

STEPHEN WEST

UNIVERSITY OF BIRMINGHAM FEBRUARY 24TH 2016

ARTIAL OVERVIEW OF NON-STANDARD DM

♦ FREEZE-OUT

♦ ASYMMETRIC FREEZE-OUT

+ FREEZE-IN

NUCLEAR DARK MATTER

• ANNIHILATION OF X STILL PROCEEDS, NUMBER DENSITY OF X GIVEN BY

 DUE TO EXPANSION, DARK MATTER NUMBER DENSITY FREEZES-OUT WHEN:

♦ YIELD SET AT FREEZE-OUT GIVES FINAL DARK MATTER ABUNDANCE.

 $\Omega h^2 \sim 0.1 \frac{3 \times 10^{-26} cm^3 s^{-1}}{s^{-1}}$ $\sigma_A v$

MODIFYING FREEZE-OUT - ASYMMETRIC DM

• ONE VERY POPULAR OPTION - ASYMMETRIC DM χ

(COMPLEX SCALAR OR DIRAC FERMION)

VISIBLE SECTOR
$$q, e, W, Z, H, \tilde{q}, ...$$
 $\chi, \overline{\chi}$

NUSSINOV '85; GELMINI, HALL, LIN '87; BARR '91; KAPLAN '92; THOMAS '95; HOOPER, MARCH-RUSSELL, SW '04; KITANO AND LOW '04, KAPLAN, LUTY ZUREK'09; FOADI, FRANDSEN, SANNINO '09+...

DYNAMICS GENERATE DARK MATTER POSSESSING A MATTER-ANTIMATTER ASYMMETRY

 $n_{\chi} - n_{\overline{\chi}} \neq 0$

FOR SUFFICIENTLY LARGE DM ANNIHILATION - DM ABUNDANCE IS DETERMINE BY ASYMMETRY

ASYMMETRIC DM MOTIVATION

GIVEN THE PHYSICS GENERATING EACH QUANTITY, RATIO IS A SURPRISE

- IF NOT A COINCIDENCE NEED TO EXPLAIN THE CLOSENESS
 - \Rightarrow Shared dynamics \Rightarrow

OR BOTH

RELATE THIS DM ASYMMETRY TO THE BARYON ASYMMETRY

LEADING TO:

 $n_{\rm dm} - n_{\overline{\rm dm}} \propto n_{\rm B} - n_{\overline{\rm B}} \Rightarrow \eta_{\rm dm} = C \eta_{\rm B}$

- OR BOTH
- RELATE THIS DM ASYMMETRY TO THE BARYON ASYMMETRY
- LEADING TO:

 $n_{\rm dm} - n_{\overline{\rm dm}} \propto n_{\rm B} - n_{\overline{\rm B}} \Rightarrow \eta_{\rm dm} = C \eta_{\rm B}$

OR BOTH

- RELATE THIS DM ASYMMETRY TO THE BARYON ASYMMETRY
- LEADING TO:

 $n_{\rm dm} - n_{\overline{\rm dm}} \propto n_{\rm B} - n_{\overline{\rm B}} \Rightarrow \eta_{\rm dm} = C \eta_{\rm B}$

$$\frac{\Omega_{\rm dm}}{\Omega_{\rm B}} \sim \frac{\eta_{\rm dm}}{\eta_{\rm B}} \frac{m_{\rm dm}}{m_{\rm B}} \sim C \frac{m_{\rm dm}}{m_{\rm B}}$$

- OR BOTH
- RELATE THIS DM ASYMMETRY TO THE BARYON ASYMMETRY
- LEADING TO:

 $n_{\rm dm} - n_{\overline{\rm dm}} \propto n_{\rm B} - n_{\overline{\rm B}} \Rightarrow \eta_{\rm dm} = C \eta_{\rm B}$

 \bullet Value of C is determined by how the asymmetries are shared between the two sectors

IF ASYMMETRY SHARING PROCESS DROPS OUT OF THERMAL EQUILIBRIUM WHEN DM IS STILL RELATIVISTIC

* THEN WE GET A PREDICTION FOR THE MASS OF THE DARK MATTER

* THIS IS THE "NATURAL" DARK MATTER MASS FOR ADM MODELS.

