

Review of CMS results and upgrade plans

University of Birmingham Particle Physics seminar

Samuel Webb

samuel.webb@cern.ch

Samuel Webb (Imperial College London) - Birmingham seminar - 16.10.19

Current Detector

CMS HL-LHC Upgrade

Technical proposal CERN-LHCC-2015-010 https://cds.cern.ch/record/2020886 Scope Document CERN-LHCC-2015-019 https://cds.cern.ch/record/2055167/files/LHCC-G-165.pdf

L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2283192

- https://cds.cern.ch/record/2283193
- Tracks in L1-Trigger at 40 MHz PFlow-like selection 750 kHz output
- HLT output 7.5 kHz

Calorimeter Endcap

https://cds.cern.ch/record/2293646

3D showers and precise timing

· Si, Scint+SiPM in Pb/W-SS

https://cds.cern.ch/record/2283187 timing for e/y at 30 GeV ECAL and HCAL new Back-End boards

Barrel Calorimeters

MIP Timing Detector

Precision timing with:

https://cds.cern.ch/record/2296612

 Barrel layer: Crystals + SiPMs Endcap layer: Low Gain Avalanche Diodes

Muon systems

ECAL crystal granularity readout at 40 MHz with precise

- https://cds.cern.ch/record/2283189
- DT & CSC new FE/BE readout RPC back-end electronics
- New GEM/RPC 1.6 < n < 2.4
- Extended coverage to n ≃ 3

Beam Radiation Instr. and Luminosity, and Common Systems and Infrastructure https://cds.cern.ch/record/202 0886

Tracker https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to n ~ 3.8

New paradigms (design/technology) for an HEP experiment to fully exploit HL-LHC luminosity

Proposed upgrades for **High-luminosity LHC**

Samuel Webb (Imperial College London) - Birmingham seminar - 16.10.19

Run 2 Outline

- 2015-2018
- Proton-Proton centre of mass energy 13 TeV (7/8 TeV in run 1)
- Higher instantaneous and integrated luminosity

Physics outline

- Focus on 4 or 5 recent analyses performed with run 2 data at CMS
- Description quite high-level, with focus on motivation and conclusions

Samuel Webb (Imperial College London) - Birmingham seminar - 16.10.19

Imperial College London

Higgs physics

- Run 1: Discovery of Higgs boson, using decays to bosons
 - H \rightarrow WW
 - $H \rightarrow Z Z$
 - $(\mathsf{H} \not \rightarrow \gamma \gamma)$
- Run 2: Establish couplings to 3rd generation fermions
 - $H \rightarrow \tau \tau$ $H \rightarrow b \bar{b}$
- Coupling directly proportional to mass

square of mass

Coupling proportional to

- And initial results on couplings to 2nd generation fermions
 - H→cō
- High-Lumi LHC

W. Adam, EPS conference

Higgs self-coupling

ttH (H→bb)

https://cds.cern.ch/record/2675023

- Associated production of Higgs boson with tt pair
- Higgs Coupling strength proportional to fermion mass, "Yukawa coupling"
 - Top heaviest known Fermion
 - Direct access to coupling strength
 - Unlike indirect measurements e.g:

- ttH observed last year (multiple Higgs decay modes): PRL 120 (2018) 231801
- H→bb observed last year (multiple production modes): PRL 121 (2018) 121801

tītH (H→bb̄)

Classify events based on W decays to maximise sensitivity

- Both W decay to hadrons
 - Largest background: Multijet
- 1 W decays to hadrons, 1 to leptons
 - Largest background: tt + jets
- Both W decay to leptons
 - Largest background: tt + jets

Further classify by number of jets and b-jets

Several multivariate techniques are used to discriminate signal + background, e.g:

- Artificial Neural Network (ANN)
- Boosted Decision Tree

tītH (H→bb̄)

Largest uncertainties:

- uncertainty in the signal tt
 tt
 H, and background tt+bb
 tt+cc
 cross-sections
- b-tagging scale factors

Plot shows the signalstrength, i.e. ratio of the observed signal to the standard model expectation

Observed significance of 3.7σ above backgroundonly hypothesis, (3.9 when combined with 2016 data)

VH (H→cō)

- Probe Higgs decay to secondgeneration fermions
 - H → cc̄ branching ratio 20x
 smaller than H → bb̄
 - Could be significantly modified by new physics
- Associated production with W/Z boson
 - $W \rightarrow \ell v, Z \rightarrow v v, Z \rightarrow \ell \ell$

С

VH (H→cō)

- Two separate searches, then combined
 - Resolved jets
 - Low p_T Higgs
 - Merged jets
 - High p_T Higgs
- Jet identification crucial feature in each case
 - Multiclassifier DeepCSV to identify charm jets
 - Harder than b-jet identification (lighter)
 - Soft drop substructure technique: Remove soft wide angle radiation
- Backgrounds
 - V+jets, tt

Signal curve x 100

Imperial College London

VH (H→cō)

$H \rightarrow Invisible$

Standard Model process: branching ratio only 0.001

- CMS
- Search for invisible decays of Higgs Boson
- Small decay to invisible (neutrinos) in the SM
 - New physics scenarios predict enhancements
 - Axions, light Higgs, extra dimensions ...
 - Interplay between measurement and search
- Vector Boson Fusion (VBF) topology most sensitive
 - Suppresses most SM backgrounds

$H \rightarrow Invisible$

- between jets Large $\Delta \phi$ between jet and invisible
 - Exploit topology of VBF events to greatly reduce background
 - Largest residual backgrounds from
 - $Z \rightarrow vv$ and $W \rightarrow lv$
 - Both VBF and 'QCD' processes contribute

