

Exotics Searches at Colliders

Sinéad Farrington University of Edinburgh

Exotics Searches at Colliders Why and How?

Sinéad Farrington University of Edinburgh

When did Exotics Searches begin?

When did Exotics Searches begin?

S. Farrington, Univer

- Everything was an exotics search for a while
- Back to the beginning:
 - Electron, muon discovery, neutrino
- Then a several-decades-long phase of search and discovery, up to ~late 1960s

The Quark Model (1964)

- Alongside search and discovery ran efforts to organise the discovered particles into underlying patterns
 - Some false dawns, then the quark model representation
 - Based on 3 quarks (up, down, strange)

The GIM Mechanism (1970)

- (Glashow, Illiopoulos, Maiani)
- Questioned why there were no FCNC
 - Several false dawns also (23 predictions for R ratio!)
 - GIM mechanism suggested that the facts could be explained if a fourth quark existed (no experimental evidence at the time)

Time of Exploration and Surprises (1970s)

- J/ψ discovery (November revolution, 1974)
 - SPEAR (e+e- at SLAC), ASG (fixed target at Brookhaven)
 - Searching higher CoM energies in an open-minded way, scanning across energies, measuring R ratio

- Not immediately obvious what it was
 - Very narrow width implied lifetime 1000x longer than other known resonances
 - Decay to hadrons suppressed, leaves phase space to decay to leptons via EM
 - Spectroscopy (two weeks later found ψ)

And then the bosons were found

- These were searches for particles needed to complete the Standard Model (but this was not known for sure!)
 - Not "exotics"?
 - (The Higgs boson was the last such case, 2012)

Z boson (ppbar, 1983)

• SM particle content was then complete except for top quark (1995), tau neutrino (2000), Higgs (2012)

 LEP/SLC/Tevatron/LHC (as well as non-collider facilities) pursued an exotics program over the following decades
 From CDF Proposal (1981):

The discovery of any one of these objects would alter our concepts of physics in a fundamental way and would change the direction of the field, just as did the discovery of the ψ a few years ago.

While Nature may well be even more imaginative when it populating this new territory, we can still use comes to current theoretical ideas examples of the types for of phenomena possible. For instance, ideas on dynamical symmetry breaking of the weak interaction lead to complex spectra of new particles possessing а property of nature called new technicolor.

- Centauros, lepton and quark substructure, heavy quasi-stable particles
- SUSY not mentioned explicitly (Dynamic Symmetry Breaking is)

Supersymmetry

- SUSY stabilises the Higgs mass
 - Solves fine tuning
 - Provides dark matter candidate (lightest supersymmetric particle)
- Searches tend to involve long decay-chain signatures, low momentum particles, large missing energy – multiple signatures
- A useful framework for setting limits, even if it does not yield discovery

 LEP/SLC/Tevatron/LHC (as well as non-collider facilities) pursued an exotics program over the following decades
 From "Physics at LEP" (1986)

LEP will offer experi-

mentalists a new opportunity to find supersymmetric particles if they exist, or at least improve dramatically the present limits on their masses.

Supersymmetry is useful if the Higgs boson is elementary. An alternative is to make it composite, made of constituents bound together by some new interactions which become strong at an energy scale $\Lambda \sim 1$ TeV. In this technicolour [10] scenario, one expects to encounter many new technimesons and technibaryons with masses ~ 1 TeV.

Precision measurements, toponium, New heavy leptons/quarks, technicolour

• LEP/SLC/Tevatron/LHC (as well as non-collider facilities) pursued an exotics program over the following decades

From ATLAS Letter of Intent (1992) As a second benchmark one may use the search for particles of the Minimal Supersymmetric extension of the Standard Model (MSSM). In addition to signatures similar to the ones for the SM Higgs, one needs sensitivity to processes like:

 $\begin{array}{l} \mathbf{A} \to \tau^+ \tau^- \to \mathbf{e}\mu \mbox{ plus } \nu \mbox{'s} \\ \to \ell^{\pm} \mbox{ plus hadrons plus } \nu \mbox{'s}; \end{array}$

$$\begin{split} \Pi^{\pm} &\to \tau^{\pm} \nu \\ &\to 2 \text{ jets.} \end{split}$$

In particular Π^{\pm} searches from the reaction $t\bar{t} \rightarrow \Pi^{\pm} bW^{\mp}b$, are strongly enhanced by b-quark tagging as are t-quark studies in general. These processes are expected to have observable cross-sections even at lower luminosities ($10^{33} \text{ cm}^{-2}\text{s}^{-1}$).

