SEARCH FOR THE MAGNETIC MONOPOLE AT ATLAS

Sergey Burdin The University of Liverpool HEP Seminar @ University of Birmingham Oct 2, 2013

Outline

- Motivation
- Past searches
- Monopole interactions with matter
- Search at ATLAS
- Prospects

History

- One of the longest searches in physics
- "Epistola de Magnete" by Petrus Peregrinus
 - Characterization of magnets
 - Magnets have two poles

so that the two make but one by nature. In the case of this wonderful lodestone this may be shown in the following manner: Take a lodestone which you may call A D, in which A is the north pole and D the south; cut this stone into two parts, so that you may have two distinct stones; place the stone having the pole A so that it may float on water and you will observe that A turns towards the north as before; the breaking did not destroy the properties of the parts of the stone, since it is homogeneous; hence it follows that the part of the stone at the point of fracture, which may be marked B, must be a south pole; this broken part of which we are now speaking may be called A B. The

Maxwell's Equations

$$\begin{aligned} \vec{\nabla} \cdot \vec{E} &= \rho_{\rm E} \\ \vec{\nabla} \cdot \vec{B} &= \rho_{\rm M} \\ \vec{\nabla} \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} + \vec{j}_{\rm M} \\ \vec{\nabla} \times \vec{B} &= \frac{\partial \vec{E}}{\partial t} + \vec{j}_{\rm E} \end{aligned}$$

Charge quantization

- The existence of even one magnetic monopole would explain charge quantization (Dirac 1931)
- A static system of an electric and a magnetic monopoles separated by a distance r possesses angular momentum
- Quantization of angular momentum → charge quantization

$$\frac{ge}{\hbar c} = \frac{n}{2}; \quad n = 1, 2, \dots$$

$$g = ng_D \Longrightarrow \frac{g_D}{e} = \frac{\hbar c}{2e^2} = \frac{1}{2\alpha} \approx 68.5$$

If the free electric charge is e/3, g_D is larger

Magnetic Monopoles in theory

- In GUTs, monopoles are the solitons of the GUT broken symmetries ('t Hooft & Polyakov)
 - Monopole mass ~ scale of GUT breaking
- Fermionic and bosonic monopoles predicted in the breaking of supersymmetric theories (Argyres & Douglas, Seiberg & Witten)
 - Monopole mass ~ scale of SUSY breaking
- Monopole condensation has been proposed for EWSB (Csaki & Shirman & Terning) ⇒ origin of mass
 - Monopoles are the solitons of a new magnetic force
 - Monopole mass ~ monopole condensation scale ~electroweak scale

Past searches for magnetic monopoles

- Magnetic monopoles trapped in beampipes
 <u>HERA, CDF/DØ beam-pipe</u>
- Direct collider searches for monopoleantimonopole pairs
 - LEP: OPAL, MODAL
 - Tevatron: CDF (DØ)
- GUT magnetic monopoles
 - MACRO, SLIM, RICE, AMANDA, Baikal, etc.
- Polar rocks Bendtz et al. PRL 110 (2013) 121803

First Results from a Superconductive Detector for Moving Magnetic Monopoles

Blas Cabrera

Physics Department, Stanford University, Stanford, California 94305 (Received 5 April 1982)