NOT THE ONLY POSSIBLE MASS, MORE SOPHISTICATED MODELS CAN ALLOW FOR A LARGE RANGE OF ADM MASSES

> ⇒ DEPENDS ON THE WAY IN WHICH THE ASYMMETRY IS SHARED (OR GENERATED)

- CAN HAVE ADM WITH HEAVY MASSES
- * X NUMBER VIOLATING PROCESSES ONLY DECOUPLE AFTER DM HAS BECOME NON-RELATIVISTIC

DARK MATTER ASYMMETRY GETS BOLTZMANN SUPPRESSED

$$\frac{\Omega_{\rm dm}}{\Omega_{\rm B}} \approx \frac{m_{\rm dm}}{m_{\rm B}} x^{3/2} e^{-x}$$

with
$$x = \frac{m_{\rm dm}}{T_d}$$

Td DECOUPLING TEMP OF X-NUMBER VIOLATING INTERACTIONS

ACTUAL SUPPRESSION IS MORE COMPLICATED - SEE BARR '91

LARGE RANGE OF POSSIBLE MASSES

- HIDDEN SECTOR STATES HAVE NO SM GAUGE INTERACTIONS
- HIDDEN SECTOR MAY BE LINKED, BEYOND GRAVITY, TO THE VISIBLE SECTOR

Portals: Higgs - $|H|^2 |\phi_i|^2$

NEUTRINO - $LH\chi_i$

KINETIC MIXING - $(\partial_{\mu}X_{\nu} - \partial_{\nu}X_{\mu})F_{Y}^{\mu\nu}$ if X_{ν} is a U(1)' Gauge boson

PLUS D>4 OPERATORS

$$\frac{1}{M^{n-4}}\mathcal{O}_{\rm sm}\mathcal{O}_{\rm hs}$$

THE FORM OF THIS PORTAL CAN PLAY A MAJOR ROLE IN DM GENESIS

- MUCH DEPENDS ON PORTAL IF PORTAL INTERACTION IS STRONG ENOUGH FOR HIDDEN AND VISIBLE SECTORS TO BE IN THERMAL EQUILIBRIUM - USUAL FREEZE-OUT PICTURE
- IF PORTAL INTERACTION IS FEEBLE AND χ NOT IN THERMAL EQUILIBRIUM- CAN LOOK TO FREEZE-IN HALL, JEDAMZIK, MARCH-RUSSELL, SW '09 SEE EARLIER IMPLEMENTATION: MCDONALD '01, T. ASAKA, K. ISHIWATA, T. MOROI '05, '06
- FREEZE-IN BATH PARTICLE SCATTERINGS OR DECAYS PRODUCE
 FIMPS THROUGH FEEBLE PORTAL INTERACTIONS

Freeze-in is relevant for particles that are feebly coupled (Via renormalisable couplings) – λ Feebly Interacting Massive Particles (FIMPs) X

> Thermal Bath Temp $T > M_X$

X is thermally decoupled and we assume initial abundance negligible

X

• Although interactions are feeble they lead to some X production

Freeze-in is relevant for particles that are feebly coupled (Via renormalisable couplings) – λ Feebly Interacting Massive Particles (FIMPs) X

> Thermal Bath Temp $T > M_X$

X is thermally decoupled and we assume initial abundance negligible

• Although interactions are feeble they lead to some X production

Freeze-in is relevant for particles that are feebly coupled (Via renormalisable couplings) – λ Feebly Interacting Massive Particles (FIMPs) X

> Thermal Bath Temp $T > M_X$

X is thermally decoupled and we assume initial abundance negligible

• Although interactions are feeble they lead to some X production

Freeze-in is relevant for particles that are feebly coupled (Via renormalisable couplings) – λ Feebly Interacting Massive Particles (FIMPs) X

> Thermal Bath Temp $T > M_X$

X is thermally decoupled and we assume initial abundance negligible

Although interactions are feeble they lead to some X production
Dominant production of X occurs at T ~ M_X IR dominant
Increasing the interaction strength increases the yield opposite to Freeze-out...