Other LHC benchmark processes like Supersymmetry (SUSY) and effects of quark compositeness include as further signatures the missing transverse energy (E_T^{miss}) from undetected lightest stable SUSY particles (LSP) and deviations in the jet cross-section from the QCD expectations for very high p_T jets respectively.

• LEP/SLC/Tevatron/LHC (as well as non-collider facilities) pursued an exotics program over the following decades

From CDF Run II Technical Design Report (1996)

At the Tevatron+Main Injector, CDF II will search for new objects at and above the electroweak scale. There is at present a great deal of theoretical activity focussed on new phenomena in this regime, with predictions from models invoking supersymmetry, technicolor, and new U(1) symmetries. The magnitude of the top quark mass and speculation about an excess in the top cross-section have led to other theoretical predictions about phenomena well within our reach in Run II, such as topcolor. Search strategies for these

And now?

- What do we mean by exotics searches now why do we think that there is still New Physics to find?
 - Can safely argue that pre-1980 was a time of great exploration but it turns out in retrospect to have all been building towards the same conclusion – the Standard Model

Standard Model Shortcomings

- Standard Model: best-tested theory
 - Describes the fundamental particles and the interactions among them
- *But...*
 - 26 free parameters (compelling?)
 - Higgs mass appears to be unnaturally fine-tuned
 - Not possible to unify with gravity
 - Dark Matter/Energy
 - Effective theory? (c.f. Classical mechanics

➔ Special Relativity)

- Candidate overarching theories imply 'New Physics'
 - New fundamental particles
 - New fundamental interactions among them

Exotics Searches

- Search for those new fundamental particles and interactions
 - Often those searches are ~targeted at specific candidate theories
 - The choice of candidate changes over time
 - Archaeology on the proposal documents illustrates an openmindedness throughout the decades and an awareness of "theoretical biases"
- But much more than that: exploration as a goal in itself
 - A full exploitation of the LHC is open-mindedly to ask the question "what happens when hadrons collide"
 - Model-independence is a good goal
 - Signature-based searches

Model Independence Eur. Phys. J. C 77 (2017) 765

- An example of good practice:
- Set up a search to be sensitive to e.g. WIMPs

- Measure detector-corrected observables e.g. di-jet mass
 - These are re-interpretable
- Can still set limits in a model of choice as well:

How to search in practice?

• Prerequisite: Design a detector with sensitivity

How to search in practice?

• ATLAS is a General Purpose Detector (GPD)

How to search in practice?

• Some notable special design criteria for exotics given some classes of models e.g.

New Physics Search: Mass axis

Z' searches

- Balance theory/experiment (signature) motivations
- For example, Z' search

S. Farrington, University of Edinburgh

Z' searches

Go "exclusive": Require a b-jet (or veto b)

- Data are subsets of the Z' search: production with a b quark and production with explicitly no b-quark
 - Move to exclusive searches could reveal peaks where the inclusive distributions do not see them

JHEP 07 (2019) 117

ATLAS Exotics reach (so far)

