Tetraquarks and Pentaquarks

based in part on forthcoming IoP eBook by TG and Greig Cowan also drawing extensively on Rev. Mod. Phys. 90 (2018) 015003

Tim Gershon University of Warwick

Seminar at University of Birmingham 2nd May 2018

The birth of the quark model

- Nowadays, usual to think of hadrons as being either
	- qq mesons or qqq baryons (qqq antibaryons)
- But these are not the only options, as has been known since the start of the quark model

Baryons can now be constructed from quarks by using the combinations $(qqqq)$, $(qqqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q\bar{q})$ similarly gives just 1 and 8. M. Gell-Mann, Phys. Lett. 8 (1964) 214

• Where are the qqqq tetraquarks and qqqqq pentaquarks?

QCD basics

- Due to confinement, bound states must be colourless
	- rgb (baryons) or $rr+gg+b\overline{b}$ (mesons)
	- thus, $\bar{r} \equiv g b$, etc., as regards SU(3)
	- important for diquark model
		- baryons can be modelled as quark-diquark mesons
- Perturbative methods do not work at low energies
	- can use NRQCD based on an effective potential
	- lattice QCD important & predictive method
		- limited by available computing power
		- not a silver bullet to understand hadrons

What do we learn from hadrons?

- New states, bound by QCD, do not test the SM per se
- Yet they do provide insight into a murky corner of the SM, namely confinement r fm

What do we learn from hadrons?

- New states, bound by QCD, do not test the SM per se
- Yet they do provide insight into a murky corner of the SM, namely confinement
- Understanding strong interactions could be important for new high energy phenomena
	- Higgs boson as a composite state
	- Strong interactions in a dark sector (e.g. arXiv:1602.00714)
	- Hadronic dark matter?
- \bullet Exotic spectroscopy is an open and fast moving field $-$ exciting and fun to be involved
	- n.b. will use "exotic" to refer to anything that is not "conventional"

A stable sexaquark?

arXiv:1708.08951

- The uuddss sexaquark S
	- with baryon number 2 (similar states sometimes called dibaryons)
	- has a totally symmetric wavefunction, hence large binding energy
	- if $\rm m_{\rm s}$ < $\rm m_{\rm d}$ + $\rm m_{\rm e}$ ~ 2($\rm m_{\rm p}$ + $\rm m_{\rm e})$ is completely stable
	- else if $\rm m_{\rm s}$ < $\rm m_{\rm p}$ + $\rm m_{\rm e}$ + $\rm m_{\rm \Lambda}$ is effectively stable
	- could be a dark matter candidate
- This model has issues, but still interesting
	- Oxygen decay through NN→SX not seen in Super Kamiokande (arXiv:1803.10242)
- Dedicated searches possible (e.g. in Y decay at B factories)

Why is this relevant now?

- Searches for exotic hadrons have been ongoing for ~50 years *with light quarks*
	- some claimed signals for pentaquarks which led to nothing …

LEPS collaboration Phys.Rev.Lett. 91 (2003) 012002

- See also DIANA, CLAS, SAPHIR, NA49, HERMES, SVD, COSY-TOF, ZEUS, H1, …
- Many peaks disappeared with more data and more careful analyses
- Non-observations in other experiments
- See hep-ph/0703004 for a review
- (Not all claims completely disproved yet)

Why is this relevant now?

- Searches for exotic hadrons have been ongoing for ~50 years *with light quarks*
	- some claimed signals for pentaquarks which led to nothing …
	- too many scalar states
		- with an unexpected pattern of masses (KK threshold effect?)
		- $\pi_1(1400)$, $\pi_1(1600)$ states with JPC = 1-+
			- –i.e. manifestly exotic quantum numbers
	- difficult to make definitive claims in light hadron sector
		- states broad and overlapping
- New possibilities in latest generations of heavy flavour experiments, especially for cc (and related) states

X(3872)

