Spacetime curvature and Higgs stability during and after inflation

arXiv:1407.3141 (PRL 113, 211102) arXiv:1506.04065

Tommi Markkanen¹² Matti Herranen³ Sami Nurmi⁴ Arttu Rajantie²

¹King's College London
 ²Imperial College London
 ³Niels Bohr International Academy, Copenhagen
 ⁴University of Jyväskylä

Birmingham October 2015

Pliggs stability during inflation (QFT in Minkowski)

Higgs stability after inflation

Pliggs stability during inflation (QFT in Minkowski)

Biggs stability after inflation

Standard Model Higgs potential

- Behaviour very sensitive to M_h and M_t
- A vacuum at $\phi \neq v$ incompatible with observations

New physics needed to stabilize the vacuum?

Current status

Higgs mass M_h in GeV

- Meta stable at 99% CL [1]
 - Lifetime much longer than 13.8 · 10⁹ years
- Is this also true for the early Universe ?

[1] Buttazzo et al. (2013); Spencer-Smith (2014); Bednyakov, Kniehl, Pikelner, & Veretin (2015)

Inflation and the Standard Model

- We assume the SM to be valid at high energies
 - Potential peaks at $\overline{\Lambda}_{max}$
- Assuming also an early stage of exponential cosmological expansion (inflation) with a scale *H*
 - Important if $\overline{\Lambda}_{\max} \lesssim H$
 - State of the art calculations [2]: $\overline{\Lambda}_{max} \sim 10^{11} GeV$

Pliggs stability during inflation (QFT in Minkowski)

Biggs stability after inflation

- Inflation induces fluctuations to the Higgs field $\Delta \phi \sim H$
- Fluctuations may be treated as stochastic variables [3]
- $\Rightarrow~$ We can assign a probability density $\textit{P}(\phi)$ to ϕ
 - The essential input for $P(\phi)$ is $\bar{V}_{eff}(\phi)$, the *effective potential*

1-loop Effective potential

- Derivation of $V_{\rm eff}(\phi)$ is a standard calculation [4]
- A theory with a massive self-interacting scalar field

$$V_{\rm eff}(\phi) = \underbrace{\frac{1}{2}m^2\phi^2 + \frac{\lambda}{4!}\phi^4}_{\text{classical}}$$

- μ is the renormalization scale
- Similarly one may derive the potential for the SM Higgs

[4] Coleman & Weinberg (1972)

Effective potential for the SM Higgs

$$V_{\text{eff}}(\phi) = -\frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda\phi^4 + \sum_{i=1}^5 \frac{n_i}{64\pi^2}M_i^4(\phi)\left[\log\frac{M_i^2(\phi)}{\mu^2} - c_i\right]$$

$$; M_i^2(\phi) = \kappa_i\phi^2 - \kappa_i'$$

Φ	i	n _i	κ_i	κ'_i	Ci
W^{\pm}	1	6	$g^{2}/4$	0	5/6
Z^0	2	3	$(g^2+g^{\prime 2})/4$	0	5/6
t	3 -	-12	$y_{t}^{2}/2$	0	3/2
ϕ	4	1	3λ	m^2	3/2
χ_i	5	3	λ	m^2	3/2

• Explicit μ dependence?

Callan-Symanzik equation for massless $\lambda \phi^4$ theory

- The effective potential is renormalized at a scale μ $\lambda_0 \rightarrow \lambda_R + \delta \lambda, \quad \phi \rightarrow (1 + \delta Z) \phi$
- However, the physical result must not depend on μ
- We can impose this by demanding

$$\frac{d}{d\mu}V_{\rm eff}(\phi) = 0$$

- This can be used to improve the perturbative result
- Leads to running parameters, e.g. $\lambda(\mu)$
- Same can be done for the SM

SM running (1-loop)

• For large $\phi,$ the potential is dominated by the quartic term $\lambda\phi^4$

$$V(\phi) \sim \frac{\lambda(\mu)}{4} \phi^4$$

Scale independence $V_{\rm eff}$

• One can easily show that for the SM to 1-loop [5]

1

$$rac{d}{d\mu}ar{V}_{
m eff} = 0 + \mathcal{O}(\hbar^2)$$

 We must choose μ to make the higher order terms as small as possible [6]

The optimal choice
$$\mu \sim \phi$$
 \Rightarrow No large logarithms

 Now we have a well-defined potential with no unknown parameters!

Generalization to curved space

<2->

- It is possible to include (classical) gravity in the quantum calculation, $R = 12H^2$
- \Rightarrow The SM includes a non-minimal ξ -term, $\sim \xi R \phi^2$
 - Always generated by running in curved space
 - Virtually unbounded by the LHC, $\xi_{EW} < 10^{15}$ [7]
 - Curvature induces running of the constants [8]
 - Leading potential contributions:

Flat space, $\phi \gg m$ $V_{
m eff}(\phi) pprox rac{\lambda(\phi)}{4} \phi^4$

Curved space,
$$H \gg \phi \gg m$$

 $V_{\rm eff}(\phi) \approx \frac{\lambda(H)}{4} \phi^4 + \frac{\xi(H)}{2} R \phi^2$

[7] Atkins & Calmet (2012)[8] Zurek, Kearney & Yoo (2015); TM (2014)