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

 $\sqrt{s} = 8, 13 \text{ TeV}$

Status: May 2019

 $\int \mathcal{L} dt = (3.2 - 139) \, \text{fb}^{-1}$

	Model	ℓ,γ	Jets†	E ^{miss} T	∫£ dt[fb	- ¹] Limit	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$0 e, \mu$ 2γ $-$ $\geq 1 e, \mu$ $-$ 2γ multi-channe $0 e, \mu$ $1 e, \mu$ $1 e, \mu$	$\begin{array}{c} 1-4 \ j \\ \hline 2 \ j \\ \geq 2 \ j \\ \geq 3 \ j \\ \hline 2 \ J \\ \geq 1 \ b, \geq 1 \ J/ \\ \geq 2 \ b, \geq 3 \end{array}$	Yes - - 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mp 7.7 TeV $n = 2$ Ms 8.6 TeV $n = 3$ HLZ NLO Min 8.9 TeV $n = 6$ Min 8.2 TeV $n = 6$ Min 9.55 TeV $n = 6$ Gray mass 4.1 TeV $k/\overline{M}_{PI} = 0.1$ Gray mass 2.3 TeV $k/\overline{M}_{PI} = 1.0$ Gray mass 1.6 TeV $k/\overline{M}_{PI} = 1.0$ Gray mass 3.8 TeV $\Gamma/m = 15\%$ KK mass 1.8 TeV Tier (1,1). $\mathcal{B}(A^{(1,1)} \to tr) = 1$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} {\rm SSM} \ Z' \to \ell\ell \\ {\rm SSM} \ Z' \to {\rm tr} \\ {\rm Leptophobic} \ Z' \to bb \\ {\rm Leptophobic} \ Z' \to tt \\ {\rm SSM} \ W' \to \ell\nu \\ {\rm SSM} \ W' \to {\rm tr} \\ {\rm HVT} \ V' \to WZ \to qqq \ {\rm model} \ {\rm B} \\ {\rm HVT} \ V' \to WH/ZH \ {\rm model} \ {\rm B} \\ {\rm tr} \\ {\rm LRSM} \ W_R \to \mu M_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \\ \mbox{nulti-channe} \\ 2 \ \mu \end{array}$	- 2 b ≥ 1 b, ≥ 1J/ - 2 J ≥! 1 J	– – Yes Yes –	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV Z' mass 6.0 TeV W' mass 6.0 TeV W' mass 3.6 TeV V' mass 2.93 TeV V mass 2.93 TeV War mass 3.25 TeV W _R mass 5.0 TeV W _R mass 5.0 TeV	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e, μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	Λ 21.8 TeV η _{LL} Λ 40.0 TeV η _{LL} Λ 2.57 TeV C4t = 4π	1703.09127 1707.02424 1811.02305
MD	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac DM) $VV\chi\chi$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	0 e, μ Λ) 0 e, μ 0 e, μ 0-1 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, \ 0\mbox{-}1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	$\begin{tabular}{ c c c c c } \hline m_{med} & $1.55 {\rm TeV}$ & $g_q=0.25, \ $g_r=1.0, \ $m(\chi)$ = 1 {\rm GeV}$ \\ \hline m_{med} & $1.67 {\rm TeV}$ & $g=1.0, \ $m(\chi)$ = 1 {\rm GeV}$ \\ \hline m_{χ} & $700 {\rm GeV}$ & $m(\chi)$ < 150 {\rm GeV}$ \\ \hline m_{ϕ} & $3.4 {\rm TeV}$ & $y=0.4, \ $\lambda=0.2, \ $m(\chi)$ = 10 {\rm GeV}$ \\ \hline \end{tabular}$	1711.03301 1711.03301 1608.02372 1812.09743
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3' ^d gen Scalar LQ 3' ^d gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes – Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV $β = 1$ LQ mass 1.56 TeV $β = 1$ LQ ^u ₃ mass 1.03 TeV $\mathcal{B}(LQ^u_3 \to b\tau) = 1$ LQ ^d ₃ mass 970 GeV $\mathcal{B}(LQ^d_3 \to t\tau) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ\;TT\to Ht/Zt/Wb+X \\ VLQ\;BB\to Wt/Zb+X \\ VLQ\;BT_{5/3}\;T_{5/3} T_{5/3}\to Wt+X \\ VLQ\;Y\to Wb+X \\ VLQ\;B\to Hb+X \\ VLQ\;QQ\to WqWq \end{array} $	multi-channe multi-channe 2(SS)/≥3 e,μ 1 e, μ 0 e,μ, 2 γ 1 e, μ	el el 2 ≥1 b, ≥1 j ≥ 1 b, ≥ 1j ≥ 1 b, ≥ 1j ≥ 4 j	Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass1.37 TeVSU(2) doubletB mass1.34 TeVSU(2) doublet $T_{5/3}$ mass1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ Y mass1.85 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ B mass1.21 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ Q mass690 GeV $\mathcal{B}(Y \rightarrow Wb) = 1$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV only u* and d*, A = m(q*) q* mass 5.3 TeV only u* and d*, A = m(q*) b* mass 2.6 TeV d*, A = m(q*) u* mass 3.0 TeV A = 3.0 TeV u* mass 1.6 TeV A = 1.6 TeV	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	1 e, μ 2 μ 2,3,4 e, μ (SS 3 e, μ, τ - - = 13 TeV tial data	$ \geq 2j 2j - - - - - - - - - $	Yes - 3 TeV ata	79.8 36.1 36.1 20.3 36.1 34.4	N° mass 560 GeV N _R mass 3.2 TeV H ^{±±} mass 870 GeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV multi-charged particle mass 1.22 TeV monopole mass 2.37 TeV 10 ⁻¹ 1 10 Mass crate [TeV/]	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
*On †Sn	ly a selection of the available nall-radius (large-radius) jets a	mass limi are denote	its on new ed by the	v states letter j	s or phe (J).	Dents share 1 TeV 10 TeV	

