Constraining the CKM angle γ

Sneha Malde University of Oxford 25th January 2017

Many reasons to believe New Physics exists

- The matter-anti asymmetry that is manifest in our universe is a mystery
- There must be a mechanism(s) by which differences between matter and antimatter are generated.

CP Violation and New Physics

- First Observation of CPV in 1964 in the Kaon system
- Nobel prize awarded 1980
- Interest in CPV has continued to grow
- Observed in B decays in 2001

- To date only observed in the quark sector, but at levels far below that required to explain the universe
- There must be additional sources of CPV in New Physics models

CKM Matrix

$$\begin{pmatrix} u \\ c \\ t \end{pmatrix} \leftarrow W^{\pm} \rightarrow \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Unitarity triangle

- Wolfenstein parameterisation is commonly used where λ is the sine of the Cabibbo angle $\lambda{\approx}0.22$
- The CKM matrix is unitary, and reduces to three rotations and one phase.
- Phase gives rise to CP violation

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / 2 \\ -\lambda \\ A\lambda^3 (1 - \rho - i\eta) \end{pmatrix} \lambda \\ A\lambda^2 (1 - \lambda^2 / 2) (\rho, \eta) \\ (1 - \lambda^2 / 2) (\rho, \eta) \end{pmatrix} + O(\lambda^4)$$
Using the properties of unitary matrices
$$0 = 1 + \frac{V_{tb}^* V_{td}}{V_{cb}^* V_{cd}} + \frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}}$$
"Most open" triangle, others are possible

Is the triangle a triangle?

Improvements in constraints on triangle apex due to both experiment and theory advances

Sneha Malde

Loop/Tree

- Loop processes more easily altered by the presence of New Physics
- Constraints on the apex currently more stringent from loop decay measurements
- Largest uncertainty is on γ, a process accessible at tree level
- Theoretically clean uncertainty from observable to physics parameters ~10⁻⁷
- Forms a SM benchmark*

*assuming no New Physics in tree decays

γ from indirect determination

Alternative approach from CKM fit excluding all direct measurements of $\boldsymbol{\gamma}$

 $\gamma = (65.33^{+0.96}_{-2.54})^{\circ}$

Uncertainties dominated by LQCD, expect to reduce over the next decade

Combination of all direct measurements (summer 2016)

$$\gamma = (72.1^{+5.4}_{-5.8})^{\circ}$$

Reaching degree level precision from direct measurements is crucial

Why is γ a key goal?

- New Physics must provide a new source of CPV
- γ is the least well measured parameter of the CKM triangle
- Only angle easily accessible at tree-level
- Theoretically pristine
- Provides a SM benchmark against which other measurements can be compared
- With the advent of LHCb the ideal of degree level precision starts to become reality

$B \rightarrow DK$

 $b \rightarrow u$ (suppressed)

 $b \rightarrow c$ (favoured)

- Interference possible if D⁰ and D⁰ decay to same final state
- Branching fraction for favoured B decay ~10⁻⁴
- Fully hadronic final state
- Measurements will require high statistics

Interference with CP eigenstates "GLW"

Interested in the rate of observing this decay in B⁻ vs. B⁺

Interested in the rate of observing this decay vs. one that is not affected by interference, e.g the Cabibbo favoured decay of the D⁰

Interference with CP eigenstates "GLW"

Interference with flavour specific "ADS"

LHCb detector

All except one analysis presented today come from full 2011 and 2012 datasets

Sneha Malde

Detector performance (1)

Detector performance (2)

Hardware trigger

- hadronic trigger with high efficiency

RICH detectors Low π misidentification rate High kaon identification

Software trigger

- exploits decay topology

Datasets

1 fb⁻¹ @ 7 TeV (2011) 2 fb⁻¹ @ 8 TeV (2012)

Pile up much lower than the GPDs ~ 2 collisions per bunch crossing

0.3 fb⁻¹ @ 13 TeV (2015) 1.7 fb⁻¹ @ 13 TeV (2016)

Pile up reduced to ~1 per bunch crossing Increased cross section

Analyses today – all but one on Run 1 data

- Precision measurements take effort and time
- 2015 data only gives a modest increase.
- Most "Run 1" final results in this talk were produced in 2016

Selection

All analyses shown here employ similar strategies Κ pp collision P

Separate the topology of interest from random combinations

Use of multi-variate analysis techniques. Useful variables include:

Impact parameters

Flight distances from primary. (B travels a ~cm)

- Flight distances from B removes e.g B \rightarrow K $\pi\pi$ backgrounds
- Vertex quality
- Particle ID

Specific vetos against particular backgrounds

Sneha Malde

$B \rightarrow D[K\pi]h - CF$ control mode

Difference between the two modes only the ID of the bachelor hadron

PID performance \rightarrow low crossfeed.

