

Physics at the Compact Linear Collider (CLIC)

Ulrike Schnoor (CERN & University of Glasgow)

10.02.2021 Seminar Birmingham

Outline

Current state of particle physics

CLIC accelerator

CLIC detector model

CLIC physics potential

Summary and Outlook

The Large Hadron Collider and the Higgs boson

LHC: proton-proton collider CME 7...8...13 TeV Taking data since 2010 4 experiments ATLAS, ALICE, CMS, LHCb

- Discovery of a Higgs boson (2012) at CMS & ATLAS
- Sparked investigation of the nature of electroweak symmetry breaking ⇒ far from completed!

Phys. Rev. Lett. 114 (2015) 191803

Open Questions

- Dark Matter
- Dark Energy
- Origin of baryon asymmetry
- Origin of neutrino masses

- Why are we not seeing new physics around the TeV scale?
 - mass scale beyond LHC reach?
 - mass scale within LHC reach, but final states are elusive?
- Need for
 - \Rightarrow precision measurements
 - \Rightarrow sensitivity to elusive signatures
 - \Rightarrow extended energy/mass reach

New probe: the Higgs boson

- experimental results leave room for wide range of BSM EWSB scenarios
- still open aspects, including
 - Higgs couplings to lighter particles
 - $\blacktriangleright Higgs self-coupling \rightarrow shape of potential$
 - possible other particles coupled to the Higgs

Proposed electron-positron colliders at the energy frontier

Linear e^+e^- colliders

Compact Linear Collider CLIC

CERN $\sqrt{s} = 380 \text{ GeV}, 1.5 \text{ TeV}, 3 \text{ TeV}$ $\ell = 11 \text{ km}, 29 \text{ km}, 50 \text{ km}$

International Linear Collider ILC

Japan $\sqrt{s} = 250 \text{ GeV} (500 \text{ GeV}, 1 \text{ TeV})$ $\ell = 17 \text{ km} (31 \text{ km}, 50 \text{ km})$

Circular e^+e^- colliders

CERN $\sqrt{s} = 90 - 350 \text{ GeV}$ $\ell = 98 \text{ km}$

Circular Electron Positron Collider

China $\sqrt{s} = 90 - 240 \text{ GeV}$ $\ell = 100 \text{ km}$

HL-LHC physics program

- Search for physics beyond the SM
- Continuation of top, Higgs, electroweak physics program of the LHC

Proton-proton collider

- Proton is compound object
 - Initial state unknown
 - Limited achievable precision
- High rates of QCD backgrounds
 - Complex triggers
 - High levels of radiation
- High-energy circular colliders possible

Electron-positron collider

- ▶ e^+, e^- are elementary
 - ► Initial state well-defined (√s, polarization)
 - High-precision measurements
- Clean experimental environment
 - Less/ no need for triggers
 - Lower radiation levels
- ► High energies (√s > 350 GeV) require linear colliders

Interesting physics processes in pp and ee collisions

 $_{\rm https://mcfm.fnal.gov/mcfm-Edep.pdf}$ Interesting events suppressed by $\gtrsim 8$ orders of magnitude

Electron-positron collider

http://clicdp.web.cern.ch/sites/clicdp.web.cern.ch/files/

CCcli3_09_16.jpg

Circular and linear colliders

- Beam passes only once
- Few magnets, many accelerating cavities
- $\blacktriangleright \text{ High energy} \rightarrow \text{need high accelerating gradient}$
- High luminosity \rightarrow high beam power (high bunch repetition)

Electron-positron colliders

Circular e^+e^- colliders

- Energy limited by synchrotron radiation
- Large luminosity at lower energies
- Luminosity decreases with energy

Linear e^+e^- colliders

- Can reach highest energies
- Luminosity rises with energy
- Beam polarization possible at all energies

 $\begin{array}{l} \mbox{Past colliders:} \\ \mbox{LEP2 (209 GeV) peak luminosity} \\ \mbox{$\mathcal{L}=10^{32} \mbox{cm}^{-2} \mbox{s}^{-1}$} \end{array}$