Precision Measurements as a "search"

- Another way to search is to make precision measurements of already-discovered particles
 - This happened with W, Z, Higgs, b... you name it
 - e.g. W mass

Eur. Phys. J. C 78 (2018) 110

The Higgs

- •The Higgs search was not assured to turn up a H(125)
- •That search now yields searches
 - •For rare decays of the H(125)
 - •While the search for an extended Higgs sector continues

•Combined with a move towards precise and differential measurements tests the SM

•Ample room for something to turn up, this is the only fundamental scalar we know of, explore it.

New Physics Search: Mass axis

Alternative Axis: Lifetime

Alternative Axis: Lifetime

Why Long Lived Particles?

Foresight in CDF proposal in 1981:

Other new particles may have lifetimes sufficiently long to allow the observation of their decay vertices.

Why Long Lived Particles?

- Familiar case: b-hadrons
- Long-lived because
 - G_F is small (= W mass is large c.f. Q²)
 - Off-diagonal CKM matrix elements
 are small

- New Physics could be long-lived for the same reasons:
 - Massive propagators, small couplings
 - Lack of phase space
 - Inability to decay by a faster route
- It makes sense to search for these at the LHC to explore the full range of new physics that we can be sensitive to
 - It is part of a full exploitation of the LHC, many theories as benchmarks

Standard Model Particle Lifetimes

Prog.Part.Nucl.Phys. 106 (2019) 210-255

Theory Motivations

(The short answer is that many theories motivate LLPs, let's look at a few examples of how it has been realised so far.)

Experimental Considerations

The hardware and software of ATLAS and CMS were designed with broad goals in mind

• But long lived particle sensitivity was not a major design criterion

How do we detect LLPs at the LHC

- Bespoke reconstruction algorithms layered on top of standard ones, dedicated triggers in some cases
 - Sensitivity comes from a patchwork of methods

Current Coverage (ATLAS)

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: July 2019

ATLAS Preliminary

 $\int \mathcal{L} dt = (18.4 - 36.1) \text{ fb}^{-1} \sqrt{s} = 8, 13 \text{ TeV}$

Displaced Jets (Low EM fraction)

- Look at decays that happen outside the EM calorimeter
- Search motivated by long-lived scalars
 - LLP decays in the hadronic calorimeter
 - No associated tracks
 - Specialised trigger (shape and location of calo deposits)
 - Backgrounds
 - · Jets of neutral hadrons
 - Beam-induced backgrounds

Eur. Phys. J. C 79 (2019) 481

Displaced Jets (Low EM Fraction)

Current Coverage for LLP to tau

• Current efforts leave huge unexplored phase space (plot a couple of years old but the picture has changed little for taus)

- Special motivations for LLP to tau decays if new particles mix with Higgs, mass-dependent couplings arise
- ERC project on figuring out how we probe the rest of the phase space for taus (new hadronic tau ID, new triggers)

Tau ID

Tau hadronic decays $BR(\tau_h = 65\%)$ Tau ID Tau ID method(Boosted Decision Tree) $Currently trained on \gamma^* \tau\tau$ decaying promptly

Same arguments for hadronic tau trigger

Workshop on LLP to 3rd generation

Aiming at a model independent search for LLP decaying to tau

Held a workshop at Higgs Centre for Theoretical Physics to identify benchmark theories to target:

https://indico.ph.ed.ac.uk/event/59/timetable/#20191 120

Benchmarks include: Heavy neutral lepton, stau, FIMPs, Higgs to aa

Outlook

- Run 3 at the LHC and HL-LHC offer:
 - Possibly higher energy (13.5 TeV)
 - Higher luminosity, and luminosity levelling
 - New detector and software components
 - Allows smarter trigger decisions
 - Also an argument that as the doubling time lengthens, it is profitable to use the trigger bandwidth in novel ways
- Huge data rates combined with capacity to record and process them, provide us with an unprecedented opportunity to open up new phase-spaces
- With well-designed analyses, null searches are still valuable in constraining theories (and can be in perpetuity – factor out the detectors and be model-independent)
- History tells us to be prepared for surprises, and to be ready to find order in the chaos when surprises come along

