

ATLAS Tracker Upgrade @ HL-LHC

Birmingham Seminar 8/3/16 Prof. Tony Weidberg (Oxford)

- Physics Motivation
- HL-LHC & Technical Challenges
- Trigger
- ITk
	- Challenges
	- Strips
	- Pixels
- Outlook

Ladies and gentlemen, I think we've got it!

Discovery of a Higgs-like particle coupling to Birmingham 8/3/17 ATLAS UPGRADE SONS

Why More Luminosity?

• **LHC is parton-parton (mainly gg) collider.**

- **More luminosity = more collisions at high partonparton CMS energy** √**s.**
- **More events for precision physics.**
- **Larger window for searches.**

Higgs Physics

- **We know it is a boson, spin =0.**
- **Does it couple to mass as expected?** $-$ SM predicts all BR now that we know m_H .
- **VV scattering at high energy?**
	- **Does Higgs mechanism prevent unitarity violation at high energy?**
- **Higgs self coupling**

– Required for SSB and \rightarrow HH production.

 λ or (g/2v)^{1/2}

 10^{-7}

 10^{-2}

CMS

Preliminarv

- 68% CL

95% CL

2 3 4 5

Higgs Coupling

ATLAS Simulation Preliminary \sqrt{s} = 14 TeV: $\int Ldt$ = 300 fb⁻¹; $\int Ldt$ = 3000 fb⁻¹

- **Run 1, precise results only for** g**/W/Z, evidence for** t
- **HL-LHC: 3000 fb-1**

19.7 fb⁻¹ (8 TeV) + 5.1 fb¹ (7 TeV)

• **Many improvements including** measure BR(H→µµ)

Birmingham 8/3/17 ATLAS Upgrade 6

10 20

100 200

mass (GeV)

VV Scattering

- **WW and ZZ**
- **ZZ good mass resolution sensitivity to resonances**
- **Need 3000 fb-1 for good sensitivity.**

Higgs Self Coupling

- **Higgs potential:**
- After SSB \rightarrow H³ term \rightarrow **HH production.**
- **Destructive interference in SM**
- \cdot **Small** σ \sim 40 fb
- **Different channels, bbbb, bb**gg**, bbWW etc.**
- **Needs HL-LHC.**

$$
\mathbf{W} \text{ etc.}
$$

$$
L = -\frac{1}{4}\lambda^2\phi^4 + \frac{1}{2}\mu^2\phi^2
$$

$$
\phi = \varphi_0 + H
$$

New Dark Age

- **"What we know is a drop, what we don't know is an ocean."**
- **New dark age, we understand 5% of the energy in the Universe.**
- **Positive spin: lots for physicists to discover!**

SUSY & Exotics

- **Hierarchy problem still exists**
	- **Why M^H << M(GUT) or M(Planck)?**
	- **Natural explanation requires new physics @ TEV scale.**
- **Astrophysical evidence for dark matter very strong**
	- **Search in events with MET**
- **SUSY still an option for solving both these problems**
- **Extend reach for SUSY and exotics with HL-LHC.**

HL-LHC

- **Many improvements for L=7 10³⁴ cm-2 s -1 very high pile up <**m**>=200.**
- New superconducting triplets \rightarrow low β^* . Needs Nb₃Sn (cf **NbTi in LHC).**
- **Injector upgrades**
- **Crab cavities**
- **Luminosity Levelling**
- **High availability**
- Aim $\int Ldt = 3000 fb^{-1}$

• [HL-LHC, Rossi & Bruning, ECFA 2014](https://indico.cern.ch/event/315626/contributions/729425/attachments/605623/833456/High_Luminosity_LHC_ECFA_V0.pdf) **a** Aim $\int Ldt = 3000 fb^{-1}$
 Phink Indeed Anti-LHC, Rossi & Bruning, ECFA 2014
 Birmingham 8/3/17 ATLAS Upgrade 11

HL-LHC goal could be reached in 2036

- **Challenges for tracking detectors:**
	- **Radiation damage**
	- **Hit occupancy**
	- **Data rates.**
- **Aim to maintain performance of current detector.**
	- **Higher trigger rates but keep thresholds low.**
	- **More granular detector elements to keep low occupancy.**
	- **More rad-hard technology.**
- **Improvements:**
	- **Extend** h **coverage**
	- **Lower radiation length for tracker**

- **Importance of keeping low thresholds on leptons.**
- **Different options considered for trigger:**
	- **1 MHz full readout**
	- **L0/L1 using L1track to reduce rate before full readout.**
	- **All options higher data rates.**

Trigger

Material Budget

- **Main limitation in performance of current ID**
	- **Degrades track resolution (multiple scattering)**
	- **Degrades EM calo resolution for electrons**
	- **Decreases efficiency for electrons and pions.**
	- $-$ **Need to build thinner (X₀ &** $\lambda_{\mathbf{0}}$) detector.
- **ITk** goal: <1.5 X_0

Material Budget

- **Main limitation in performance of current ID**
	- **Degrades track resolution (multiple scattering)**
	- **Degrades EM calo resolution for electrons**
	- **Decreases efficiency for electrons and pions.**
	- **Need to build thinner (X⁰ &** $\lambda_{\mathbf{0}}$) detector.
- **ITk** goal: <1.5 X_0

• **Ionizing dose** – **Strips <500 kGy (Si)**

- **Hadron Fluence**
	- **Strips < 1.2 10¹⁵ neq cm-2**

¼ detector in R-z plane

ITk Layout

- **Layout still evolving but all silicon tracker with extended** h **coverage.**
- **Pixels (strips) at low (high) radius.**
- **Very Forward pixels**.