CLIC accelerator

Goal High gradient, efficient energy transfer (wall-plug to beam) Means High-frequency RF maximizes field in cavities for given energy Challenge Standard RF sources inefficient at high frequencies CLIC solution Use standard low-frequency RF sources to accelerate a drive beam; bring it to high frequency; transfer energy to main beam

Two-beam acceleration scheme

Dense, low energy drive beam RF power extracted to accelerate less particles per bunch to higher energy per particle

Drive beam high current (100 A); lower energy (2.4 GeV); 12 GHz after CRs & loops **Power Extraction and Transfer Structures** decelerate the beam \rightarrow extract its energy \rightarrow guide it via waveguides to the main beam accelerating structures **Main beam** High energy up to 1.5 TeV; lower current 1.2 A

CTF3, the CLIC Test Facility

Successful demonstration of

- Drive beam generation
- RF power extraction
- ► Gradient up to 145 MV/m

C-band facilities using CLIC technology (SwissFEL)

The two-beam module

Test module without beam for tests of

- thermo-mechanical effects
- engineering
- alignment and support
- vacuum, etc.

X-band test facility

test and development of high-gradient accelerating structures

CLIC staged implementation and map

Baseline: several energy stages				
Stage	\sqrt{s} [GeV]	$\mathcal{L}_{\mathrm{int}} \; [fb^{-1}]$		
1	380	1000		
top scan	350	100		
2	1500	2500		
3	3000	5000		

 \Rightarrow stages can be adapted to possible discoveries at the LHC

Even further in the future: Upgrade with Plasma Wakefield technology possible

Beam properties and experimental conditions

CLIC bunch structure and experimental conditions

- Linear colliders operate in bunch trains
- Bunch separation drives timing requirements of the detector
 - 10 ns hit time-stamping in tracking
 - 1 ns accuracy for calorimeter hits
- Low duty cycle \rightarrow power pulsing of detectors possible

Beam-beam interaction

High luminosities achieved by using extremely small beam sizes

- At 3 TeV: bunch size $\sigma_x = 40$ nm, $\sigma_y = 1$ nm, $\sigma_z = 44 \,\mu\text{m}$
- Flat beams: high luminosity while minimizing electromagnetic fields
- Electromagnetic interaction of e^+ and e^- beams → synchrotron radiation: *beamstrahlung*
- Collective (beam) effect; real photons

Beamstrahlung:

- ... modifies energy spectrum of the colliding e^+e^- pairs
- ... produces $e^{\pm}\gamma$ and $\gamma\gamma$ collisions
- ... drives detector requirements to a large extend

Coherent and incoherent e^+e^- pairs

19k particles per bunch train (3 TeV) High occupancies \rightarrow impact on detector granularity and design

$\gamma\gamma ightarrow$ hadrons

17k particles per bunch train (3 TeV) Main background in calorimeters and trackers \rightarrow impact on detector granularity, design and physics measurements

- Bunch trains with 312 bunches every 0.5 ns
- $\gamma\gamma \rightarrow$ hadrons suppressed with timing cuts

CLIC detector

Detector requirements

+ Momentum resolution:

Higgs recoil mass, $H \rightarrow \mu \mu$, leptons from BSM processes

$$\frac{\sigma(p_T)}{p_T^2}\approx 2\times 10^{-5} {\rm GeV}^{-1}$$

+ Energy resolution for light quarks: W/Z/H separation

$$\frac{\sigma(E)}{E} \approx 3.5 - 5\% \text{ for } E = 50...1000 \,\text{GeV}$$

+ **Impact parameter resolution:** b/c tagging, e.g. Higgs couplings

$$\sigma(d_0) = \sqrt{a^2 + b^2 \text{GeV}^2/(p^2 \sin^3 \theta)},$$

 $a\approx 5\mu\mathrm{m}, b\approx 15\mu\mathrm{m}$

+ Lepton identification, very forward e/ γ tagging + Requirements from beam-induced backgrounds