LLP Link to 125 GeV Higgs

Current LHC Coverage: H to e/µ/j

Large areas of phase space are being ruled out at the LHC
But small lifetimes are difficult for the LHC; large lifetimes capped by detector dimensions
Work is ongoing to maximise the sensitivity across LHC experiments and beyond

Z' searches

Uncertainty source		Dielectron		Dimuon			
for m_X [GeV]	300	2000	5000	300	2000	5000	
Spurious signal	±12.5 (12.0)	±4.6 (10.8)	±0.1 (1.0)	±11.7 (11.0)	$\pm 3.8(3.5)$	±2.1 (2.2)	
Lepton identification	±1.6 (1.6)	±5.6 (5.6)	±5.6 (5.6)	±1.8 (1.8)	$^{+12}_{-10} \begin{pmatrix} +12\\ -10 \end{pmatrix}$	$^{+25}_{-20} \begin{pmatrix} +25\\ -20 \end{pmatrix}$	
Isolation	$\pm 0.3 (0.3)$	±1.1 (1.2)	±1.1 (1.1)	$\pm 0.4 (0.4)$	$\pm 0.4 (0.4)$	$\pm 0.4 (0.5)$	
Luminosity	±1.7 (1.7)	±1.7 (1.7)	±1.7 (1.7)	±1.7 (1.7)	±1.7 (1.7)	±1.7 (1.7)	
Electron energy scale	$^{-1.7}_{-4.0} \begin{pmatrix} +1.0\\ -1.8 \end{pmatrix}$	$^{-1.9}_{-6.0} \begin{pmatrix} +1.7\\ -2.9 \end{pmatrix}$	$^{+0.1}_{-0.4} (\pm 0.8)$	-	-	-	
Electron energy resolution	$^{+7.9}_{-8.3} \begin{pmatrix} +1.1\\ -0.9 \end{pmatrix}$	$^{+9.0}_{-11.8}$ $\begin{pmatrix} +0.7\\ -0.5 \end{pmatrix}$	$^{+0.4}_{-0.9} (\pm 0.1)$	-	-	-	
Muon ID resolution	-	-	-	$^{+0.8}_{-2.3} \begin{pmatrix} +0.3\\ -0.8 \end{pmatrix}$	$^{+0.9}_{-1.3} \begin{pmatrix} +0.7\\ -1.1 \end{pmatrix}$	$^{+0.6}_{-0.4} \begin{pmatrix} +0.5\\ -0.3 \end{pmatrix}$	
Muon MS resolution	-	-	-	$^{+2.8}_{-3.8} \begin{pmatrix} +1.0\\ -1.3 \end{pmatrix}$	$^{+3.2}_{-3.0} \begin{pmatrix} +2.6\\ -2.4 \end{pmatrix}$	±2.4 (2.1)	
'Good muon' requirement	-	-	-	$\pm 0.6 (0.6)$	$^{+9.0}_{-8.2}$ $\binom{+9.0}{-8.2}$	$^{+55}_{-35} \begin{pmatrix} +55\\ -35 \end{pmatrix}$	

ATLAS SUSY reach (so far)

