

Graviton searches using the ATLAS detector

Dr Tracey Berry

Royal Holloway University of London

Overview

Motivation for Gravitational Effects Searches
Brief Introduction to Extra Dimensional Models

•LHC & ATLAS

•An overview of ATLAS Graviton Searches

Conclusions/Outlook

Further information can be found at: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

The Standard Model

Standard Model

Motivation for searching for something beyond the SM....

A short History of Extra-Dimensions

- <u>1921-26</u> Kaluza & Klein attempted to unify EM and relativity by adding a dimension to general relativity
 - \rightarrow Compatification \rightarrow Kaluza-Klein towers
- \rightarrow E= nhc/R

(R = ED radius, n = integer)

- <u>1998</u>: Large ED Arkani-Hamed, Dimopoulis, Dvali)
- <u>1999</u>: Warped ED: Randall Sundrum
- Since then: many more....

 Birmingham, Nov 2013

 Tracey Berry

Large Hadron Collider (LHC)

proton – proton collisions @ $\sqrt{s} = 7, 8$ Future: 13-14 TeV

6

The Large Hadron Collider (LHC)

pp collisions at $\sqrt{s}=7$ TeV in 2011 and $\sqrt{s}=8$ TeV in 2012

A Toroidal LHC ApparatuS

Total weight	7000 t
Overall diameter	25 m
Barrel toroid length	26 m
End-cap end-wall chamber span	46 m
Magnetic field	2 Tesla

Compact Muon Solenoid

Detector subsystems are designed to measure: energy and momentum of γ ,e, μ , jets, missing E_T up to a few TeV

8

Magnetic field

4 Tesla

ATLAS

9

Largest volume particle detector ever constructed!

Overall diameter 25 m long 46 m **Building 40 at CERN** 6 storeys high ATLAS is half the size of Notre Dame Cathedral 9

Magnets: solenoid (Inner Detector) 2T, air-core toroids (Muon Spectrometer) ~0.5T

- Basic Idea: Gravity becomes strong at the TeV-scale
 - \rightarrow solves the hierarchy Problem
- Apply Gauss's Law in 3+n dimensions:
 - For r<< R: V(r) ~ 1/ r^(n+1)</p>

Gravity gets stronger at small distances!

For r>> R: V(r) = 1/r

(ED not visible at large distances)

 n=1 and 2: excluded from macroscopic gravity

$M_{Pl}^2 \sim M_D^{(2+n)} R^n$

Model parameters are: • n = number of ED • M_D = Planck mass in the 4+n dimensions

$$V(r) \sim \frac{m_1 m_2}{M_{Pl(4+n)}^{n+2}} \frac{1}{r^{n+1}}, (r \ll R)$$

Typical size of ED For M_D ~ TeV:

n	R
1	$\sim 1 \text{ mpc}$
2	~ 1 mm
4	~ 1 pm
6	~ 1 fm

Large Extra-Dimensions (ADD)

- KK tower of excited gravitons:
 - Large ED means small ΔE between state: $\Delta E \sim 1/R$
 - \rightarrow Experimentally : continuum
- At ATLAS: 3 ways to look for it:
 - \rightarrow Deviation in Dilepton, diphoton or dijet spectrum caused by continuum
 - → Monojet/monophoton: graviton production recoiling against quark or photon
 - → Blackholes (not covered here)

Birmingham, Nov 2013

Tracey Berry 2010: arxiv:1106.5327, Phys.Lett.B 705 (2011) 294-312,(33 pb⁻¹)¹⁵

Large ED (ADD): monophoton+Et miss

- ADD: Graviton Emission: Produce photon + G
- G disappears into the extra dimension
- Signature: single (high pT) photon and missing E_T^{Miss}

In Search Region

- Total Bkgd: 137±18 (stat) ±9 (syst)
- Data 116

improves previous limits from LEP and Tevatron

arXiv: 1209.4625,PRL 110, 011802 (2013), 4.6 pb-1 (2011) Birmingham, Nov 2013 Tracey Berry

