Spacetime curvature and Higgs stability during and after inflation

arXiv:1407.3141 (PRL 113, 211102) arXiv:1506.04065

Tommi Markkanen¹² Matti Herranen³ Sami Nurmi⁴ Arttu Rajantie²

¹King's College London Imperial College London Niels Bohr International Academy, Copenhagen University of Jyväskylä

Birmingham October 2015

[Higgs stability during inflation \(QFT in Minkowski\)](#page-6-0)

[Higgs stability after inflation](#page-20-0)

[Higgs stability during inflation \(QFT in Minkowski\)](#page-6-0)

[Higgs stability after inflation](#page-20-0)

Standard Model Higgs potential

 \bullet *V*(ϕ) has a minimum at $\phi = v$

- Behaviour very sensitive \bullet to M_h and M_t
- A vacuum at $\phi \neq \nu$ incompatible with observations

New physics needed to stabilize the vacuum?

Current status

Higgs mass *M^h* in GeV

- *Meta* stable at 99% CL [1]
	- Lifetime much longer than $13.8 \cdot 10^9$ years

• Is this also true for the early Universe?

[1] Buttazzo et al. (2013); Spencer-Smith (2014); Bednyakov, Kniehl, Pikelner, & Veretin (2015)

Inflation and the Standard Model

- We assume the SM to be valid at high energies
	- Potential peaks at $\overline{\Lambda}_{\text{max}}$
- Assuming also an early stage of exponential cosmological expansion (inflation) with a scale *H*
	- Important if $\overline{\Lambda}_{\text{max}} \leq H$
	- State of the art calculations [2]: $\overline{\Lambda}_{\text{max}} \sim 10^{11} \text{GeV}$

2 [Higgs stability during inflation \(QFT in Minkowski\)](#page-6-0)

[Higgs stability after inflation](#page-20-0)

- Inflation induces fluctuations to the Higgs field ∆φ ∼ *H*
- Fluctuations may be treated as stochastic variables [3]
- \Rightarrow We can assign a probability density $P(\phi)$ to ϕ
	- The essential input for $P(\phi)$ is $\bar{V}_{\text{eff}}(\phi)$, the *effective potential*

1-loop Effective potential

- Derivation of $V_{\text{eff}}(\phi)$ is a standard calculation [4]
- A theory with a massive self-interacting scalar field

$$
V_{\text{eff}}(\phi) = \underbrace{\frac{1}{2}m^2\phi^2 + \frac{\lambda}{4!}\phi^4}_{\text{classical}}
$$

- µ is the *renormalization scale*
- Similarly one may derive the potential for the SM Higgs

[4] Coleman & Weinberg (1972)

Effective potential for the SM Higgs

\n
$$
V_{\text{eff}}(\phi) = -\frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda\phi^4 + \sum_{i=1}^5 \frac{n_i}{64\pi^2}M_i^4(\phi)\left[\log\frac{M_i^2(\phi)}{\mu^2} - c_i\right]
$$
\n
$$
;M_i^2(\phi) = \kappa_i\phi^2 - \kappa_i'
$$

 \bullet Explicit μ dependence?

Callan-Symanzik equation for massless $\lambda \phi^4$ theory

- The effective potential is renormalized at a scale μ $\lambda_0 \rightarrow \lambda_R + \delta \lambda$, $\phi \rightarrow (1 + \delta Z) \phi$
- \bullet However, the physical result must not depend on μ
- We can impose this by demanding

$$
\frac{d}{d\mu}V_{\rm eff}(\phi)=0
$$

- This can be used to improve the perturbative result
- Leads to *running parameters*, e.g. $\lambda(\mu)$
- Same can be done for the SM

SM running (1-loop)

• For large ϕ , the potential is dominated by the quartic term $\lambda \phi^4$

$$
V(\phi) \sim \frac{\lambda(\mu)}{4} \phi^4
$$

Scale independence V_{eff}

• One can easily show that for the SM to 1-loop [5]

$$
\frac{d}{d\mu}\bar{V}_{\rm eff}=0+\mathcal{O}(\hbar^2)
$$

• We must choose μ to make the higher order terms as small as possible [6]

The optimal choice
\n
$$
\mu \sim \phi
$$
\n
$$
\Rightarrow \text{ No large logarithms}
$$

Now we have a well-defined potential with no unknown parameters!

Generalization to curved space

<2->

- It is possible to include (classical) gravity in the quantum calculation, $R = 12H^2$
- ⇒ The SM includes a non-minimal ξ-term, ∼ ξ*R*φ 2
	- Always generated by running in curved space
	- Virtually unbounded by the LHC, ξ_{EW} < 10^{15} [7]
	- Curvature induces running of the constants [8]
	- Leading potential contributions:

Flat space, $\phi \gg m$ $V_{\text{eff}}(\phi) \approx \frac{\lambda(\phi)}{4}$ $\frac{(\varphi)}{4} \phi^4$

Curved space, $H \gg \phi \gg m$
$V_{\text{eff}}(\phi) \approx \frac{\lambda(H)}{4} \phi^4 + \frac{\xi(H)}{2} R \phi^2$

[7] Atkins & Calmet (2012) Zurek, Kearney & Yoo (2015); TM (2014)