Overview of the detector

Designed for Particle Flow Analysis and optimized for CLIC environment

- 4 T B-field
- Vertex detector (3 double layers)
- Large Silicon tracker R=1.5m
- Highly granular calorimeters:
 - Si-W-ECAL
 40 layers (22 X₀)
 - Scint-Fe-HCAL
 60 layers (7.5 λ_I)

Precise timing for background suppression

Particle Flow Calorimetry

Particle Flow principle

Average jet composition

- ► 60 % charged particles
- ► 30 % photons
- 10 % neutral hadrons

Always use the best information

- charged particles \rightarrow tracker
- $\blacktriangleright \text{ photons} \rightarrow \mathsf{ECAL}$
- ▶ neutral hadrons \rightarrow HCAL

http://www.hep.phy.cam.ac.uk/linearcollider/calorimetry/

- Traditional approach: jet energy measured in ECAL and HCAL
- ► Particle Flow: Need very good spacial resolution to avoid confusion ⇒ highly granular calorimeters
- \Rightarrow Hardware + Software

Timing resolution to suppress backgrounds

 $\gamma\gamma \rightarrow$ hadrons background: uniformly distributed in bunch train (unlike signal) \sim can be efficiently suppressed with pT-dependent timing cuts on reconstructed particles (= particle flow objects)

 $tar{t}$ event at 3 TeV with background from $\gamma\gamma
ightarrow$ hadrons from bunch train

Timing resolution to suppress backgrounds

 $\gamma\gamma \rightarrow$ hadrons background: uniformly distributed in bunch train (unlike signal) \sim can be efficiently suppressed with pT-dependent timing cuts on reconstructed particles (= particle flow objects)

 $tar{t}$ event at 3 TeV with background from $\gamma\gamma
ightarrow$ hadrons from bunch train

1.2 TeV background in the reconstruction window $\geq 10 \text{ ns}$ around physics event

100 GeV background after timing cuts

Detector performance in full simulation

Tracking performance: Momentum resolution

Full detector simulation

- Simulation based on Geant4
- Reconstruction chain including tracking, particle flow, identification, flavor tagging

- Performance parameters based on full simulation of CLICdet documented in arXiv:1812.07337
- Workflow: tracking and identification efficiencies, momentum and calorimeter resolutions, jet clustering, flavor tagging, isolation, particle flow
- Linear collider jet algorithm VLC implemented in DELPHES
- Separate cards for the 3 energy stages to mimic effect of beam-induced background on jet energy resolution

1909.12728

CLIC physics

Simulation

Ingredients specific to linear collider Monte Carlo generation

- Beam polarization
- Hard processes for e⁺e⁻, e[±]γ, γγ
- Simulation of ISR
- Capabilities to include beamstrahlung from parametrization (e.g. CIRCE2) or beam-beam event files

Main generator: Whizard+Pythia

- Correlations between beams are important
- Impact on cross section measurements and lab-frame observables
- Simulation with beam-beam interactions tool GUINEAPIG

[1309.0372]

	hadron collider	lepton collider
Avoid contamination from:	pile-up	beam-induced backgrounds
Boost w.r.t. detector frame:	yes	no/less

- Lepton colliders: $[E, \theta]$; hadron colliders: $[p_T, y]$
- ▶ $\gamma\gamma$ → hadrons is forward peaked, reduce forward size for background robustness

CLIC physics in three stages

- 25-30 years physics programme
- Electron polarisation scenario:

			$ P(e^{-}) = -80\%$	$P(e^{-}) = +80\%$
Stage	\sqrt{s} [TeV]	$\mathscr{L}_{int} [ab^{-1}]$	$\mathscr{L}_{int} [ab^{-1}]$	\mathscr{L}_{int} [ab ⁻¹]
1	0.38 (and 0.35)	1.0	0.5	0.5
2	1.5	2.5	2.0	0.5
3	3.0	5.0	4.0	1.0

- Stage 1 Higgs physics: single Higgs production in HZ and VBF
 - Top physics: tt
 triangle
 threshold scan
 - \Rightarrow precision far beyond that of the HL-LHC
- Stage 2 ► ttH production
 - Searches for new particles
 - Precision EW measurements providing indirect sensitivity to new physics at higher scales
 - Higgs self-coupling