ATLAS SUSY Searches* - 95% CL Lower Limits

Model	s	ignatur	e	∫ <i>L dt</i> [fb [−]	¹] M a	ass limit					$\sqrt{s} = 13$ Ie \ Reference
22 2V ⁰	0.e.u	2-6 iets	Fmiss	130	ã [10x Degen]			1	10	m(\tilde{v}^{0}) <100 CoV	
$qq, q \rightarrow q\chi_1$	mono-jet	1-3 jets	E_T^{miss}	36.1	\tilde{q} [1×, 8× Degen.]	0.43	0.71		1.9	$m(\tilde{q})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1711.03301
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ĝ ĝ		Forbidden	1	2.35 .15-1.95	$m(\tilde{\chi}_1^0)=0 \text{ GeV} \ m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e, μ ee, μμ	4 jets 2 jets	$E_T^{\rm miss}$	36.1 36.1	28 28			1.2	1.85	$\begin{array}{c} m(\widetilde{\chi}_1^0){<}800~\text{GeV} \\ m(\widetilde{g}){-}m(\widetilde{\chi}_1^0){=}50~\text{GeV} \end{array}$	1706.03731 1805.11381
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e, μ SS e, μ	7-11 jets 6 jets	$E_T^{\rm miss}$	36.1 139	Ĩ Ĩ			1.15	1.8	$m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV}$ $m(\tilde{g}) \cdot m(\tilde{\chi}_{1}^{0}) = 200 \text{ GeV}$	1708.02794 1909.08457
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\mathcal{X}}_1^0$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	88 88			1.25	2.25	$m(\widetilde{\chi}^0_1)$ <200 GeV $m(\widetilde{g})$ =300 GeV	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 139	$egin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & & $	Forbidden Forbidden	0.9 0.58-0.82 0.74		$m(\tilde{\chi}_{1}^{0})$ $m(\tilde{\chi}_{1}^{0})=200$	$\begin{array}{l} m(\tilde{\chi}^{0}_{1}) {=} 300 \mathrm{GeV}, BR(b \tilde{\chi}^{0}_{1}) {=} 1 \\ {=} 300 \mathrm{GeV}, BR(b \tilde{\chi}^{0}_{1}) {=} BR(b \tilde{\chi}^{1}_{1}) {=} 0.5 \\ \mathrm{GeV}, m(\tilde{\chi}^{\pm}_{1}) {=} 300 \mathrm{GeV}, BR(b \tilde{\chi}^{\pm}_{1}) {=} 1 \end{array}$	1708.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 <i>b</i>	$E_T^{\rm miss}$	139	$egin{array}{ccc} ilde{b}_1 & Forbidden \ ilde{b}_1 \end{array}$	0.23-0.48	().23-1.35	Δm(Δ	$\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}$)=130 GeV, m($\tilde{\chi}_{1}^{0}$)=100 GeV m($\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}$)=130 GeV, m($\tilde{\chi}_{1}^{0}$)=0 GeV	1908.03122 1908.03122
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$	0-2 <i>e</i> , <i>µ</i>	0-2 jets/1-2	$b E_T^{miss}$	36.1	\tilde{t}_1		1.0			$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	1506.08616, 1709.04183, 1711.11520
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e, µ	3 jets/1 b	E_T^{miss}	139	\tilde{t}_1	0.44-0.	.59			$m(\tilde{\chi}_1^0)=400 \text{ GeV}$	ATLAS-CONF-2019-017
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	$1 \tau + 1 e, \mu, \tau$	r 2 jets/1 b	E_T^{miss}	36.1	\tilde{t}_1			1.16		m(ti)=800 GeV	1803.10178
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e, µ	2 <i>c</i>	E_T^{miss}	36.1	č ≆	0.46	0.85			$m(\tilde{\chi}_1^0)=0 \text{ GeV}$	1805.01649
	0 <i>e</i> , <i>µ</i>	mono-jet	$E_T^{\rm miss}$	36.1	\tilde{t}_1 \tilde{t}_1	0.46				$ m(t_1, \vec{c}) - m(\tilde{\chi}_1^{\circ}) = 50 \text{ GeV} \\ m(\tilde{t}_1, \vec{c}) - m(\tilde{\chi}_1^{\circ}) = 5 \text{ GeV} $	1805.01649 1711.03301
$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 e,μ	4 <i>b</i>	E_T^{miss}	36.1	\tilde{t}_2		0.32-0.88		m(^j	$\tilde{\chi}_{1}^{0}$)=0 GeV, m(\tilde{t}_{1})-m($\tilde{\chi}_{1}^{0}$)= 180 GeV	1706.03986
$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ	1 <i>b</i>	E_T^{miss}	139	Ĩ ₂	Forbidden	0.86		$m(\tilde{\chi}_1^c)$	\tilde{t}_{1}^{0})=360 GeV, m(\tilde{t}_{1})-m($\tilde{\chi}_{1}^{0}$)= 40 GeV	ATLAS-CONF-2019-016
$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e, μ ee, μμ	≥ 1	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 139	$ \begin{array}{c} \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} \end{array} \hspace{0.5cm} \textbf{0.205} \end{array} $		0.6			$\mathbf{m}(\tilde{\chi}_{1}^{\pm})=0$ $\mathbf{m}(\tilde{\chi}_{1}^{\pm})-\mathbf{m}(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$	1403.5294, 1806.02293 ATLAS-CONF-2019-014