>Virtual Graviton Emission

Virtual Graviton exchange

Signature: deviations in σ and asymmetries of SM processes e.g. qq \rightarrow I⁺I⁻, $\gamma \gamma$ & new processes e.g. gg \rightarrow I⁺I⁻

LED (ADD): dilepton

20

Virtual Graviton Exchange $pp \rightarrow G^{KK} \rightarrow \mu \mu / ee$

- Final state: 2 opposite sign μ or 2 e
- Search for excess above SM expectations in high invariant mass region
- Optimized Search Region $m_{\parallel} > 1300 \text{ GeV}$

Main Backgrounds

•SM Z/ γ Drell-Yan (irreducible, primary background)

•Produced using Pythia 6.421 with MRST2007 LO*

•Interference with heavy resonances is small and ignored

•NNLO K-factors generated using PHOZPR with MSTW2008

•QCD (electron channel only)

•estimated using "reversed electron identification" and others

•Top quark pair production

•Produced using MC@NLO 3.41

•Predicted to approximate-NNLO with 10% uncert.

•SM W+jets (electron channel only)

•Produced using Alpgen

•cross-section rescaled to inclusive NNLO calculation of FEWZ

•Dibosons (WW, WZ, ZZ)

•Produced using Herwig 6.510 with MRST2007 LO*

•NLO cross-sections calculated using MCFM

•Cosmic Rays (negligible contribution to muon channel)

LED (ADD): dilepton

Events

- Backgrounds are normalised to data in Z-peak region (70 - 110 GeV)
- Optimized Search Region m_{vv} > 1300 GeV

Process	ee	$\mu\mu$
DY	0.89 ± 0.21	0.54 ± 0.16
tī	< 0.01	< 0.01
Diboson	0.075 ± 0.005	0.059 ± 0.010
Multijet/W+jets	0.16 ± 0.20	
Total background	1.13 ± 0.29	0.60 ± 0.16
$M_{\rm S} = 1.5 \text{ TeV}$	72 ± 5	47 ± 9
$M_{\rm S} = 2.0 \text{ TeV}$	40.2 ± 2.6	22 ± 4
$M_{\rm S} = 2.5 \text{ TeV}$	11.7 ± 0.9	6.3 ± 1.1
$M_{\rm S} = 3.0 \text{ TeV}$	4.2 ± 0.4	2.3 ± 0.4
Data	2	0

Birmingham, Nov 2013

Highest Mass µµ event

$$M_{\mu\mu}$$
=1.25 TeV

 P_T of 648 GeV (η , ϕ) = (-0.75, 0.49)

 P_T of 583 GeV (η , ϕ) =(-0.36, -2.60)

Highest mass ee event

Limits Setting and Errors

 Because normalize MC to data in Z peak region (70 < m_{ll} < 110 GeV) luminosity and other mass independent systematics cancel between Z and Z'/G

TABLE III. Summary of systematic uncertainties in the expected numbers of events for a dilepton mass of 1 TeV (2 TeV). NA indicates that the uncertainty is not applicable.

Source	e	e.	$\mu\mu$		
	Signal	Background	Signal	Background NA	
Normalization	5% (5%)	NA	5% (5%)		
$PDFs/\alpha_S/scale$	NA	7% (20%)	NA	7% (20%)	
Electroweak k -factor	NA	2.3% (4.5%)	NA	2.3% (4.5%)	
Efficiency	1.0% (2.0%)	1.0% (2.0%)	3.0% (6.0%)	3.0% (6.0%)	
Scale/Resolution	1.2% (2.4%)	1.2% (2.4%)	1.2% (12%)	1.2% (12%)	
Multi-jets/W+jets background	NA	12% (26%)	NÀ	< 0.1%	
Total	5%~(6%)	14% (33%)	6% (14%)	8% (25%)	

LED (ADD) diphoton

- Optimized Search Region $m_{\gamma\gamma} > 1100 \text{ GeV}$

Main Backgrounds

Irreducible Background SM γγ production

•simulated with pythia (v6.424) and MRST2007LOMOD PDFs •pythia events reweighted as a function of $m_{\gamma\gamma}$ to the differential cross section predicted by the NLO calculation of diphox (v 1.3.2).

