_2
$$
)
\n $e^+\sqrt{\frac{2}{\omega_{\text{S}_\text{d}}}}\sqrt{e^+\sqrt{\frac{2}{\omega_{\text{d}}}}}$ Imagine measuring $\frac{d\sigma}{\sigma_{\text{SM}}}\sqrt{s}$ = m_2
\n $e^+\sqrt{\frac{2}{\omega_{\text{d}}}}\sqrt{\frac{3000}{91.2}}^2$ = 1000
\n $e^-\sqrt{\frac{2}{\omega_{\text{d}}}}\sqrt{\frac{3000}{\omega_{\text{d}}}}^2$ = 1000
\n $\frac{1}{\omega_{\text{SM}}}\sqrt{\frac{2000}{\omega_{\text{S}_\text{M}}}}^2$ = 1000
\n $\frac{1}{\omega_{\text{SM}}}\sqrt{s}$ = 37eV
\n $\frac{1}{\omega_{\text{SM}}}\sqrt{s}$ = 37eV
\n $\frac{1}{\omega_{\text{SM}}}\sqrt{s}$ = 37eV

Global sensitivity to BSM effects in EFT

Long-lived particles at CLIC

- Long-lived particles signatures: displaced or disappearing tracks
- Challenging at the LHC due to pile-up, triggers
- \triangleright 2 studies at CLIC:
	- \blacktriangleright Hidden valley Higgs decay: displaced vertices
	- \blacktriangleright Degenerate Higgsino Dark Matter: disappearing tracks

Degenerate Higgsino Dark Matter

- **If** Small mass difference between chargino and neutralino; mixing: pure Higgsino
- **Process:** chargino pair production where the χ_1^{\pm} decay to a neutralino and a pion: $e^+e^-\to \tilde{\chi}^+_1\tilde{\chi}^-_1\to \tilde{\chi}^0_1\pi^+\tilde{\chi}^0_1\pi^-$
- In Stub tracks from charged Higgsino with mass 1.05 TeV and lifetime 6.9 mm
- I Whizard+Pythia, CLICdet at 3 TeV, with ISR and Beamspectrum included

stub track search:

- $\blacktriangleright \geq 4$ hits in the tracking system
- disappearing within the tracking system
- no associated calorimeter entry
- prompt, isolated, minimum p_T
- \blacktriangleright dE/dx requirement

[\[1812.02093\]](https://arxiv.org/abs/1812.02093)

Result: reach 1.05 TeV $=$ mass compatible with thermal DM density

Summary and Outlook

- \blacktriangleright CLIC: Compact Linear Collider = future electron-positron collider at the Terascale
- Accelerator scheme demonstrated in various test facilities
- \blacktriangleright CLICdet detector model adapted to CLIC high-energy beam environment
- Baseline energy stages optimised for physics cases
- CLIC physics: High-precision top, Higgs, and electroweak physics
- → e.g. Top threshold scan, Higgs self-coupling in HH production

Outlook

▶ December 2018 - May 2020: European Strategy Update process

CLIC timeline:

Thanks and further reading

Yellow reports:

- \blacktriangleright The CLIC potential for new physics (CERN-2018-009-M, arXiv:1812.02093)
- I CLIC 2018 Summary Report (CERN-2018-005-M, arXiv:1812.06018)
- CLIC Project Implementation Plan (CERN-2018-010-M, arXiv:1903.08655)
- Detector technologies for CLIC (CERN-2019-001, arXiv:1905.02520)

Additional material

Additional Material

Luminosity and beam-beam interaction

Luminosity

$$
\mathcal{L} \sim \frac{N^2}{\sigma_x \sigma_y}
$$

Electromagnetic fields

$$
B \sim \frac{\gamma N}{\sigma_z(\sigma_x + \sigma_y)}
$$

 \Rightarrow prefer flat beams $\sigma_{v} \ll \sigma_{x}$

Bunch particles are strongly influenced by the fields: they are deflected and radiate Beamstrahlung