17 May 1982

S. Burdin - Search for Magnetic Monopole 2 Oct 2013

Summary of past astrophysical searches

Experiment	Mass Range	β range	Flux Upper Limit	Detection Technique
	$({ m GeV/c^2})$		$(\mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1})$	
AMANDA II Upgoing [26]	$10^{11} - 10^{14}$	0.76 - 1	$8.8-0.38 imes 10^{-16}$	Ice Cherenkov
AMANDA II Downgoing [26]	$10^8 - 10^{14}$	0.8 - 1	$17-2.9 imes 10^{-16}$	Ice Cherenkov
AMANDA II (catalysis) [27]	$> 10^{11}$	$\simeq 10^{-3}$	$5 imes 10^{-17}$	Ice Cherenkov
Baikal [28]	$10^7 - 10^{14}$	0.8 - 1	$1.83-0.46\times 10^{-16}$	Water Cherenkov
Baikal (catalysis) [29]	$5 imes 10^{13}$	$\simeq 10^{-5}$	$6 imes 10^{-17}$	Water Cherenkov
ANTARES [30]	$10^7 - 10^{14}$	0.65 - 1	$9.1-1.3 imes 10^{-17}$	Water Cherenkov
Super-Kamiokande (catalysis) [31]	$> 10^{17}$	$10^{-5} - 10^{-2}$	$8\times 10^{-27} - 3\times 10^{-22}$	Water Cherenkov
MACRO [32]	$5\times 10^8 - 5\times 10^{13}$	$>5 imes10^{-2}$	$3 imes 10^{-16}$	Scint.+Stream.+NTDs
MACRO [32]	$> 5 imes 10^{13}$	$> 4 \times 10^{-5}$	$1.4 imes 10^{-16}$	Scint.+Stream.+NTDs
MACRO (catalysis) [33]	$5 imes 10^{13}$	$>4 imes10^{-5}$	$3-8\times 10^{-16}$	Sctreamer tube
OHYA [34]	$5\times 10^7 - 5\times 10^{13}$	$>5 imes10^{-2}$	$6.4 imes10^{-16}$	Plastic NTDs
OHYA [34]	$>5 imes10^{13}$	$> 3 imes 10^{-2}$	$3.2 imes 10^{-16}$	Plastic NTDs
SLIM [20]	$10^{5} - 5 imes 10^{13}$	$> 3 imes 10^{-2}$	$1.3 imes10^{-15}$	Plastic NTDs
SLIM [20]	$>5 imes10^{13}$	$>4 imes10^{-5}$	0.65×10^{-15}	Plastic NTDs
MICA [35]	_	$10^{-4} - 10^{-3}$	$\sim 10^{-17}$	NTD
INDU Combined [9,18]	$> 10^{5}$	_	$2 imes 10^{-14}$	Induction

Summary of past Collider searches

MoEDAL

- New experiment at CERN starts taking data in 2015
- Passive detectors around LHCb collision point
 - Nuclear Track
 Detectors
 - Thin plastic foils
 - Track-etch technique
- Trapping Detectors
 Also sensitive to massive charged particles Z/β>~5

Classic dirac monopoles

- Point-like particle
 - Assume spin ¹/₂
- Magnetic charge

$$g = ng_D \Rightarrow \frac{g_D}{e} = \frac{\hbar c}{2e^2} = \frac{1}{2\alpha} \approx 68.5$$

Magnetic coupling

$$\alpha_{mm} = \frac{\left(g\beta\right)^2}{\hbar c} = \frac{1}{4\alpha}\beta^2 \sim 34.25$$

Magnetic charge is conserved like electric charge
 Iowest mass magnetic monopole should be stable

Monopole Production Mechanism

- Coupling constant $\alpha_{mm} \sim 34 \Rightarrow$ no perturbative expansion Often modelled by Drell-Yan pair production
 - Calculation of cross-section derived from electron-electron scattering using naïve substitution e→gβ (cf. Milton, Schwinger, Kurochkin *et al.*)
 - Theoretical uncertainties are large, with no prospect of significant improvement

ATLAS Detector

Transition Radiation Tracker and LAr Calorimeter

Transition Radiation Tracker (TRT)

- Drift-tube straws filled with Xe gas
- Surrounded by radiator foils
 - Transition radiation photons deposit additional energy
- Two readout thresholds
 - **1**. Low threshold (LT) for tracking
 - 2. High threshold (HT) for electron identification
- Large energy deposits from monopole and multiple δ-rays yield HT TRT hits

LAr Electromagnetic Calorimeter

- Second of three layers has best spatial resolution
- Ionizing particles in liquid argon create electron-ion pairs
- The electric field E_D = 10 kV/cm is applied to collect ionization electrons
 - Scale charge appropriately to determine energy deposited