B->D*h where a π^0 or photon isn't reconstructed sits to the left

Extremely low level of combinatoric – clean environment

Control mode constrains the shapes of signal and backgrounds

Control mode also used to measure the B[±] production asymmetry. Detection asymmetries calibrated from other data.

Results also extracted for $B \rightarrow D\pi$ mode, interference level expected to be ~ magnitude smaller

Statistical uncertainty dominant Description of background is the leading systematic uncertainty

$B \rightarrow D(\pi\pi)h$

$$A_K^{\pi\pi} = 0.128 \pm 0.037 \pm 0.012$$

Asymmetry same direction as KK mode Combined observation of CP violation

5σ

$B \rightarrow D[\pi K]h$

Sneha Malde

Comparison of results

Multi-body flavour specific D decays "ADS"

Sneha Malde

Measurements of coherence factor

Interference between mixing and decay

 $\kappa, \delta_D^{K3\pi}$ determined from time-dependent decay rates.

Measurements with CLEO data

- Study $\psi(3770) \rightarrow D^0 \overline{D^0}$ decays
- Key: C= -1 for $\psi(3770)$ at threshold
- Strong decay, C is conserved
- Hence the decays of D⁰ and D⁰ are quantum correlated
- This provides the interference to access the phase information
- Study rates where one D meson decays to K3π and the other to either a CP eigenstate.
- Rates are dependent on the κ and $\delta^{\text{K}3\pi}$
- Synergy between two measurement sensitive to different regions
- Strong phase measurements in other decay modes follow same principles

Results $D \rightarrow K3\pi$

 $A_{K}^{\pi K \pi \pi} = -0.313 \pm 0.102 \pm 0.038$

Complementary information to two body modes.

Multi-body self conjugate D decays "quasi-GLW"

Results $D \rightarrow 4\pi$

$$A_K^{\pi\pi\pi\pi} = 0.100 \pm 0.034 \pm 0.018$$

First use of this mode -possible due to measurements from CLEO

Self-conjugate D decays using Dalitz plot "GGSZ"

Dalitz Plot encodes all the kinematic information of the decay

Each point on the Dalitz plot represents a different value of r_{D} and δ_{D}

Value of F_{+} for certain self conjugate decays would be ~0.5

Hence inclusive treatment loses most of the sensitivity to $\gamma \rightarrow$ Analyse the Dalitz plot

Best standalone measurement of $\boldsymbol{\gamma}$

Two methods for accessing the D decay information

- D dalitz plot from B decay will be a superposition of D⁰ and D⁰
- It will differ between B⁺ and B⁻
- Differences are related to $r_B \delta_B$ and γ Two ways to deal with the varying r_D , δ_D

Model-independent GGSZ analysis

- Reduces to a counting experiment in bins of Dalitz Plot
- Bin definition designed to minimise statistical loss ~ 90% of sensitivity remains
- Bin yields + strong phase information → measurement of x and y

$$egin{aligned} x_{\pm} &\equiv r_B\cos(\delta_B\pm\gamma) \ y_{\pm} &\equiv r_B\sin(\delta_B\pm\gamma) \end{aligned}$$

$B \rightarrow D[Kshh]K (GGSZ)$

Separation (x_+, y_+) , (x_-, y_-) shows CPV

K_sππ and K_sKK decay modes (not shown) used. Signal yield ~2400

 $\gamma = (62^{+15}_{-14})^{\circ}$

Interplay between different modes

- ADS/GLW/q-GLW observables have non trivial trigonometric relations.
- Nuisance parameters $r_{_B} \, and \, \delta_{_B} \, common \, to all \, modes$
- Single solution selected by GGSZ modes
- No single mode dominates → necessary to follow all paths