1-loop Effective potential in curved space

$$V_{\text{eff}}(\phi, R) = -\frac{1}{2}m^2(t)\phi(t)^2 + \frac{1}{2}\xi(t)R\phi(t)^2 + \frac{1}{4}\lambda(t)\phi(t)^4 + \sum_{i=1}^9 \frac{n_i}{64\pi^2}M_i^4(t)\left[\log\frac{|M_i^2(t)|}{\mu^2(t)} - c_i\right] \qquad ; M_i^2(t) = \kappa_i\phi(t)^2 - \kappa_i' + \theta_i R$$

Φ	i	n_i	κ_i	κ'_i	$ heta_i$	c_i
	1	2	$g^{2}/4$	0	1/12	3/2
W^{\pm}	2	6	$g^{2}/4$	0	-1/6	5/6
	3	-2	$g^{2}/4$	0	-1/6	3/2
	4	1	$(g^2 + g'^2)/4$	0	1/12	3/2
Z^0	5	3	$(g^2 + g'^2)/4$	0	-1/6	5/6
	6	-1	$(g^2 + g'^2)/4$	0	-1/6	3/2
t	7	-12	$y_{t}^{2}/2$	0	1/12	3/2
ϕ	8	1	3λ	m^2	$\xi - 1/6$	3/2
χ_i	9	3	λ	m^2	$\xi - 1/6$	3/2

- For large H (~ $10^{3}\overline{\Lambda}_{max}$), the SM is not stable [9]
- Coupling the Higgs to an inflaton $\sim \Phi^2 \phi^2 \Rightarrow$ stable [10]

How does including curvature change this?

[9] Kobakhidze & Spencer-Smith (2014); Hook et. al. (2014); Fairbairn & Hogan (2014);
Enqvist, Meriniemi & Nurmi (2014); Zurek, Kearney & Yoo (2015)
[10] Lebedev (2012); Lebedev & Westphal (2013)

Stability (curved) I

• First attempt, set $\xi_{\rm EW} = 0$ and $H \sim 10^3 \overline{\Lambda}_{\rm max}$

- For large *H* one has $\lambda(\mu) < 0$, since $\mu^2 = \phi^2 + R$
- ξ Can become positive or negative depending on $\xi_{\rm EW}$

Stability results (curved space) II

- For large *H* one has $\lambda(\mu) < 0$, since $\mu^2 = \phi^2 + R$
- ξ Can become positive or negative depending on ξ_{EW}

Stability results (curved space) III

Stability results (curved space) IV

• The (in)stability of the potential is determined by ξ_{EW}

Introduction

Piggs stability during inflation (QFT in Minkowski)

Higgs stability after inflation

4 Conclusions

Reheating

- Equation of state $w = p/\rho$ changes, $w_{inf} = -1 \rightarrow w_{reh}$
- Energy of inflation is transferred to SM degrees of freedom, which (eventually) thermalize T = 0 → T_{reh}
- The crucial moment is right after inflation, but *before* thermalization

 The Higgs always feels the dynamics of reheating (even without a direct coupling to the inflaton)

[12] Kofman, Linde & Starobinsky (1997)

Reheating

• During reheating the inflaton oscillates ($p = w\rho$)

The inflaton influences the Higgs via gravity

Two effects:

- A rapid drop in *w*, on average
- Oscillations in the complete solution

Oscillating mass (example)

• For example for a coupling ${\cal L}_{
m int} \propto g \Phi^2 \phi^2$

Oscillating mass for Higgs $m_{
m eff}^2 \sim g \Phi_0^2 \cos^2(t M_{
m inf})$

• Parametric resonance via the Mathieu equation

$$\frac{d^2 f(z)}{dz^2} + \left[\mathbf{A_k} - 2\mathbf{q}\cos(2z) \right] f(z) = 0, \qquad z = t M_{\text{inf}}$$

⇒ Exponential amplification

May result in a very large fluctuation [13]

[13] Kofman, Linde & Starobinsky (1997)

Oscillating R

The curvature oscillates during reheating

$$G_{\mu\nu} = \frac{1}{M_{\rm pl}^2} T_{\mu\nu} \quad \Rightarrow \quad R = \frac{1}{M_{\rm pl}^2} \left[4V_{\rm inf}(\Phi) - \left(\frac{d\Phi}{dt}\right)^2 \right]$$

Curvature mass ξR oscillates to negative values

- Tachyonic resonance [14]
- Oscillations of R via ξ provide efficient reheating
 - Geometric reheating [15]

[14] Kofman, Dufaux, Felder, Peloso & Podolsky (2006)[15] Bassett & Liberati (1997)

Fluctuations from parametric resonance

- Resonance may give large fluctuations,
 - ⇒ Instabilities ?!
- After one oscillation

$$n \sim \exp\left\{\sqrt{\xi}\right\}$$

Superhorizon modes, $\mathbf{k} < aH$

$$\Rightarrow \quad \Delta \phi^2 \sim \left(\frac{H}{2\pi}\right)^2 \frac{\exp\left\{\sqrt{\xi}\right\}}{\sqrt{\xi}}$$

• Potentially a huge effect, $\Delta \phi \gg \Lambda_I$

However, the resonance may be shut off by backreaction

Stability results, reheating

 \Rightarrow For $H \gtrsim \Lambda_I \sim 10^{11} \text{GeV}$, ξ is constrained to be $\sim 1/6$

1 Introduction

Pliggs stability during inflation (QFT in Minkowski)

Biggs stability after inflation

Conclusions

- For a large *H*, curvature significantly effects the early universe SM instability
 - Running of couplings from *H*
 - A curvature mass $\propto \xi R \phi^2$ is always generated
- Stability during inflation and reheating constrains SM physics, namely for large *H*

$$\xi \sim 1/6$$