Monopole Energy loss

$$-\frac{dE}{dx} = \frac{4\pi e^2 g^2}{m_e c^2} N_e \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I} \right) + \frac{K(|n|)}{2} - \frac{1}{2} - \frac{\delta}{2} - B(|n|) \right]$$

- Ionization dominates:
 (ze_{eq})²=(gβ)²
- For β=1 :

 $(dE/dx)_{mm} = 4700 (dE/dx)_{m.i.p.}$

- Highly Ionizing Particle (HIP)
 - Narrow high-energy deposits
 - Lots of δ-rays near trajectory

S.P. Ahlen, Phys. Rev. **D14**, 2935 (1976); **D17**, 229 (1978); Rev. Mod. Phys. **52**, 121 (1980).

Equations of Motion

 Monopoles accelerated by magnetic field ⇒ bend in r-z plane but is straight in r-φ

Monopole Signature

- Straight r-φ track in the tracker
- Monopoles are highly ionizing
- Presence of many δ-rays
 - → lots of TRT high threshold hits
- Ionization dominates dE/dx
 - → No LAr calorimeter shower
 - → Narrow energy deposit

Analysis Strategy

- Search for straight r-φ track in the tracker
 - Many hits from δ -rays confuse standard tracking algorithm
 - Too many tracks are found
 - Use special reconstruction algorithm
 - Take only TRT hits for simplicity
 - Prove that hits from low energy δ-rays are understood
- Search for narrow cluster in the LAr calorimeter
 - Calibrate the LAr calorimeter recombination correction for highly ionizing particles using published heavy ion data
- Derive data-driven background estimate using ABCD method

Analysis Strategy

- Want model-independent result as much as is possible
 - Use single-particle Monte Carlo (MC) samples to get
 E_K vs η efficiency maps
 - Extract a cross-section limit for monopoles produced in a given E_Ksinθ vs η range (*fiducial region*) where efficiency is high
- To set a mass limit and compare to CDF result [PRL96, 201801(2006)]
 - Assume Drell-Yan pair-production
 - Efficiency determined by kinematics
 - Cross-section prediction (with large uncertainties)

Monopole Monte Carlo Simulation

- Implement full GEANT₄ simulation of magnetic monopoles
 - Equations of motion
 - Ionization
 - δ-ray production
 - LAr recombination correction for highly ionizing particles

No Bending in $r-\phi$ Plane

S. Burdin - Search for Magnetic Monopole 2 Oct 2013

Bending as Expected in r-z Plane

S. Burdin - Search for Magnetic Monopole 2 Oct 2013

Recombination in LAr Calorimeter

- Some electron-ion pairs may recombine
 - Electrons that have recombined will not be collected by electrodes ⇒ ionization signal is reduced and energy deposition is underestimated
- Birks' Law describes electron-ion recombination effects

$$E_{vis} = E_0 \frac{1}{1 + k} (E_D \rho_{LAr}) \frac{dE}{dx}$$

J. B. Birks, Proc. Phys. Soc A64 (1951) 874.

 Default Birks' constant measured with ICARUS LAr Time Projection Chamber using cosmic ray muons and protons

 $k = 0.0486 \pm 0.0006 (kV/cm)(g/cm^2)/MeV$

S. Amoruso *et al.*, NIM A523, 275 (2004).

 \rightarrow over-suppresses signal at high dE/dx

Extending Birks' Law to HIPs

- Used GEANT4 to simulate heavy ion beams traversing a box of LAr
- Compared simulation to published experimental heavy ion results

lon property	Н	Не	Ne	Fe	La	Au
Charge (e)	1	2	10	26	57	79
Mass (GeV/ c^2)	0.93885	3.7284	18.797	52.019	129.390	183.473
Kinetic energy (GeV)	1.048	4.1627	12.370	39.371	169.46	171.36
<i>dE/dx</i> (MeV/cm)	2.235	8.95	259.26	1655	7750	16 200
dE/dx (MeV/cm) (our simulation)	1.895	7.42	223.28	1470	6218	13 141

- 1. E. Shibamura *et al.*, Nucl. Instrum. Meth. A260, 437 (1987).
- 2. T. Doke *et al.*, Nucl. Instrum. Meth. A235, 136 (1985).
- 3. H.J. Crawford *et al.*, Nucl. Instrum. Meth. A256, 47 (1987).