1-loop Effective potential in curved space

$$
V_{\text{eff}}(\phi, R) = -\frac{1}{2}m^2(t)\phi(t)^2 + \frac{1}{2}\xi(t)R\phi(t)^2 + \frac{1}{4}\lambda(t)\phi(t)^4
$$

+
$$
\sum_{i=1}^{9} \frac{n_i}{64\pi^2}M_i^4(t) \left[\log \frac{|M_i^2(t)|}{\mu^2(t)} - c_i \right] \qquad ; M_i^2(t) = \kappa_i \phi(t)^2 - \kappa_i' + \theta_i R
$$

Stability (Flat)

- **•** For large H ($\sim 10^3 \overline{\Lambda}_{\text{max}}$), the SM is not stable [9]
- Coupling the Higgs to an inflaton $\sim \Phi^2 \phi^2 \Rightarrow$ stable [10]

How does including curvature change this?

[9] Kobakhidze & Spencer-Smith (2014); Hook et. al. (2014); Fairbairn & Hogan (2014); Enqvist, Meriniemi & Nurmi (2014); Zurek, Kearney & Yoo (2015) [10] Lebedev (2012); Lebedev & Westphal (2013)

Stability (curved) I

• First attempt, set ξ_{EW} = 0 and $H \sim 10^3 \overline{\Lambda}_{\text{max}}$

- For large *H* one has $\lambda(\mu) < 0$, since $\mu^2 = \phi^2 + R$
- **•** ξ Can become positive or negative depending on ξ_{EW}

Stability results (curved space) II

- For large H one has $\lambda(\mu) < 0,$ since $\mu^2 = \phi^2 + R$
- $\bullet \in \mathcal{E}$ Can become positive or negative depending on ξ_{EW}

Stability results (curved space) III

Stability results (curved space) IV

• The (in)stability of the potential is determined by ξ_{EW}

[Introduction](#page-2-0)

[Higgs stability during inflation \(QFT in Minkowski\)](#page-6-0)

3 [Higgs stability after inflation](#page-20-0)

[Conclusions](#page-28-0)

Reheating

- \bullet Equation of state $w = p/\rho$ changes, $w_{\text{inf}} = -1 \rightarrow w_{\text{reh}}$
- Energy of inflation is transferred to SM degrees of freedom, which (eventually) thermalize $T = 0 \rightarrow T_{\text{reh}}$
- The crucial moment is right after inflation, but *before* thermalization
- A very complicated and dynamical process [12] Reheating ⇔ *Pre*heating

• The Higgs always feels the dynamics of reheating (even without a direct coupling to the inflaton)

[12] Kofman, Linde & Starobinsky (1997)

Reheating

• During reheating the inflaton oscillates $(p = w\rho)$

• The inflaton influences the Higgs via gravity

• Two effects:

- A rapid drop in *w*, *on average*
- Oscillations in the complete solution

Oscillating mass (example)

Oscillating mass for Higgs $m_{\text{eff}}^2 \sim g \Phi_0^2 \cos^2(t M_{\text{inf}})$

Parametric resonance via the Mathieu equation

$$
\frac{d^2f(z)}{dz^2} + \left[A_{\mathbf{k}} - 2q\cos(2z)\right]f(z) = 0, \qquad z = tM_{\text{inf}}
$$

 \Rightarrow Exponential amplification

• May result in a very large fluctuation [13]

[13] Kofman, Linde & Starobinsky (1997)

Oscillating *R*

• The curvature oscillates during reheating

$$
G_{\mu\nu} = \frac{1}{M_{\text{pl}}^2} T_{\mu\nu} \quad \Rightarrow \quad R = \frac{1}{M_{\text{pl}}^2} \left[4V_{\text{inf}}(\Phi) - \left(\frac{d\Phi}{dt}\right)^2 \right]
$$

Curvature mass ξ*R* oscillates to negative values

- *Tachyonic resonance* [14] \bullet
- **•** Oscillations of *R* via *ξ* provide efficient reheating
	- *Geometric reheating* [15]

[14] Kofman, Dufaux, Felder, Peloso & Podolsky (2006) $[15]$ Bassett & Liberati (1997)

Fluctuations from parametric resonance

- Resonance may give large fluctuations,
	- ⇒ Instabilities ?!
- After *one* oscillation

$$
n \sim \exp\left\{\sqrt{\xi}\right\}
$$

Superhorizon modes, k < *aH* \Rightarrow Δφ² ∼ $\left(\frac{H}{2}\right)$ $\sqrt{2}$ exp $\{\sqrt{\xi}\}$ √

 2π

• Potentially a huge effect, $\Delta \phi \gg \Lambda_I$

• However, the resonance may be shut off by backreaction

ξ

Stability results, reheating

⇒ For *H* & Λ*^I* ∼ 1011GeV, ξ is constrained to be ∼ 1/6

[Introduction](#page-2-0)

[Higgs stability during inflation \(QFT in Minkowski\)](#page-6-0)

[Higgs stability after inflation](#page-20-0)

Conclusions

- For a large *H*, curvature significantly effects the early universe SM instability
	- Running of couplings from *H*
	- A curvature mass $\propto \xi R \phi^2$ is always generated
- Stability during inflation and reheating constrains SM physics, namely for large *H*

$$
\xi \sim 1/6
$$

Thank You!