Top physics

Stage 1: 380 GeV close to production maximum \rightarrow large event samples

$t\bar{t}H$ production

 $\begin{array}{l} \mbox{Maximum } \sigma \mbox{ near 800 GeV} \\ \mbox{LC lumi higher at higher energy} \\ \rightarrow \mbox{CLIC Stage 2 close to maximum} \\ \mbox{ttH rate} \end{array}$

VBF $t\bar{t}H$ Benefits from highest energies

- Top mass
- Top electroweak couplings
- Rare top decays
- Top Yukawa coupling
- CP properties of $t \to H$ coupling
- BSM in H/t sectors

Top threshold scan

- ► Goal: Highest precision top mass measurement
- Dedicated runs of CLIC in several steps around 350 GeV (tt threshold), total 100 fb⁻¹
- \blacktriangleright Expected measurement precision on 1S mass : $\approx 50 \, \text{MeV}$
 - Theoretical uncertainties: parametric uncertainties from α_s, perturbative QCD uncertainty (dominant)
 - Experimental uncertainties: beam energy and luminosity spectrum, remaining background predictions
 - Statistical uncertainty: 20 MeV
- CLIC beam parameters optimised for lower beamstrahlung

CLICdp work in progress

Higgs physics at CLIC

Stage 1: two production mechanisms \rightarrow reduces uncertainties and guarantees model-independence

Double Higgs production

ZHH: second stage VBF: benefits from highest energies

Higgsstrahlung

$Z ightarrow ee, \mu \mu$

► Identify HZ events from the Z recoil mass

 $M^2 = s - 2E_{q\bar{q}}\sqrt{s} + M_{q\bar{q}}^2$

 \Rightarrow model-independent measurement of the g_{HZZ} coupling

Z ightarrow q ar q

Measurement of $g_{HZZ} \sim substantial$ improvement in precision possible

$H \rightarrow invisible$

Find invisible Higgs decays in a model-independent way BR(H $\!\to\!inv.)\!<\!0.97\,\%$ at 90 % C.L. for CLIC at 350 GeV

Full simulation study with Whizard+Pythia and CLICdet detector model [arXiv:1911.02523]

Eur. Phys. J. C77, 475 (2017)

Higgsstrahlung at CLIC

plays a large role in the determination of g_{HZZ} at the 380 GeV energy stage using the recoil method

- Cross section much lower at 3 TeV
- Promising impact of this channel on BSM through Effective Field Theories (EFT)
- → possible to make use of fully hadronic channel to gain statistics?
- → possible to utilize boosted jets and jet substructure?
- \blacktriangleright investigate HZ with $Z \rightarrow q \overline{q}$
- Goal: decay angles for EFT

- ▶ HZ → bb qq at $\sqrt{s_{eff}}$ > 2500 GeV characterised by 2 high-energy boosted fat jets, back-to-back in azimuth, each containing 2 sub-jets
- \blacktriangleright Excellent jet mass resolution \rightarrow discriminate signal from background
- Jets: VLC β = γ = 1.0, R = 0.7, exclusive clustering n = 2 plus tight timing and p_T cuts on particle flow objects
- Correct for impact of neutrinos in b decays by projecting the MET on the boosted jets
- Use BDT based on jet observables and substructure observables

jets ordered by mass: H jet higher mass than Z jet

Results for HZ at 3 TeV

CLICdp-Note-2020-003

process	Events	Purity	Efficiency	Events	Purity	Efficiency
	neg. p.	neg. p., in [%]	neg. p., in [%]	pos. p.	pos. p., in [%]	pos. p., in [%]
$e^+e^- \rightarrow HZ, H \rightarrow b\overline{b}$	811	52	47	162	64	53
$e^+e^- \rightarrow HZ$, all H	884	57	34	180	72	39
$e^+e^- \rightarrow q\overline{q}$	256	17	0.15	33.7	13	0.18
$e^+e^- \rightarrow q\overline{q}q\overline{q}$	335	22	0.12	30.8	12	0.36
$e^+e^- \rightarrow q\overline{q}q\overline{q}q\overline{q}$	71.1	4.6	0.22	6.28	2.5	0.20