Heavy ion Data-Simulation Comparison

- MC significantly underestimates visible energy for high dE/dx
- Parameterize this discrepancy for HIP visible energy correction

HIP Correction to Birks' LAW IN LAR

- Use published heavy ion data in LAr to derive HIP

correction

Burdin, Horbatsch & Taylor, <u>Nucl. Instrum. Meth. A664 (2012)</u>
 <u>111</u>.

δ -Rays in the TRT

Propagation and dE/dx of low energy δ electrons in TRT simulation have been validated by comparison of the simulation to teststand measurements done by A.Romaniouk in 1995

Monte-Carlo Samples

Signal samples

- Single particle samples for m=200-1500 GeV/c²
- MadGraph Drell-Yan samples for m=200-1200 GeV/c²
- Background samples
 - Dijet events of various transverse momentum ranges
 - □ Z→ee, W→ev
 - γ+jets
 - t-tbar

Monopole Reconstruction

- Use electron trigger of 6o GeV threshold
- Look for narrow cluster in LAr calorimeter
- Count number of TRT hits in window around cluster
 - Select events where the number of TRT hits and the fraction of HT hits are above some threshold

Final Selection Variables

• EM cluster size σ_R

 $\sigma_{\phi}^{2} = \sum \left(E_{i} \delta \phi_{i}^{2} \right) / \sum E_{i} - \left[\sum \left(E_{i} \delta \phi_{i} \right) / \sum E_{i} \right]^{2}$ $\sigma_{\eta}^{2} = \sum \left(E_{i} \delta \eta_{i}^{2} \right) / \sum E_{i} - \left[\sum \left(E_{i} \delta \eta_{i} \right) / \sum E_{i} \right]^{2}$ $\sigma_{R} = \sqrt{\sigma_{\phi}^{2} + \sigma_{\eta}^{2}}$

 High-threshold TRT hit fraction

 $f_{\rm HT}$ =nHTTRT/nTRT

No events in the signal region

No events observed in 2 fb⁻¹
 →n_A=0, n_B=5, n_C=16, n_D=7001
 Expected background in the signal region A: μ_{bkg}=0.022±0.018

S. Burdin - Search for Magnetic Monopole 2 Oct 2013

Efficiencies (Includes ACCEPTANCE)

Drell-Van	Mass (GeV)	200	500	800	1000	1200
	Efficiency	0.011	0.048	0.081	0.095	0.095
events	Relative uncertainty Upper (%) Lower (%)	+32 -36	+24 -23	$+22 \\ -22$	+23 -25	$^{+20}_{-25}$

Results

- Given no data events observed in the signal region the CLs method yields 95% CL limits for different monopole masses distributed around 3 events
 - Converted to crosssections using either number of expected signal events in case of the DY production mechanism or directly using efficiency (80%) and luminosity in the case of the modelindependent production mechanism

Drell-Yan mass limit

Future monopole searches at ATLAS

- A new trigger was introduced in September 2012 to select magnetic monopoles
 - Uses a reconstruction algorithm similar to 2011 analysis
 - L1 EM threshold is reduced to 18 GeV → better efficiency for lower energy monopoles
- Extend search to higher magnetic charges, dyons, spin-O
- A proposal for a TRT-based L1 hardware trigger is being prepared

Collider cross-section limits

Prospects for LHC searches (after ~2 years @14TeV)

Comparison to the first results from MoEDAL

 First results from MoEDAL Magnetic Monopole Trapper were presented by Philippe Mermod (University of Geneva) at the EPS2013

Conclusion

- First LHC search for monopole has been published (PRL 109 261803 (2012))
 - We set the reference
- No magnetic monopole yet but
- "one would be surprised if Nature had made no use of it." (Dirac, 1931)