Other B modes

- Favoured and suppressed decay both colour suppressed
- $r_{\rm B} \sim 0.3 \rightarrow$ Larger interference
- K* → K⁺π⁻, charge of kaon tags flavour of B at decay no need for time dependent analysis
- Yields at LHCb becoming viable for analysis
- ADS/GLW analysis already performed on full Run 1 dataset
- Different $r_{_B}$ and $\delta_{_B}$

Selection of $B^0 \rightarrow DK^*$

- Yields ~ 90 in $K_s \pi \pi$ and 10 in $K_s KK$
 - Twice yield of B factories
- Irreducible B_s backgrounds
- Width of K*(892) means nonresonant Kπ decays can contribute to signal peak
- Coherence factor dependent on selection
- |M(K*)-892| <50 MeV/c²;
- |cos(K helicity angle)|>0.4

GGSZ analysis

- Modified binning used for $K_s\pi\pi$ better for low yield channels
- K_sKK split into 2 bins

Sneha Malde

Determining observables

- Simultaneous fit to all bins to determine x, y
- Signal/background shapes fixed from first fit.
- Very few signal events per bin
- Example fit projection of one bin:

- Model dependent fit also performed - r_{D} and δ_{D} given by BaBar 2010 amplitude model

Results

- Good agreement between methods
- Uncertainties from
 external strong
 phase information
 are ~0.02 for x and
 ~0.05 for y.
- Both methods give $\sigma(\gamma)=20^{\circ}$

arXiv: 1605.01082

Combination results

$$\gamma = (72.2^{+6.8}_{-7.3})^{\circ}$$

- Frequentist combination using 'plugin' method. 71 observables and 32 parameters.
- More analyses than shown today
- Only " $B \rightarrow DK like$ " results included
- Only includes the 1fb⁻¹ $B_s \rightarrow D_s K$ result
- Improved precision compared to last combination (2014) by ~20%
- Good agreement with B factory results
- Bayesian interpretation is consistent

Belle: $\gamma = (73^{+15}_{-14})^{\circ}$

BaBar : $\gamma = (69^{+17}_{-16})^{\circ}$

Contribution from different modes

B_s decays

B⁰ decays

B⁺ decays

Combination

Common parameter is $\boldsymbol{\gamma}$

Necessary to pursue different B decays to provide crosschecks

Current measurements are dominated by statistical uncertainties

Sneha Malde

Run 1 \rightarrow Run 2

- 2015 collected 300 pb⁻¹ @ 13 TeV
- 2016 collected 1.7 pb⁻¹ @ 13 TeV
- Production cross section increases, improved particle identification, and slight improvements to trigger mean that yield per pb⁻¹ are 2-3 times larger in Run 2 (depending on decay mode)
- Starting to analyse new modes with Run 1 + Run 2 data especially ones that weren't viable with Run 1 only.
- Run 2 target is officially 4°
- $B^+ \rightarrow DK^{*+}$, where $K^{*+} \rightarrow K_S \pi$
 - Should have similar r_B to the usual $B^+ \rightarrow DK^+$ channel
 - However expect lower yields due to the K_s reconstruction efficiency

Signal well separated from any other physics background. High purity

Run 1 (3 fb⁻¹) + Run 2 (1 fb⁻¹). Yields in each data set are similar

Very exciting for the sensitivities we'd be able to achieve in other decay modes

ADS / GLW analysis

Not enough data to observe the supressed mode, or CPV.

Nonetheless remains promising for future due to high purity.

Sensitivity to γ

First CPV measurement to include Run 2 data

Add more D decays

In the future will provide a valuable cross check against other modes due to the lack of physics background.

γ and LHCb upgrade

- Full upgrade in LS2
- Allows for running at higher luminosity in 2021 onwards
- L0 hardware trigger \rightarrow software trigger
 - Increase trigger efficiency for hadronic modes
- Dominant experimental systematic uncertainties can be controlled
- External inputs will benefit from BES-III data

LHCb upgrade projection (50 fb⁻¹) for γ is 0.9° -- no showstoppers forseen

If nature is kind, this precision will allow for observation of New Physics

Measure CP violation in the interference of mixing and decay

Both decay amplitudes ~ $\lambda^3 \rightarrow$ Large interference Tree level process like other analyses shown Time-dependence increases the complexity of the analysis Flavour-tagging also required to know the flavour of the initial B_s state