- **Some key components**
	- **Sensors**
	- **ASICs**
	- **Optoelectronics**
- **Build up systems**
	- **Modules**
	- **Staves/petals**
	- **Structures**
- **System Issues**
	- **Powering**
	- **Reliability**

Si Radiation damage

- **High energy particles complex lattice defects**
- **Mid-band states increase leakage current**

$$
I(T) = AT^2 \exp\left(\frac{-E_g}{2k_B T}\right)
$$

- **Shot noise**
- **→ Thermal runaway: I increases T(Si) > 1 > increases T**
- **Cool Si T=-25°C**
- **Acceptor concentration N^a increases higher depletion thickness d of Si Birmingham 8/3/17**
 Birmingham 8/3/17
 Birmingham 2ε $V_{den} = \frac{\tilde{N_a} ed^2}{2}$ $\frac{d}{d}$ $\frac{d}{d}$ $\frac{d}{d}$ $\frac{d}{d}$
- **Charge trapping signal loss.**

Silicon Sensor

- *n-***in***-p* **(SCT** *p-in-n***)**
- **Signal (mainly) from electrons (faster than holes)**
- **Depletes from junction can operate underdepleted.**
- **Cheaper than** *n-***in***-n.*
- **Sufficient signal for maximum strip fluence.**

ABC130* ASIC

- **Keep SCT binary architecture: discriminator per channel.**
- **Many improvements**
	- **Allow for L0/L1 trigger, new deep buffer.**
	- **130 nm technology (more rad-hard).**

HCC130* ASIC

- **Star connections from ABC130* allows higher data rates (cf Daisy Chain).**
- **Allows full readout at 1 MHz.**
- **Higher rates possible with L0/L1.**

Radiation Effects on ASICs

- **Large increase in digital current with dose (TID).**
- **Electrical & Thermal problem.**
- **"Well-known" effect in 130 nm process.**
- **Very rate and temperature dependent.**
- **Optimise temperature scenario for early running to minimise effect.**

2.25 Mrad/hr -15C

Optical Links

VL+ 10 Gbps radhard optical links

10 Gbps lpGBT ASIC

Very small form factor optical transceivers

Radiation Effect VCSELs

- **Vertical Cavity Surface Emitting Lasers**
	- data transfer detector \rightarrow **counting room**
- **Radiation damage threshold shift**
- **Measure and model annealing** \rightarrow predict damage.
- **Small threshold shifts after annealing.**

Fractional threshold current increase

Strip Barrel Module

Schematic

Thermo-mechanical module

 \cdot 10 ABC130* + HCC*/hybrid

• Glue modules directly to mechanical support.

- **Carbon fibre sandwich, provides rigid, lightweight 0 CTE support structure.**
- Evaporative CO₂ cooling.

• Barrel staves

- Module rotated \rightarrow stereo reconstruction
- **Opposite stereo angle for modules on bottom of stave.**
- **Services:**
	- **Bus tape provides LV/HV and data transmission to/from EoS**
	- **Embedded cooling tubes**
	- **EoS: optoelectronics: data to/from counting room.**

Barrel Stave

- **Schematic**
- Tape co-cured to carbon

• Cross-section

Cu tracks $100 \mu m$ track and gap

3 layer carbon fibres (0°,90°,0°)

Birmingham 8/3/17 ATLAS Upgrade 30

Data Transmission

- **Data transmission 1.4m @ 640 Mbps point to point.**
- **Constraints: space and thickness.**
- **Design optimisation**
	- $-$ Z₀=100 Ω (reflections)
	- **Low loss and dispersion.**
	- **Use FEA:**
		- \cdot **E** and **B** fields \rightarrow **C** and **L**.
		- **Attenuation and dispersion**
		- **Signal integrity, eye-diagram**

Differential pair: E field

$$
Z_0 = \sqrt{L/C}
$$

Signal Integrity

- **Data @ 640 Mbps:**
	- **Dispersion, but clean eye @640 Mbps**
- **Distribute Timing, Trigger & Control (TTC) hybrids on FE modules @ 160 Mbps.**
- **28 capacitive loads reflections.**
	- **T~1/(1+**w**CZ⁰) 2**
- Split TTC into 4 groups \rightarrow **improves signal integrity.**
- **Strong reflections but clean eye for worst case 10 loads.**

Module Powering

- **Can't afford one cable per module.**
	- $-$ Too high current \rightarrow IR drop \rightarrow cables too big!