Freeze-out vs Freeze-in

 $Y_{FO} \sim \frac{1}{\langle \sigma v \rangle M_{PI} m'}$

Using $\langle \sigma v \rangle \sim \lambda'^2 / m'^2$

 $Y_{FO} \sim \frac{1}{\lambda'^2} \left(\frac{m'}{M_{Pl}}\right)$

Freeze-in via, decays, inverse decays or 2-2 scattering

Coupling strength λ *m* mass of heaviest particle in interaction

 $Y_{FI} \sim \lambda^2 \left(\frac{M_{Pl}}{m}\right)$

Freeze-in vs Freeze-out

• As T drops below mass of relevant particle, DM abundance is heading towards (freeze-in) or away from (freeze-out) thermal equilibrium

Freeze-in vs Freeze-out

• For a TeV scale mass particle we have the following picture.

FIMP miracle vs WIMP miracle

• WIMP miracle is that for $m' \sim v$ $\lambda' \sim 1$

$$Y_{FO} \sim \frac{1}{\lambda'^2} \left(\frac{m'}{M_{Pl}}\right) \sim \frac{v}{M_{Pl}}$$

• FIMP miracle is that for $m \sim v \;\; \lambda \sim v/M_{Pl}$

$$Y_{FI} \sim \lambda^2 \left(\frac{M_{Pl}}{m}\right) \sim \frac{v}{M_{Pl}}$$

• FIMPs can be DM or can lead to an abundance of the Lightest Ordinary Supersymmetric Particle (LOSP)

ullet Consider FIMP X coupled to two bath fermions ψ_1 and ψ_2

 $\left(L_Y = \lambda \psi_1 \psi_2 X \right)$

ullet Let ψ_1 be the LOSP

• First case FIMP DM: $m_{\psi_1} > m_X + m_{\psi_2}$

For $\frac{m_X}{2} \sim 1$ need $\lambda \sim 10^{-12}$ for correct DM abundance Mala Lifetime of LOSP is long – signals at LHC, BBN...

Toy Model continued...

• Second case LOSP (=LSP) DM: $m_X > m_{\psi_1} + m_{\psi_2}$

$$\Omega_X h^2 \sim 10^{24} \frac{\Gamma_X}{m_X} \sim 10^{23} \lambda^2$$

Using $\Gamma_X \sim \frac{\lambda^2 m_X}{2}$

• BUT X is unstable...

Again for $\frac{m_X}{m_{\psi_1}} \sim 1$ need $\lambda \sim 10^{-12}$ for correct DM abundance • X lifetime can be long – implications for BBN, indirect DM detection Another source of boost factors

Example Model II

Many applications and variations of the Freeze-in mechanism
Assume FIMP is lightest particle carrying some stabilising symmetry - FIMP is the DM

• Consider quartic coupling of FIMP with two bath scalars

 $\mathcal{L}_Q = \lambda X^2 B_1 B_2$

Assuming $m_X \gg m_{B_1}, m_{B_2}$

$$\Omega h_X^2 \approx 10^{21} \lambda^2$$

For correct DM abundance $\Rightarrow \lambda \sim 10^{-11}$

• NOTE: Abundance in this case is independent of the FIMP mass

Summary of Scenarios

- · CAN WE HAVE ANALOGY TO SM? RICH SPECTRUM OF COMPOSITE STATES
- · CAN WE BUILD UP LARGE COMPOSITE STATES OF DM?
- OLD EXAMPLES OF BOUND STATES OF DARK STATES ARE:

♦ WIMPONIUM (BOUND STATE OF TWO DM PARTICLES)

M. POSPELOV AND A. RITZ'08; MARCH-RUSSELL, SW'08; SHEPHERDA, TAIT, ZAHARIJASB'09; PANOTOPOULOS'10, LAHA'13'15; VON HARLING, PETRAKI'14, PETRAKI, POSTMA, WIECHERS'15

◆ ATOMIC DARK MATTER

KAPLAN, KRNJAIC, REHERMANN, WELLS '09, '11

CAN WE GO BIGGER?