Reducible Background

- γ + (misidentified) jet
- jet + jet

Shape determined using data-driven background enriched control samples & extrapolated to high mass

• **Total Background**: normalised to data 140 Gev $< m\gamma\gamma < 400$ GeV

Diphoton Distributions

Uncertainties

- Limits obtained using a Bayesian approach, with a flat prior on the signal cross-section.
- Systematic uncertainties incorporated as Gaussian nuisance parameters and integrated over

Source of Uncertainty	Signal Uncertainty (%)
Integrated Luminosity	3.7
MC Statistics	1.0
Bunch Crossing Identification	1.0
Photon Trigger	2.0
Pileup	2.5
Photon Efficiency and ID	4.3
Total Signal Uncertainty	6.7

arXiv:1112.2194,CERN-PH-EP-2011-189, submitted to PRL

ADD Limits

• Search Region $m_{\gamma\gamma} > 1100 \text{ GeV}$

Parameter	Central value	Relative Uncertainty
Integrated Luminosity	$2.12 f b^{-1}$	3.7%
Number of data events	2	
Number of predicted bkgnd events	1.18 ± 0.24	20%

Limits

- Observed (expected) 95 % CL upper limit on σ = 2.53 (1.95) fb
- Translated into 95 % CL limits on the parameter on η and M_{S} :

$$\sigma'_{tot} = \sigma'_{SM} + \eta_G \sigma'_{int} + \eta_G^2 \sigma'_G. \qquad \eta = \frac{\lambda}{M_s^4}$$

k-factor	GRW	Hey	Hewett		HLZ			
Value		Pos	Neg	n = 3	n = 4	n = 5	n = 6	n = 7
1	2.67	2.39	2.13	3.18	2.67	2.42	2.25	2.13
1.7	2.95	2.64	2.26	3.51	2.95	2.67	2.48	2.35

Dilepton+Diphoton

$$\sigma'_{tot} = \sigma'_{SM} + \eta_G \sigma'_{int} + \eta_G^2 \sigma'_G. \qquad \eta = \frac{F}{M_s^4}$$

Channel	Prior	GRW	Hewett	n=3	n=4	$\frac{\text{HLZ}}{n=5}$	n=6	n=7	$\mathcal{F} = 1, \; (GRW)$
ee	$1/M_{ m S}^4$	2.95	2.63	3.51	2.95	2.66	2.48	2.34	
	$1/M_{ m S}^8$	2.82	2.67	3.08	2.82	2.68	2.59	2.52	$\left(1_{log}\left(M_{S}^{2}\right)\right)$ $m=0$
μμ	$1/M_{\rm S}^4$	3.07	2.74	3.65	3.07	2.77	2.58	2.44	$\mathcal{F} = \begin{cases} \log\left(\frac{1}{\delta}\right) & n = 2\\ 2 & (\text{HLZ}) \end{cases}$
	$1/M_{\rm S}^8$	2.82	2.67	3.08	2.82	2.68	2.59	2.52	$\left(\begin{array}{cc}\frac{2}{n-2} & n>2\end{array}\right)$
$ee + \mu\mu$	$1/M_{ m S}^4$	3.27	2.92	3.88	3.27	2.95	2.75	2.60	
	$1/M_{ m S}^8$	3.09	2.92	3.37	3.09	2 94	2.84	2.76	$\mathcal{F} = \pm \frac{2}{-}$. (Hewett)
$ee + \mu\mu$	$1/M_{\rm S}^4$	3.51	3.14	4.18	3.51	3.17	2.95	2.79	π',
$+\gamma\gamma$	$1/M_{ m S}^8$	3.39	3.20	3.69	3.39	3.22	3.11	3.02	

Tracey Berry

Model

Dileptons Diphotons (Dijets) ZZ

Randall-Sundrum (RS1)

 5-D space-time bound by two 3+1D branes with SM particles localized on one and gravity on the other

k is space-time curvature in ED

 Only G propagate in bulk resulting ir massive spin-2 Kaluza-Klein (KK) excitations

Birmingham, Nov 2013

The model can be parameterised in terms of the mass of the lightest excitation (m_G) and the coupling k/M_{Pl}