- \blacktriangleright HH $v_{\rm e}$ $\overline{v}_{\rm e}$ production at 1.4 and 3 TeV studied in full simulation
- \triangleright ZHH production at 1.4 TeV: assumptions based on full-simulation ZH study
- Minimal programme of CLIC for HH cross-section measurements:

direct acces

two production modes

Current CLIC baseline has the second energy stage at 1.5 TeV instead of 1.4 TeV which is still used for the full-simulation samples studied here

- \blacktriangleright Unique capability of CLIC: measuring the Higgs self-coupling to -8%, $+$ 11 % uncertainty
- \blacktriangleright Direct accessibility of HH production at 1.4 and 3 TeV
- \blacktriangleright Challenging measurements: small cross section, forward b-quarks
- \blacktriangleright Benefits from excellent heavy flavor tagging, jet energy resolution of CLIC detector

CLIC double Higgs and Higgs self-coupling programme:

- **+** Global EFT fit
- **+** BSM interpretation (e.g. Baryogenesis)

3 TeV result for *σ*(ZHH) from [CLICdp-Note-2020-003;](https://cds.cern.ch/record/2727789/files/CLICdp-Note-2020-003.pdf) all other results from [Eur. Phys. J. C 80, 1010 \(2020\)](https://arxiv.org/abs/1901.05897v3)

 \Rightarrow Together with the high-precision in the couplings of the Higgs to SM particles at CLIC, this measurement will test the nature of the electroweak symmetry breaking mechanism

- \blacktriangleright Make use of fully hadronic final states (JER allows to separate W,Z)
- \blacktriangleright Example studies done in $e^+e^- \to W^+W^-\nu\bar{\nu}$ and $e^+e^- \to ZZ \nu\bar{\nu}$

Limits on anomalous quartic gauge couplings via χ^2 fit to sensitive observables: M_{VV} , cos θ^*_{VV} , cos $\theta^*_{\hspace{0.1cm}Jets}$

Limits on anomalous quartic gauge couplings

HL-LHC: Similar sensitivity as CLIC 3 TeV

Several diagrams contribute to $\mathsf{HHv_{e}\overline{v_{e}}}$, incl. HHWW vertex \rightarrow modification parametrized as $\kappa_\mathsf{HHWW} =$ g $_\mathsf{HHWW}/g_\mathsf{HHWW}^{\rm SM}$:

Modifications of invariant di-Higgs mass:

2D limits

Simultaneous fit of g_{HHH} and g_{HHWW} based on M_{HH} in bins of the BDT score plus the *σ*(ZHH) measurement at 1.4 TeV:

References

Electron-positron vs. hadron collider

[http://www.quantumdiaries.org/wp-content/uploads/2015/05/](http://www.quantumdiaries.org/wp-content/uploads/2015/05/feynmanDiagram_DrellYan_wRad.png) [feynmanDiagram_DrellYan_wRad.png](http://www.quantumdiaries.org/wp-content/uploads/2015/05/feynmanDiagram_DrellYan_wRad.png) [https://upload.wikimedia.org/](https://upload.wikimedia.org/wikipedia/en/thumb/e/ea/Electron-positron-z_boson.svg/1024px-Electron-positron-z_boson.svg.png) [wikipedia/en/thumb/e/ea/Electron-positron-z_boson.svg/](https://upload.wikimedia.org/wikipedia/en/thumb/e/ea/Electron-positron-z_boson.svg/1024px-Electron-positron-z_boson.svg.png) [1024px-Electron-positron-z_boson.svg.png](https://upload.wikimedia.org/wikipedia/en/thumb/e/ea/Electron-positron-z_boson.svg/1024px-Electron-positron-z_boson.svg.png)

Exam-induced backgrounds: $\gamma\gamma \rightarrow$ hadrons diagram http://cronodon.com/images/QCD_19.jpg