- $\rightarrow\,$ make use of fully hadronic channel to gain statistics $\checkmark\,$
- $\rightarrow\,$ utilize boosted jets and jet substructure $\checkmark\,$
 - ► Statistical uncertainty on the cross setion is 4.4 % for negative beam polarisation run (4000 fb⁻¹) and 8.8 % for positive beam polarisation run (1000 fb⁻¹) \rightarrow combined 4.0 %
 - Statistics sufficient for extracting angular observables for EFT study (θ₁: angle between positively charged quark and original Z direction in the Z rest frame)

► Global fits to $\sigma \times BR$ measurements in HZ and VBF production in various channels \rightarrow model-independent and model-dependent

Eur. Phys. J. C 77, 475 (2017), updated 1812.01644

Model-dependent global fit

Model-dependent:

- 10 free parameters
- Total width is sum of partial widths \Rightarrow No decays to non-SM particles
- Comparison to LHC results

- Self-coupling determines shape of the Higgs potential
- Implications for vacuum metastability, hierarchy problem, electroweak phase transition, baryogenesis

Higgs self-coupling at linear colliders

- No HH production channel accessible below 500 GeV in e⁺e⁻
- Sizable ZHH production starts at $\sqrt{s} \gtrsim 500 \text{ GeV}$
- $\blacktriangleright~HH\nu_{e}\overline{\nu}_{e}$ production grows with energy
- ► Influence of **beam polarisation:** $P(e^-) = -80\% (+80\%)$: $HH\nu_e\overline{\nu_e}$ rate modified by factor 1.8 (0.2)

Analysis strategy

Full simulation study with WHIZARD+PYTHIA and CLIC_ILD detector model Eur. Phys. J. C 80, 1010 (2020)

Higgs self-coupling at CLIC

- ► Measure W-boson fusion di-Higgs production $HH\nu_e\overline{\nu}_e$ at 3 TeV in $b\overline{b}b\overline{b}$ and $b\overline{b}WW^*$
- Extract g_{HHH} from cross section and kinematics
- ► Take into account the smaller contributions from ZHH and $HH\nu_e\overline{\nu_e}$ at 1.4 TeV

Cross-section dependence on $g_{\rm HHH}\colon \rightarrow$

- $\Rightarrow \text{ Measurements of cross sections} \\ \text{ can be used to extract} \\ g_{\text{HHH}}/g_{\text{HHH}}^{\text{SM}}$
 - Ambiguity in $HH\nu_e\overline{\nu}_e$

@CLIC: resolved by using 2 production modes and differential information

Differential distributions help to distinguish different values of $\kappa_{\rm HHH}$ [1309.7038] Shape differences in lower invariant mass $M_{\rm HH}$ region for

- different values of $\kappa_{\rm HHH}$
- In particular, distinguish κ_{HHH} < 1 from κ_{HHH} > 1 even if similar cross section (→ resolve ambiguity)

3TeV $HH\nu_e\overline{\nu}_e\to b\overline{b}b\overline{b}$ analysis makes use of differential information

Signal selection: 4 b-tagged jets, missing E_T , Boosted Decision Tree Signal region: Signal = 766 events Background = 4527 events

Invariant mass of Higgs boson pair:

Measure g_{HHH} in di-Higgs events

From differential information in $HH\nu_e\overline{\nu}_e$ events

- Use two observables sensitive to g_{HHH}: BDT score and M_{HH}
- Perform template fit for different g_{HHH}
 - \Rightarrow -8 %, + 11 % precision on $g_{\rm HHH}$

Global fit including Higgs self-coupling

- HH production measurements can be influenced by more BSM effects other than modified Higgs self-coupling
- Other BSM effects can be constrained in other measurements
- ⇒ estimate total effect: global SM-EFT fit
- ⇒ at CLIC: global and individual constraints on Higgs self-coupling very similar due to the comprehensive, high-precision Higgs programme at all three energy stages

Results from: The CLIC Potential for New Physics

[1812.02093, Sec. 2.2]

---- CLICdp full-simulation analysis with differential information $\Delta \chi^2 = 1$ corresponds to 68 % C.L.