G. KRNJAIC AND K. SIGURDSON '14; HARDY, LASENBY, MARCH-RUSSELL, SW '14, '15

- * PROPOSE DM HAS SHORT-RANGED STRONG "NUCLEAR" BINDING FORCE WITH HARD CORE REPULSION - ANALOGY WITH THE SM
- A DM OR "DARK NUCLEONS" POSSES APPROXIMATELY-CONSERVED QUANTUM NUMBER, DARK NUCLEON NUMBER (DNN) - ANALOGOUS TO BARYON NUMBER
- ASSUME DARK NUCLEONS ONLY ASYMMETRIC DM
- NO COULOMB FORCE BINDING ENERGY PER NUCLEON DOES NOT TURN OVER AT LARGE DNN
- FOR MINIMALITY, ONLY ONE TYPE OF DARK NUCLEON PRESENT
- DARK NUCLEI EXIST WITH A RANGE OF DNNS, FORMING POST FREEZE-OUT VIA
 DARK NUCLEOSYNTHESIS

NO COULOMB FORCE - INCREASING BINDING ENERGY PER NUCLEON

- RELATED WORKS
 - * QCD-LIKE MODEL NUCLEI WITH SMALL NUMBERS OF DARK NUCLEONS: DETMOLD, MCCULLOUGH, POCHINSKY '14

- * YUKAWA INTERACTIONS BETWEEN DARK NUCLEONS LEADING TO DARK NUCLEI (OR NUGGETS) WITH LARGE NUMBER OF NUCLEONS.
 - NO HARD CORE REPULSION LEADING TO INTERESTING RADIUS VS DNN BEHAVIOUR

WISE AND ZHANG '14

* SIMILAR IN SOME WAYS TO Q-BALLS

FRIEMAN, GELMINI, GLEISER, KOLB '88; FRIEMAN, OLINTO, GLEISER, AND C. ALCOCK '89 KUSENKO, SHAPOSHNIKOV '97;

HARDY, LASENBY, MARCH-RUSSELL, SW '14, '15

HARDY, LASENBY, MARCH-RUSSELL, SW '14, '15

- · AGGREGATION PROCESS NEGLECTING DISSOCIATIONS
- * WRITE BOLTZMANN EQUATION FOR A DARK NUCLEUS WITH K-DARK NUCLEONS

$$\frac{dn_k(t)}{dt} + 3H(t)n_k(t) = -\sum_{j=1}^{\infty} \langle \sigma v \rangle_{j,k} n_j(t)n_k(t) + \frac{1}{2} \sum_{i+j=k} \langle \sigma v \rangle_{i,j} n_i(t)n_j(t) ,$$

 $k + (A - k) \leftrightarrow A$ dissociations negligible if

$$\frac{\langle \sigma v \rangle_{(k,A-k) \to A} n_k n_{A-k}}{\Gamma_{A \to (k,A-k)} n_A} \gg 1$$

SATISFIED FOR

$$n_0 \left(\frac{1}{m_1 T}\right)^{3/2} e^{\Delta B/T} \gg \text{const.}$$

TIME TAKEN FROM WHERE THE PROCESSES $k + (A - k) \leftrightarrow A$

ARE IN EQUILIBRIUM TO WHERE CONDITION ABOVE IS SATISFIED IS A FRACTION OF A HUBBLE TIME

OTHER DISSOCIATION PROCESSES ARE POSSIBLE BUT WE NEQLECT THEM HERE AS THEY ARE MODEL DEPENDENT

$$\frac{dn_k(t)}{dt} + 3H(t)n_k(t) = -\sum_{j=1}^{\infty} \langle \sigma v \rangle_{j,k} n_j(t)n_k(t) + \frac{1}{2} \sum_{i+j=k} \langle \sigma v \rangle_{i,j} n_i(t)n_j(t) ,$$