•Width of resonance is proportional to m_G and to $(k/M_{Pl})^2$

Model

Tracey Berry

RS1: Dilepton

Tracey Berry

8TeV

- Select events with two leptons of same flavor (ee, μμ)
- Opposite sign for μμ
- No opposite charge requirement for ee – to minimize impact of mis-ID
- Signature: search for resonance at high invariant mass region
- Backgrounds are normalised to data in Z-peak region (70 - 110 GeV)
- Fit templates to obtain limits

Highest mass ee Event

 P_{T} of 588 GeV (η) = (1.25)

P_T of 584 GeV (η) =(-0.29)

Highest mass µµ Event

$$M_{\mu\mu}$$
=1.844 TeV

P_T of 653 GeV (η) = (0.99)

 P_{T} of 646 GeV (η , ϕ) =(-0.85)

Systematic Uncertainties

Table 3: Summary of systematic uncertainties on the expected numbers of events at $m_{\ell\ell} = 2$ TeV. NA indicates that the uncertainty is not applicable, and "-" denotes a negligible entry (i.e. < 3%). Numbers in parentheses on the resolution and total uncertainty lines correspond to the loose dimuon selection.

Source	Di	electrons	D	imuons
	Signal	Background	Signal	Background
Normalization	5%	NA	5%	NA
PDF variation	NA	15%	NA	15%
PDF choice	NA	17%	NA	17%
Scale	NA		NA	
α _s	NA	4%	NA	4%
Electroweak corrections	NA	3%	NA	3%
Photon-induced corrections	NA	4%	NA	4%
Efficiency		-	6%	6%
Resolution	19 1 9	22		3% (7%)
W + jet and multi-jet background	NA	9%	NA	
Diboson and ttbar extrapolation	NA	5%	NA	4%
Total	5%	26%	8%	25% (26%)

 e^+e^- , $\mu^+\mu^-$ and combined 95% C.L. mass limits on graviton (G^{*}).

N			
k/M _{pl} =0.1	$G^* \rightarrow e^+ e^-$	$G^* \rightarrow \mu^+ \mu^-$	$G^* \to \ell^+ \ell^-$
Observed mass limit [TeV]	2.40	2.10	2.47
Expected mass limit [TeV]	2.40	2.17	2.47

ATLAS sets best limits on this model in this channel!

Birmingham, Nov 2013

Model

Tracey Berry

Tracey Berry

- Look for resonance above phenomenological fit of the data: $f(x) = p_1(1-x)^{p_2} x^{p_3 + p_4 \ln x}$

 $x \equiv m_{jj} / \sqrt{s}$

Not presently translated into limits on RS or QBH

95 % C.L. Limits Obs Mass Excl [1.20, 1.58] Exp. Mass Excl: [1.20, 1.43]

Model

Bulk RS: $G^* \rightarrow ZZ \rightarrow IIII$

with Four Charged Leptons

Tracey Berry

- Signal: Four Charged Leptons
- 2 searches performed in this decay channel ZZ & H⁺⁺ H⁻⁻
- Events with two identified $Z \rightarrow \ell^+ \ell^-$ decays
- For $M_{\ell\ell\ell\ell}$ >300 GeV: from SM expect 1.9^{+1.0}_{-0.1} (stat) ^{+0.8}_{-0.1} (syst) events
- Observe: 3 events
- 95% C.L. Limit σ(production of ZZ from highmass sources) <0.9 pb in the fiducial region
- For RS model: limits on σ(pp→G)×BF(G→ZZ) of 2.6-3.3 pb depending on the resonance mass
- For a coupling of $k/M_{pl}=0.1$, the median expected 95% C.L. lower limit $M_G>575$ GeV equal to the observed limit

Conclusion

- Unfortunately, evidence for Gravitons have not yet been observed
- However, the 13/14 TeV run will open another window of opportunity for discovering BSM physics!
- Experimental challenges as we enter further the Multi-TeV world:
 - \rightarrow TeV leptons
 - \rightarrow Increased pile-up
- Open up new opportunities to explore un-resolved questions gravity, dark matter....

Thanks for inviting me!