- Unexpected discovery by the Belle collaboration in 2003
	- B+→X(3872)K+, X(3872)→J/ψπ+π–
	- Rapidly confirmed by
		- BaBar, CDF, D0
		- (later LHCb, CMS, ATLAS)
	- Produced in
		- \cdot B decay, pp & pp collisions
	- Decays to
		- \cdot J/ψρ, J/ψω, J/ψγ, DD*
- Does not fit conventional cc spectrum

Conventional qq spectroscopy

- Define, as usual, intrinsic spin S, orbital angular momentum L, total angular momentum ("spin") $J = L \oplus S$
- q & \overline{q} have opposite parity: $P = -1^{L+1}$
- charge conjugation: $C = (-1^s)(-1^c)$
- For L=0, have $J^{pc} = 0^{-+}$ (η_c), $1 (J/\psi)$

- For L=1, have JPC = 0^{++} (χ_{c0}), 1⁺- (h_c), 1⁺⁺ (χ_{c1}), 2⁺⁺ (χ_{c2})
	- cannot get manifestly exotic quantum numbers (e.g. $J^{pc} = 0$ –, 0^{+-} , 1^{-+}) from $q\overline{q}$
- Other notations also used: $n^{2S+1}L_3$, $\psi(2S)$, $X(3872)$, ...
	- as usual in spectroscopy, $L = 0,1,2,3...$ denoted S,P,D,F ...
- Simple prediction for pattern of masses and quantum numbers
	- need to measure both, as well as total widths, branching fractions, ...

Measuring quantum numbers

- Can be inferred from production or decay processes
	- both P and C conserved, since strong or electromagnetic processes
- Production
	- in e^+e^- collisions then $J^{pc} = 1-$
	- in hadron collisions \rightarrow usually no information (unknown additional particles)
	- in B decay \rightarrow initial state constrained
- Decay
	- need to measure angular momentum between final state particles
		- \cdot require constrained initial and final states $-$ B decay chain ideal
	- (some exceptions, e.g. X(3872) → J/ψγ fixes C=+1)

Large, clean samples of B decays at B factories and LHCb

Belle Detector

Measuring X(3872) quantum numbers

Phys. Rev. D92 (2015) 011102

Example: angular distributions in B^+ → X(3872)K⁺, X(3872) → J/ψπ⁺π⁻

Unambiguously determines $J^{PC} = 1^{++}$ (projections in plots do not carry all information)

The cc spectrum

Mass (MeV)

The cc spectrum from lattice QCD

The cc spectrum

Mass (MeV)

Could the $X(3872)$ be the $X_{c1}(2P)$ state?

- Several strong arguments against:
	- isospin violation (decay to J/ψρ) not expected
		- near equality of branching fractions to $J/\psi \rho \& J/\psi \omega$
		- (isospin partners however not observed)
	- above threshold for decay to open charm but not significantly wider than $\chi_{c1}(1P)$
		- only upper limit on X(3872) width measured so far
	- mass splitting relative to $\chi_{c2}(2P)$ state less than expected
		- mass suspiciously close to \overline{D} threshold
- If not, what is it?

Tightly bound tetraquark (all quarks bound by gluons)

Meson-meson molecule (bound by pion exchange)

or some mixture with cc, Simplified picture above: **or something else?**

most tightly bound models involve diquarks

Tetraquarks and Pentaquarks 19

or

Molecular or tightly-bound?

- Molecular model ($D^0\overline{D}^{*0}$)
	- natural explanation for mass being near threshold
	- natural explanation for isospin violation
		- amplification of $D^{(*)+}-D^{(*)0}$ mass difference
	- production in pp ($p\overline{p}$) not as expected
		- could be explained by admixture with $\chi_{c1}(2P)$
		- lattice QCD calculations support this view (arXiv:1503.03257)

Molecular or tightly-bound?