* REWRITING $y_k = Y_k/Y_0 = (n_k/sY_0)$

 Y_0 is total yield of dark nucleons

AND
$$\langle \sigma v
angle_{i,j} = \sigma_1 v_1 K_{i,j}$$

- where σ_1 geometrical cross section of individual dark nucleon
 - v_1 velocity of single nucleon
 - $K_{i,j}$ parameterises relative rates of different fusion processes

$$\Rightarrow \frac{dy_k}{dw} = -y_k \sum_j K_{j,k} y_j + \frac{1}{2} \sum_{i+j=k} K_{i,j} y_i y_j$$

WHERE WE CAN DEFINE A DIMENSIONLESS TIME VARIABLE

$$\frac{dw}{dt} = Y_0 \sigma_1 v_1(t) s(t)$$

 $\langle \sigma v \rangle_{i,j} = \sigma_1 v_1 K_{i,j}$

$$K_{i,j} \sim (i^{2/3} + j^{2/3}) \left(\frac{1}{i^{1/2}} + \frac{1}{j^{1/2}} \right)$$

$$RELATED TO$$
RELATED TO
RELATIVE VELOCITY
$$v^2 \sim T/m$$

RESCALING WE HAVE

SCALINGSOLUTION

$$K_{\lambda i,\lambda j} = \lambda^{1/6} K_{i,j}$$

• FOR THIS CASE THERE IS AN ATTRACTOR SCALING SOLUTION FOR LARGE DNN (VALID FOR ALL INITIAL CONDITIONS WE CONSIDER)

> SEE E.G. KRAPIVSKY, REDNER, BEN-NAIM, A KINETIC VIEW OF STATISTICAL PHYSICS, CUP, '10

FINAL DISTRIBUTION IS INDEPENDENT OF INITIAL CONDITIONS

$$\Rightarrow k \sim 5 \times 10^8$$

WHERE PARAMETERS ARE SET TO SM VALUES - MOTIVATED BY ADM

$$\Rightarrow \frac{\sigma_1 v_1 n_0}{H} \sim 2 \times 10^7 \left(\frac{1 \text{GeV fermi}^{-3}}{\rho_b} \right)^{2/3} \left(\frac{T}{1 \text{MeV}} \right)^{3/2} \left(\frac{M_1}{1 \text{GeV}} \right)^{-5/6}$$

$$\frac{\Gamma}{H} \sim \frac{\langle \sigma v \rangle n_k}{H} \sim \frac{\sigma_1 v_1 n_0}{H} k^{-5/6}$$

with
$$n_k = n_0/k$$
 $\sigma \sim \sigma_1 k^{2/3}$ $v_k \sim v_1 k^{-1/2}$

HOW BIG CAN WE GO?
FOR EQUAL SIZE FUSIONS

 $k + k \rightarrow 2k$

PHENOMENOLOGY OF NDM

- CHANGES FOR DIRECT DETECTION SIGNALS
 - ◆ DARK MATTER MOMENTUM DEPENDENT FORM FACTOR
 - ♦ COHERENT SCATTERING FROM DARK NUCLEI
 - ♦ INELASTIC PROCESSES
 - ◆ COLLECTIVE LOW ENERGY EXCITATIONS
- INDIRECT DETECTION SIGNALS
 - INELASTIC SELF-INTERACTIONS (MAY ALSO MODIFY DISTRIBUTION IN HALO)
- CAPTURE IN STARS
 - ♦ ASYMMETRIC IN NATURE SO CAN BUILD UP IN STARS
 - MODEL DEPENDENT CONSEQUENCES

Direct Detection - Standard WIMP

• Event rate:

DIRECT DETECTION - STANDARD WIMP

A = Atomic number of target nucleus

DIRECT DETECTION - NDM

$$\frac{dR}{dE_R} = \frac{\sigma_{kN}(q)}{m_k \mu_{kN}^2} \ \rho_k g(v_{\min})$$

$$\sigma_{XN}(q) = \sigma_{XN}(0)F_N(q)^2F_k(q)^2 \quad m_X = km_1 \quad \sigma_{kN}(0) \propto k^2 A^2$$

$$\frac{dR_k}{dE_R} = g(v_{\min}) \frac{\rho_k}{2\mu_{kn}^2 m_1} A^2 k \ \sigma_0 F_N(q)^2 F_k(q)^2$$