Comparison to other proposed projects

- \blacktriangleright CLIC is earliest project where $\Delta \kappa_{\rm HHH} < 10~\%~{\rm can} \label{eq:khhh}$ be reached
- Direct access and two sizable production modes at CLIC
- Global and exclusive constraints very similar (see previous slide)

from [1910.11775] $(\kappa_3 = \kappa_{\text{HHH}})$

- Shape of the Higgs potential connected to the phase transition of the early universe from the unbroken to the broken electroweak symmetry
- Baryogenesis with a Higgs + singlet model: CLIC sensitive to the interesting regions

--- CLIC 1.5 TeV $\epsilon_{b-tag} = 90\%$

--- constraint from $\Delta \kappa_{\text{HHH}} = 20\%$ at 95% C.L. --- CLIC 3 TeV di-Higgs searches $\epsilon_{b-tag} = 90\%$ -- CLIC 3 TeV di-Higgs searches $\epsilon_{b-tag} = 70\%$ o regions compatible with unitarity, perturbativity, and absolute stability of the EW vacuum • regions also compatible with baryogenesis ■ Gray areas: indirect reach from other measurements at

Stage 1 (dark), Stage 2 (middle), Stage 3 (light)

based on di-Higgs production at CLIC [No, Spannowski: 1807.04284] (using CLICdet Delphes card)

CLIC high-energy stages at 1.5 and 3 TeV:

- increases VBF Higgs production
- adds ttH and HH production
- precision top-quark physics
- precision measurements of two-fermion and multi-boson processes

Global sensitivity to BSM effects in EFT

Long-lived particles at CLIC

- Long-lived particles signatures: displaced or disappearing tracks
- Challenging at the LHC due to pile-up, triggers
- 2 studies at CLIC:
 - Hidden valley Higgs decay: displaced vertices
 - Degenerate Higgsino Dark Matter: disappearing tracks

Degenerate Higgsino Dark Matter

- Small mass difference between chargino and neutralino; mixing: pure Higgsino
- Process: chargino pair production where the χ_1^{\pm} decay to a neutralino and a pion: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \pi^+ \tilde{\chi}_1^0 \pi^-$
- Stub tracks from charged Higgsino with mass 1.05 TeV and lifetime 6.9 mm
- ▶ Whizard+Pythia, CLICdet at 3 TeV, with ISR and Beamspectrum included

stub track search:

- \blacktriangleright \geq 4 hits in the tracking system
- disappearing within the tracking system
- no associated calorimeter entry
- prompt, isolated, minimum p_T
- dE/dx requirement

[1812.02093]

Result: reach 1.05 TeV = mass compatible with thermal DM density

Summary and Outlook

- CLIC: Compact Linear Collider = future electron-positron collider at the Terascale
- Accelerator scheme demonstrated in various test facilities
- CLICdet detector model adapted to CLIC high-energy beam environment
- Baseline energy stages optimised for physics cases
- CLIC physics: High-precision top, Higgs, and electroweak physics
- $\rightarrow\,$ e.g. Top threshold scan, Higgs self-coupling in HH production

Outlook

December 2018 - May 2020: European Strategy Update process

CLIC timeline:

Thanks and further reading

Yellow reports:

- The CLIC potential for new physics (CERN-2018-009-M, arXiv:1812.02093)
- CLIC 2018 Summary Report (CERN-2018-005-M, arXiv:1812.06018)
- CLIC Project Implementation Plan (CERN-2018-010-M, arXiv:1903.08655)
- Detector technologies for CLIC (CERN-2019-001, arXiv:1905.02520)

Additional material

Additional Material

Luminosity and beam-beam interaction

Luminosity

$$\mathcal{L} \sim \frac{N^2}{\sigma_x \sigma_y}$$

Electromagnetic fields

$$B \sim \frac{\gamma N}{\sigma_z(\sigma_x + \sigma_y)}$$

 \Rightarrow prefer flat beams $\sigma_y \ll \sigma_x$

Bunch particles are strongly influenced by the fields: they are deflected and radiate Beamstrahlung