- Molecular model ($D^0\overline{D}^{*0}$)
	- natural explanation for mass being near threshold
	- natural explanation for isospin violation
		- amplification of $D^{(*)+}-D^{(*)0}$ mass difference
	- production in pp $(p\overline{p})$ not as expected
		- could be explained by admixture with $\chi_{c1}(2P)$
		- lattice QCD calculations support this view (arXiv:1503.03257)
- Tightly bound diquarks ([cu][cu])
	- can explain isospin violation
	- predicts existence of isospin partners (not seen)

A smoking gun

- An unambiguous signal for exotic hadrons is a charged charmonium-like state
- Belle discovered a candidate in 2007
	- $-$ B^o → Z(4430)-K⁺,
	- Z(4430)–→ψ(2S)π–
- Not confirmed by BaBar
	- analysis method too simplistic?

Z(4430) confirmation by LHCb

- An unambiguous signal for exotic hadrons is a charged charmonium-like state
- Belle discovered a candidate in 2007
	- $-$ B^o → Z(4430)-K⁺,
	- Z(4430)–→ψ(2S)π–
- Confirmed by LHCb
	- Full 4D amplitude analysis
	- (necessary to determine parameters correctly)
	- Quantum numbers $J^P = 1⁺$

 $m_{\Psi^{\prime}\pi}^{2}$ [GeV²

22

19

18

 17

16

15

 0.5

Resonant character of the Z(4430)

• A Breit-Wigner function has a characteristic rapid change of phase near the resonance peak A

$$
|(s) \; \propto \; \frac{1}{m^2 - s^2 + im\Gamma(s)}
$$

- Plotting the amplitude in the Argand plane, the lineshape maps out a circle (anticlockwise, as mass increases)
- Can be measured in an amplitude analysis

Resonant character of the Z(4430)

- Complex amplitude measured in 6 bins of m(ψ (2S)π⁻)
- Found to follow expected anticlockwise trajectory in Argand plan
- Rules out models where Z(4430) arises due to kinematic effects

Tetraquarks and Pentaquarks 25

More smoking guns

Phys. Rev. Lett. 112 (2014) 022001

More smoking guns

Smoking guns in the bb system

- Belle observed anomalously high rate of e⁺e⁻ → Y(10860) → Y(nS)π⁺π⁻
- Investigation of recoil mass revealed surprising presence of $\mathsf{h}_{\mathsf{b}}(1\mathsf{P})$ and $\mathsf{h}_{\mathsf{b}}(2\mathsf{P})$ states – first observations!

Smoking guns in the bb system

- Belle observed anomalously high rate of e⁺e⁻ → Y(10860) → Y(nS)π⁺π⁻
- Investigation of recoil mass revealed surprising presence of $\mathsf{h}_{\mathsf{b}}(1\mathsf{P})$ and $\mathsf{h}_{\mathsf{b}}(2\mathsf{P})$ states – first observations!
- Allows study of the $Y(nS)\pi$ and h $_{\rm b}$ (nP)π mass distributions

Phys. Rev. Lett. 100 (2008) 112001 Phys. Rev. Lett. 108 (2012) 032001

Smoking guns in the bb system

- $\bullet\,$ Two peaks, $Z_{\rm b}(10610)$ and $Z_{\rm b}^{\,}$ (10650) seen with consistent properties in five different decay modes!
- Quantum numbers $J^P = 1⁺$
- Masses near to \overline{BB}^* and $B^*\overline{B}^*$ thresholds
	- decays to $\overline{BB^*}$ and $B^* \overline{B^*}$ also seen

Phys.Rev.Lett. 108 (2012) 122001

• Isospin partners observed

Pentaquarks

- Large samples of b baryons produced at LHC
- Ideal to search for pentaquarks containing cc
	- Particle identification important to reject B meson decay backgrounds
	- Strong advantage of LHCb (but hope ATLAS+CMS can contribute)

Amplitude analysis of baryon decay

Phys. Rev. Lett. 115 (2015) 072001

- Lesson from Z(4430)
	- full amplitude analysis is mandatory!
- Additional degrees of freedom for baryons
	- non-zero spin of initial and final state particles
	- 6D amplitude analysis necessary