DC-DC Powering

- **Challenges**
	- **Need coil to operate in B field.**
	- **Radiation tolerance**
	- **EMI**
- **Prototypes used to demonstrate good system noise performance with "stavelet" (4 modules).**
- **UpFEAST: rad-hard versions for HL-LHC being developed by CERN.** *cern.ch/project-dcdc*

Reliability

• What could possibly go wrong?

How can we ensure we have a reliable system?

Reliable Designs

- **Replaceabilbity**
	- **Not feasible for ITk strips on-detector components.**
- **Redundancy**
	- **Q: when should you use redundancy?**
	- **A: safety or mission critical.**
	- **Redundancy in # of layers. Validate design assuming 10% dead.**
- **Reliable components**

Reliable Components

- **Conservative design**
- **QC on all components**
- **QA on batch basis**
- **QA: more extreme stress test than anticipated in operation. e.g.**
	- **Elevated temperature and/or voltage**
	- **Rapid thermal cycling**
	- **Vibration**
- **Failure analysis on failed components in R&D improve reliability.**
- **Check quality on batch basis in production.**

- **Hybrid Pixels**
- **Challenges**
	- **Radiation hardness**
	- **Higher granularity**
	- **Higher data rates**
- **Solutions**
	- **Thin sensors and larger fields**
	- **New ASIC 65nm**
	- **High speed electrical readout**

Hybrid Pixel

- **Good for HL-LHC radiation levels**
- *n-in-p* **cheaper** *n-in-n*
- Thinner \rightarrow improves **efficiency @ lower HV.**
- **Reduce inactive regions**
- **Avoid HV breakdown, even with higher HV**

Pixel Radiation Damage

- **High efficiency after 2 10¹⁶ n cm-2 for very large HV**
- **Charge amplification?**
- **Main effect is charge trapping thinner sensors ~ 100 um**

• **3D**

- **Inner layer chip data rates ~ 100 Gbps/chip.**
	- **Store data on chip, readout triggered events rate 2-4 Gbps**
	- **Improved architecture for pixel chips, RD53. Radhard 65 nm CMOS**
	- $-$ **Electrical readout over few metres** \rightarrow **optical transceivers. Challenging!**
- **Powering**
	- **− DCDC converters too bulky → use serial powering**.

Outlook

- **Physics case for HL-LHC**
- **ITk strips: TDR, final R&D, pre-production in 2019**
- **ITk pixels: more R&D, TDR 2017 (smaller detector, shorter production time)**
- **Questions?**

BACKUP

Birmingham 8/3/17 ATLAS Upgrade 43

S/N at end of life

Safety factor of 1.5 for fluence.

Is there still the need for ELTs and guard rings?

The leakage current is the sum of different mechanisms involving:

- the creation/trapping of charge (by radiation)
- its passivation/de-trapping (by thermal excitation) ۰ These phenomena are Dose Rate and Temperature dependent!
- F.Faccio, G.Cervelli, "Radiation-induced edge effects in deep submicron CMOS transistors", IEEE Trans. Nucl. Science, Vol.52, No.6, December 2005, pp.2413-2420
- F.Faccio et al., "Total ionizing dose effects in shallow trench isolation oxides", Microelectronics Reliability 48 (2008) 1000-1007

Source-Drain leakage is eliminated by the Enclosed Layout Transistor (ELT)...

Inter-diffusion leakage is eliminated by p+ guard rings...

From Thin Planar to 3d sensors

Common advantages: Short drift path, Higher fields at same V_{bias}

CMOS

- Fall forward options being considered
	- CMOS strip sensors as replacement for strip detectors
	- Full MAPS for outer pixel layer(s)

CMOS Sensors

CMOS Imagers

- **Cheap**
- Diffusion \rightarrow too slow for LHC
- Not rad-hard

HV/HR

- High voltage or higher resistivity \rightarrow larger depletion depth
- Fast signal
- Radiation-hard?

CHESS1

 0.6

 0.5

 0.4

Velocity

arb

Bias = $120V$

 $\Phi = 0$

 $\Phi = 2e14$

- Radiation damage studies
- Measure depletion region with edge TCT

 $\Phi = 5e14$ 0.3 $\Phi = 1e15$ $\Phi = 2e15$ 0.2 $\Phi = 5e15$ $\Phi = 1e16$ 0.1 -0.1^{+}_{0} 20 60 80 100 120 40

Scan laser spot vs depth, measure I

• Depletion depth increases at first Sufficiently radiation hard for outer layers.

140

 y (μ m)

Further Information

- ECFA 2016 [talks](https://indico.cern.ch/event/524795/timetable/)
	- [ATLAS Upgrade](https://indico.cern.ch/event/524795/contributions/2235126/attachments/1346960/2031430/StatusAndPlans.pdf)
	- ATLAS strip tracker: Ingrid Gregor
	- Pixel tracker: Joern Grosse-Knetter
- ATLAS ITk strip TDR