 σ_0 DN-SM Nucleus zero-momentum-transfer cross section

Full recoil spectrum for a distribution of dark nuclei is the sum of k for all contributions
 see later

- MOMENTUM DEPENDENT FORM FACTOR
 - \bullet FOR $\Delta q > R_k^{-1}$ we will probe the structure of the dark nucleus

ASSUME A SPHERICAL TOP HAT DARK NUCLEON DISTRIBUTION

$$F(\mathbf{q}) = \int d\mathbf{r} \, e^{i \mathbf{q} \cdot \mathbf{r}}
ho(\mathbf{r}),$$

with
$$R_k \sim R_0 k^{1/3}$$

◆ PROVIDED THE DARK NUCLEUS IS LARGER THAN THE SM NUCLEUS WE WILL SEE EFFECT OF FORM FACTOR FIRST IN RECOIL SPECTRUM

DIRECT DETECTION - SINGLEK

HARDY, LASENBY, MARCH-RUSSELL, SW '14, '15

◆ EASY TO DISTINGUISH FROM WIMP, LOOK FOR NON-DECREASING BEHAVIOUR

DIRECT DETECTION - SINGLE K

BUTCHER, KIRK, MONROE, SW '16

· EFFECT OF ENERGY RESPONSE FUNCTION ON RESOLVING FORM FACTOR AT HIGH K

IF WE HAVE EVENTS AT A DIRECT DETECTION EXPERIMENT, CAN WE DISTINGUISH BETWEEN A WIMP AND NDM?

· LOOK AT THE CASE OF A SINGLE K NDM STATE

SAMPLE EVENTS FROM NDM SPECTRUM AND TRY TO FIT A WIMP RECOIL SPECTRUM

KEEP SAMPLING EVENTS FROM NDM SPECTRUM UNTIL WE CAN REJECT THE WIMP HYPOTHESIS.

WIMP VS NDM

Maximum number of events needed to exclude WIMPs at stated confidence level. m = 1 GeV

FIXED THRESHOLD

k: 1412 (m_n = 1 GeV), M_{WIMP} (GeV): 30.831880, Events required: 1166

k: 3981 (m_n = 1 GeV), M_{WIMP} (GeV): 31.045596, Events required: 38

DIRECT DETECTION - LIMITS

BUTCHER, KIRK, MONROE, SW '16

 CURRENT LIMITS FROM XENON100 (225 DAYS EXPOSURE) AND PROJECTED LIMITS FROM DEAAP-3600 (3 YEARS USING 3600KG MASS)

DIRECT DETECTION

EFFECTIVE FORM FACTOR FROM DISTRIBUTION OF SIZES

HARDER TO DISTINGUISH BETWEEN WIMP AND NDM - NEED TO DO HALO INDEPENDENT ANALYSIS

- DARK MATTER COULD BE EXPLAINED IN A LARGE NUMBER OF WAYS BEYOND VANILLA WIMPS
- A RANGE OF DIFFERENT GENESIS MECHANISMS
- NUCLEAR DM POSSIBILITY ALSO A BIG DEPARTURE FROM WIMP FREEZE-OUT
 - THERMALLY PRODUCED DARK MATTER WITH MASSES IN EXCESS OF THE USUAL UNITARITY BOUND
 - DIRECT DETECTION RATES COHERENTLY ENHANCED BY DNN AND THE POSSIBILITY OF A MOMENTUM DEPENDENT FORM FACTOR
 - ◆ PRODUCE STATES WITH VERY LARGE SPIN?
 - ◆ INELASTIC INTERACTIONS IN BOTH DIRECT DETECTION AND IN ASTROPHYSICAL ENVIRONMENTS

LOTS OF POSSIBILITIES TO INVESTIGATE!