CP observables

$$\begin{split} \frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} &= \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right. & \lambda_f \equiv \frac{q}{p} \left(\frac{\overline{A}_f}{A_f}\right) \\ &+ C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right], \\ \frac{\mathrm{d}\Gamma_{\overline{B}_s^0 \to f}(t)}{\mathrm{d}t} &= \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right] \\ &- C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right], \end{split}$$

$$\begin{aligned} \mathbf{A}_f \text{ is the decay amplitude for } \\ \mathbf{B}_S \text{ to decay to final state f} \end{split}$$

$$\begin{split} C_f = & \frac{1 - r_{D_sK}^2}{1 + r_{D_sK}^2}, \\ A_f^{\Delta\Gamma} = & \frac{-2r_{D_sK}\cos(\delta - (\gamma - 2\beta_s))}{1 + r_{D_sK}^2}, & A_{\overline{f}}^{\Delta\Gamma} = \frac{-2r_{D_sK}\cos(\delta + (\gamma - 2\beta_s))}{1 + r_{D_sK}^2}, & \beta_s \text{ - mixing phase} \\ S_f = & \frac{2r_{D_sK}\sin(\delta - (\gamma - 2\beta_s))}{1 + r_{D_sK}^2}, & S_{\overline{f}} = \frac{-2r_{D_sK}\sin(\delta + (\gamma - 2\beta_s))}{1 + r_{D_sK}^2}, & S_{\overline{f}} = \frac{-2r_{D_sK}\sin(\delta + (\gamma - 2\beta_s))}{1 + r_{D_sK}^2}, \end{split}$$

Signal/background discrimination

Three D_s^- decays considered: K-K+ π^- , $\pi^-\pi^+\pi^-$, K- $\pi^+\pi^-$: Plots show all D_s states combined Simultaneous fit in 3 variables: M(B_s), M(D_s) and PID variable on the Kaon from the B Allows for signal/background discrimination, and for determination of signal weights

Subsequent parts of the fit only parameterise the signal distributions with the use of the signal weights

Flavour tagging and time dependence

Efficiency of tagging an event ~ 65.7%

Effective tagging power ~ 5%

 $B^0_s
ightarrow D^-_s \pi^+$ decay-time

Time acceptance determined from $B_s \rightarrow D_s \pi$

Other physics inputs such as B_s mixing and lifetime, and lifetime difference fixed from other measurements

LHCb-CONF-2016-014

Fit results and interpretation on γ

CP parameter	Value	
C _f	$0.735 \pm 0.143 \pm 0.048$	
$A_f^{\Delta\Gamma}$	$0.395 \pm 0.277 \pm 0.122$	
$A_{\overline{f}}^{\Delta\Gamma}$	$0.314 \pm 0.274 \pm 0.107$	
Śf	$-0.518 \pm 0.202 \pm 0.073$	
$S_{\overline{f}}$	$-0.496 \pm 0.197 \pm 0.071$	

$$\gamma = (127^{+17}_{-22})^{\circ}$$

 $\delta_{D_s \kappa} = (358^{+15}_{-16})^{\circ}$
 $r_{D_s \kappa} = 0.37^{+0.10}_{-0.09}$

$B^0 \rightarrow DK\pi$ Dalitz plot analysis

- $B^0 \rightarrow DK^*$, $D \rightarrow CP+$, $K^* \rightarrow K\pi$ restricts the data to the K* resonance
- There is sensitivity to γ from the full B⁰ \rightarrow DK π decay in any K π resonance
- Amplitude fit of $B^0 \rightarrow DK\pi$ decay exploits interference between different resonant contributions
- Complex amplitudes of the DK* determined relative to flavour-specific D₂^{*}K
- γ measured from amplitudes and not rates → more information than standard GLW analysis
- New method of measuring γ

$B^0 \rightarrow DK\pi$ Dalitz plot analysis

Favoured ($D^0 \rightarrow K^+\pi^-$) mode:

$$A(m^{2}(D\pi), m^{2}(K\pi)) = \sum_{j=1}^{N} c_{j} F_{j}(m^{2}(D\pi), m^{2}(K\pi))$$

CP sensitive ($D^0 \rightarrow KK, \pi\pi$) modes:

 $c_j \longrightarrow \left\{ \begin{array}{cc} c_j & \text{for a } D\pi^- \text{ resonance}\,, \\ c_j \left[1 + x_{\pm,\,j} + i y_{\pm,\,j}\right] & \text{for a } K^+\pi^- \text{ resonance}\,, \end{array} \right.$

Signal yields

- To maximise statistical sensitivity data split in bins of MVA output
- Data shown with MVA bins combined weighted according to S/(S+B)
- 339+/-22 D→KK
- 168+/-19 D→ππ

Dalitz Plot fit

Fit projections of the D \rightarrow KK and D \rightarrow $\pi\pi$ samples combined Only results from K*(892) used Projections look very similar

Sneha Malde

Fit Results

B⁰ combination

- Due to low statistics the $B^0 \rightarrow DK\pi$ unable to select a single solution
- In combination with the GGSZ and previous ADS analysis start to constrain the parameters of interest

Model-independent GGSZ analysis

- Reduces to a counting experiment in bins of Dalitz Plot
- Bin definition designed to minimise statistical loss ~ 90% of sensitivity remains
- F_i determined from $B^0 \rightarrow D^* \mu \nu$ decays (flavour tagged)
- c_i and s_i external inputs from CLEO
- Arbitrary normalisation h_b means that insensitive to production asymmetries

Dalitz Plot efficiency

- Variation of efficiency on DP must be taken into account
- $B^0 \rightarrow D^*[D^0\pi] \mu\nu X$ used to determine F_i
- Small corrections required to take care of selection differences between control and signal decay
- Determined from simulation

Larger phasespace \rightarrow higher combinatorics

- Larger phasespace of the K π system leads to high combinatorics and larger amounts of physics bkgs.
- To avoid the need to cut hard data is divided into bin of NN output.
- Maximises the statistical sensitivity of the data

Combining results -LHCb inputs

	LHCb measurement	Type/ Dataset	Reference	
	B ⁺ →DK ⁺ D→2h,4h	ADS/(q-)GLW (3fb ⁻¹)	arXiv:1603.08993	
	В ⁰ → DKπ	Dalitz (3fb ⁻¹)	arXiv: 1602.03455	
	B ⁰ →DK* D→Ksππ	GGSZ MD (3fb ⁻¹)	arXiv: 1605.01082	
	B⁺→DK⁺ D→hhπ⁰	ADS/q-GLW (3fb ⁻¹)	PRD 91(2015) 112014	
	B⁺→DKππ, D→2h	ADS/GLW (3fb ⁻¹)	PRD 92 (2015) 112005	
	B^0 →DK* D→2h	ADS (3fb ⁻¹)	PRD 90 (2014) 112002	
	B⁺→DK D→K _s hh	GGSZ MI (3fb ⁻¹)	JHEP 10 (2014) 097	
	B⁺→DK, D→KsKπ	ADS (3fb ⁻¹)	PLB 733 (2014) 36	
	$B_s \rightarrow D_s K, D_s \rightarrow hhh$	Time dep (1fb ⁻¹)	JHEP 11 (2014) 060	

Results discussed today, new or updated since last combination (2014)

New results from 2015

Other $B \rightarrow DK$ 'like' results completed in 2014

Combing results-other inputs

Parameters	Source	Reference
Charm mixing and CPV in D→hh	HFAG	www.slac.stanford.edu/ xorg/hfag/charm/ index.html
к, δ _D : D→K3π, D→Kππ ⁰	LHCb & CLEO data	PLB 757 (2016) 520
κ, δ _D : D→K _s Kπ	CLEO data	PRD 85 (2012) 092016
CP fraction D \rightarrow 4 π , D \rightarrow hh π^0	CLEO data	PLB 747 (2015) 9
Strong phase information for D→K _s hh	CLEO data	PRD 82 (2010) 112006
Constraint on ϕ_s	LHCb data	PRL 114 (2015) 041801

Adding "B \rightarrow D π " like

B \rightarrow Dpi decays usually ignored as $r_{Dpi} \ll r_{DK}$ Don't like waste!

From CKM elements expect $r_{Dpi} \simeq 0.005$

With the D modes analysed available the $B \rightarrow Dpi$ and $B \rightarrow Dpipipi doesn't add$ much in sensitivity.

Aim to extend to other D modes to have a larger impact.

arXiv: 1611.03076

Contribution from different methods

Demonstrates the need to pursue all methods