Amplitude analysis of baryon decay

Phys. Rev. Lett. 115 (2015) 072001

• Not possible to get good description of data including only $\Lambda^* \rightarrow pK$ resonances

Tetraquarks and Pentaquarks 33

Amplitude analysis of baryon decay

Phys. Rev. Lett. 115 (2015) 072001

- Not possible to get good description of data including only $\Lambda^* \rightarrow pK$ resonances
- Acceptable fit including two $P_c \rightarrow J\psi/p$ states

Tetraquarks and Pentaquarks 34

Resonant nature of the P c states

Phys. Rev. Lett. 115 (2015) 072001

- \bullet Phase rotation as expected for P $_{\rm c}$ (4450)
- $\bullet\,$ Situation less clear for P $_{\textrm{c}}$ (4380) update with more data needed
- Not possible to unambiguously assign quantum numbers
	- Four possibilities: J $P_{c}(4450)$, $P_{c}(4380)$) = (3/2±,5/2[∓]), (5/2±,3/2[∓])

A new particle zoo

Rev. Mod. Phys. 90 (2018) 015003

A new particle zoo

- Many new states found!
- Often by only one experiment &/or in only one channel
	- confirmations needed
- Colour code
	- conventional mesons
	- neutral states without charged partners
	- charged states (with or without neutral partners)
	- pentaquark states
- Many, but not all, states near thresholds, e.g. $\mathsf{D}^{(\star)}\mathsf{D}^{(\star)}$
	- more than one effect at play?

How to make sense of it all?

- We will need
	- better data
		- more measurements inspired by better predictions
		- excellent prospects with LHCb, Belle II and LHCb upgrades
	- better predictions
		- can be made by benefitting from better data
		- including results on conventional hadrons
- Excellent example: doubly heavy baryons
	- ideal testing ground for QCD potential in diquark models

Observation of the Ξ **CC** ++

Phys. Rev. Lett. 119 (2017) 112001

Practical applications?

Nature 551 (2017) 89

nuclei. The recent discovery¹ of the first doubly charmed baryon E_{c}^{++} , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λ_c) undergo fusion to produce the doubly charmed baryon Ξ_{cc}^{++} and a neutron $n(\Lambda_c \Lambda_c \to \Xi_c^{++} n)$, resulting in an energy release of 12 MeV. This reaction is a quarklevel analogue of the deuterium-tritium nuclear fusion reaction $(DT \rightarrow {}^{4}He n)$. The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks $(\Lambda_b \Lambda_b \to \Xi_{bb}^0 n)$ to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.

Roadmap for double heavies

- The observation of the Ξ_{cc}^{++} (ccu) baryon is the start of a programme
- Crucial to measure properties of isospin partner Ξ_{cc} ⁺ (ccd) and of their excited states
	- (also lifetime, production rate and other decay modes)
- Studies of Ξ_{bc} states also essential
- Will allow precise predictions of [bb][ud], [bc][ud], and [cc][ud] tetraquarks

Summary

- No longer any doubt that exotic hadrons exist
	- question is now over their binding mechanism
- Situation currently rather cloudy
	- some models explain some of the data well
		- threshold effects, molecules, tightly bound tetraquarks, hadrocharmonium, ...
	- no model explains all of the data by itself
		- more than one effect contributing?
- Good reasons for optimism about progress in coming years
	- quite likely that major discoveries are waiting to be made

Bibliography

- Several excellent recent review articles
	- M. Karliner et al., to appear in Ann. Rev. Nucl. Part. Sci., <https://arxiv.org/abs/1711.10626>
	- S. Olsen et al., Rev. Mod. Phys. 90 (2018) 015003, <https://arxiv.org/abs/1708.04012>
	- A. Ali et al., Prog. Part. Nucl. Phys. 97 (2017) 123, <https://arxiv.org/abs/1706.00610>
	- R. Lebed et al., Prog. Part. Nucl. Phys. 93 (2017) 143, <https://arxiv.org/abs/1610.04528>