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 e, µ		$E_T^{\rm miss}$	139	$\tilde{\chi}_1^{\pm}$	0.42				$m(\tilde{\chi}_1^0)=0$	1908.08215
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	0-1 <i>e</i> ,μ	$2 b/2 \gamma$	E_T^{miss}	139	$\tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0$ Forbidden		0.74			$m(\tilde{\chi}_1^0)=70 \text{ GeV}$	ATLAS-CONF-2019-019, 1909.09226
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$	2 e, µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$		1.0			$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^{0}))$	ATLAS-CONF-2019-008
$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2 τ		E_T^{miss}	139	$\tilde{\tau}$ [$\tilde{\tau}_{L}, \tilde{\tau}_{R,L}$] 0.16-0.3	0.12-0.39				$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2019-018
$\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \! \rightarrow \! \ell \tilde{\chi}_1^0$	2 e, μ 2 e, μ	0 jets ≥ 1	E_T^{miss} E_T^{miss}	139 139	$\tilde{\ell}$ $\tilde{\ell}$ 0.256		0.7			$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\ell})-m(\tilde{\chi}_{1}^{0})=10 \text{ GeV}$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-014
ĤĤ, Ĥ→hĜ/ZĜ	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets	E_T^{miss} E_T^{miss}	36.1 36.1	<i>H</i> 0.13-0.23 <i>H</i> 0.3		0.29-0.88			$BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1$ $BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1$	1806.04030 1804.03602
Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1		0.46				Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
Stable g R-hadron		Multiple		36.1	ĝ				2.0		1902.01636,1808.04095
Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$				2.05 2.4	$m(\tilde{\chi}_1^0)$ =100 GeV	1710.04901,1808.04095
LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	εμ,ετ,μτ			3.2	ν̃ _τ				1.9	$\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$	1607.08079
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow W W / Z \ell \ell \ell \ell \nu \nu$	4 e,μ	0 jets	E_T^{miss}	36.1	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} [\lambda_{133} \neq 0, \lambda_{12k} \neq 0]$		0.82	1.33		m(X ⁰ ₁)=100 GeV	1804.03602
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow ga\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow gag$	4	-5 large-R je	ets	36.1	$\tilde{g} = [m(\tilde{\chi}_1^0) = 200 \text{ GeV}, 1100 \text{ GeV}]$			1.3	1.9	Large λ_{112}''	1804.03568
33,3 11.1.1 111		Multiple		36.1	ğ [$\lambda_{112}^{\prime\prime}$ =2e-4, 2e-5]		1.0	5	2.0	$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow t b s$		Multiple		36.1		0.55	5 1.0	5		$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$		2 jets + 2 l	6	36.7	$\tilde{t}_1 = [qq, bs]$	0.42 (0.61				1710.07171
$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 <i>e</i> ,μ 1 μ	2 <i>b</i> DV		36.1 136	\tilde{t}_1 \tilde{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k}	38-9]	1.0	0.4-1.45	1.6	$\begin{array}{l} BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\% \\ BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \ \cos\theta_t = 1 \end{array}$	1710.05544 ATLAS-CONF-2019-006
								1	1	1 1 1 1	
a selection of the available ma	iss limits on	new state	es or	1	0 ⁻¹			1		Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

EV

RPV

ATLAS Preliminary

Current Coverage (CMS)

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Displaced Jets (Low EM Fraction)

 Multi layer perceptron trained to estimate LLP decay position

- Per-jet BDT (classify among QCD/signal, beam induced background)
- Per-event BDT (eliminate beam induced background)
- ABCD method to calculate remaining QCD background

Tau Trigger

To maximise the sensitivity to LLP decays to third generation need to use fully hadronic decay modes

- Trigger currently allows only up to |d₀| < 2 (then 4 later in run 2) mm
 - Train MVA trigger for long-lived taus

Combine new τ_{h} trigger and ID

Scalar + b