- ▶ $HH\nu_e\overline{\nu}_e$ production at 1.4 and 3 TeV studied in full simulation
- > ZHH production at 1.4 TeV: assumptions based on full-simulation ZH study
- Minimal programme of CLIC for HH cross-section measurements:

	$1.4\text{TeV}(\mathcal{L}=2.5\text{ab}^{-1})$	$3{ m TeV}({\cal L}=5{ m ab}^{-1})$
	3.6 σ	$>$ 5 σ for $\mathcal{L}\gtrsim$ 700 fb $^{-1}$
$\sigma(HH\nu_{e}\overline{\nu}_{e})$	$\frac{\Delta\sigma}{\sigma} = 28\%$	$\frac{\Delta\sigma}{\sigma} = 7.3\%$
	EVIDENCE	OBSERVATION
$\sigma(ZHH)$	2.1 σ	2.4 σ

direct acces

two production modes

Current CLIC baseline has the second energy stage at 1.5 TeV instead of 1.4 TeV which is still used for the full-simulation samples studied here

rogrammo

- Unique capability of CLIC: measuring the Higgs self-coupling to -8%, + 11% uncertainty
- Direct accessibility of HH production at 1.4 and 3 TeV
- Challenging measurements: small cross section, forward b-quarks
- Benefits from excellent heavy flavor tagging, jet energy resolution of CLIC detector

Jogramme.		
Measurement	1.4 TeV	3 TeV
$\sigma(HH\nu_e\overline{\nu}_e)$	3.5σ EVIDENCE $\frac{\Delta \sigma}{\sigma} = 28 \%$	$> 5 \sigma$ OBSERVATION $\frac{\Delta \sigma}{\sigma} = 7.3 \%$
σ (ZHH)	2.1σ	2.4 σ
<i>в</i> ннн/ <i>в</i> ннн	1.4 TeV: -29 %, +67 % rate-only analysis	1.4 TeV + 3 TeV: -8 %, +11 % differential analysis at 3 TeV

CLIC double Higgs and Higgs self-coupling

- + Global EFT fit
- + BSM interpretation (e.g. Baryogenesis)

3 TeV result for $\sigma({\rm ZHH})$ from CLICdp-Note-2020-003; all other results from Eur. Phys. J. C 80, 1010 (2020)

 \Rightarrow Together with the high-precision in the couplings of the Higgs to SM particles at CLIC, this measurement will test the nature of the electroweak symmetry breaking mechanism

Ulrike Schnoor

- Make use of fully hadronic final states (JER allows to separate W,Z)
- Example studies done in $e^+e^- \rightarrow W^+W^-\nu\bar{\nu}$ and $e^+e^- \rightarrow ZZ\nu\bar{\nu}$

Limits on anomalous quartic gauge couplings via χ^2 fit to sensitive observables: M_{VV} , $\cos \theta^*_{VV}$, $\cos \theta^*_{Jets}$

Limits on anomalous quartic gauge couplings

HL-LHC: Similar sensitivity as CLIC 3 TeV

Several diagrams contribute to $HH\nu_e\overline{\nu}_e$, incl. HHWW vertex \rightarrow modification parametrized as $\kappa_{\rm HHWW} = g_{\rm HHWW}/g_{\rm HHWW}^{\rm SM}$:

Modifications of invariant di-Higgs mass:

2D limits

Simultaneous fit of $g_{\rm HHH}$ and $g_{\rm HHWW}$ based on $M_{\rm HH}$ in bins of the BDT score plus the $\sigma(\rm ZHH)$ measurement at 1.4 TeV:

References

Electron-positron vs. hadron collider

http://www.quantumdiaries.org/wp-content/uploads/2015/05/ feynmanDiagram_DrellYan_wRad.png https://upload.wikimedia.org/ wikipedia/en/thumb/e/ea/Electron-positron-z_boson.svg/ 1024px-Electron-positron-z_boson.svg.png

▶ Beam-induced backgrounds: $\gamma\gamma \rightarrow$ hadrons diagram http://cronodon.com/images/QCD_19.jpg