$H \rightarrow Invisible$

35.9 fb⁻¹ (13 TeV)

Di-jet mass most sensitive variable – signal peaks at high di-jet mass

$H \rightarrow Invisible$

95% CL Upper limit on branching ratio of $0.33 \rightarrow 0.19$ when combined with other existing data

Strong constraints on 'Higgs-portal' models (stable dark matter particle couples to SM Higgs boson)

Rare Standard Model processes

- Even with the large Run 2 data set, certain Standard Model processes are still very rare
- Two analyses interesting to look at:

WW production from double parton scattering: 1909.06265

4 top production

Measurement/search is sensitive to the Higgstop Yukawa coupling (set limits) and also to new heavy scalar and pseudoscalar bosons

- Measurement of a rare Standard Model process
 - Search for deviations which might show hints of new physics
- Generally decays to 4 b-quark jets, + 4
 W (further decay to leptons/light jets)
- Main backgrounds
 - $t\bar{t} + W$, $t\bar{t} + Z$, $t\bar{t} + \gamma$, $t\bar{t} + H(WW)$
- Cut-based analysis
 - Events classified according to: N_{jet},
 N_{bjet}, N_{lepton}
- BDT classifier
 - Additional variables such as missing energy and scalar sum of jet energy

1908.06463

4 top production

- Largest uncertainties from
 - Limited number of data events (low background analysis)
 - Normalisation of backgrounds
 - Additional scaling to correct from mismodelling in MC
 - Jet energy scale / resolution
 - Identification of b-jets

Excess over background prediction

- Measured signal with significance of 2.6σ
- Cross-section measurement 12. 6^{+5.8}_{-5.2} fb
 - SM prediction $12.0^{+2.2}_{-2.5}$ fb

4 top production

Limit on Higgs-top Yukawa couplings

- On shell (assuming off-shell is SM)
 - From scaling tī+H background
 < 1.7 x SM (shown on plot)
- Off shell (assuming on-shell is SM)
 - From virtual Higgs diagram
 < 1.8 x SM

Limits set on new heavy Higgs boson

Samuel Webb (Imperial College London) - Birmingham seminar - 16.10.19

Imperial College London

 $q^{(p1)}$

 $q^{(p1)}$

 $\overline{q}'^{(p2)}$

 $\overline{a}'^{(p2)}$

Double parton scattering (DPS)

- Two hard scatters of partons within proton-proton collision
 - Test of dynamics of partons with the proton

ρ±

 ℓ^{\pm}

 ν

ν

Important background in searches for new physics

Same sign WW production promising process to study DPS

 W^{\pm}

 W^{\pm}

At leading order same-sign Single Parton Scattering (SPS) has **two additional jets**

 W^{\pm}

 W^{\pm}

q

W±

W±

Double parton scattering (DPS)

- Absence of additional jets reduces
 the SPS background
- Largest residual backgrounds from
 - WZ production, decaying to leptons – genuine same-sign leptons
 - One lepton from Z is emitted outside of the acceptance
 - Non prompt leptons (e.g. QCD multi-jet, W+jets)

Two separate multivariate classifiers used to discriminate between these types of background

Double parton scattering (DPS)

First measurement of DPS WW cross-section

Observed significance of **3.9** σ

- 1.41 ± 0.28 (stat) ± 0.28 (syst) pb
 - Largest systematic uncertainty from estimation of nonprompt lepton contributions

London

Imperial College

High-luminosity LHC

- Planned upgrade to LHC:
 - Increased luminosity typically 140-200 protonproton interactions per bunch crossing
 - Up to 250 fb⁻¹ per year yielding ~3000 fb⁻¹ by end of run
 - Starting ~2026

Motivation – Higgs physics

ATLAS 36.1 fb⁻¹ [JHEP 01(2018)055]

with YR18 syst. uncert.

2000

 M_{h}^{125} scenario

2500

14 TeV

CMS 35.9 fb⁻¹ [JHEP 09(2018)007]

1000

1500

 M_A [GeV]

 $M_h \neq (125 \pm 3) \text{ GeV}$

Large statistics will

25

3000

Motivation – SM physics

- Precise measurement of weak mixing angle can help resolve discrepancy between LEP and SLD results
- Single measurement as good as current world average (PDF uncertainty still dominates)

- W boson mass uncertainty of 7 MeV (current world average 12 MeV)
- Higher statistics
- Increased constraint of PDFs (extended leptonic coverage)

Motivation – Beyond the SM

 Will be able to reach ~500 GeV for discovery

 Searches for Dark Matter will have a much improved discovery reach - on the order of a TeV when using the monojet + missing energy signature

System should cope with higher radiation and more collisions per bunch crossing

CMS HL-LHC upgrades

Technical proposal CERN-LHCC-2015-010 https://cds.cern.ch/record/2020886 Scope Document CERN-LHCC-2015-019 https://cds.cern.ch/record/2055167/files/LHCC-G-165.pdf

L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2283192 https://cds.cern.ch/record/2283193

- Tracks in L1-Trigger at 40 MHz
- PFlow-like selection 750 kHz output
- HLT output 7.5 kHz

Endcap Calorimeter (HGCal)

https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Tracker https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $n \simeq 3.8$

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/y at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < <u>n</u> < 2.4
- Extended coverage to n ≃ 3

Beam Radiation Instr. and Luminosity, and Common Systems and Infrastructure <u>https://cds.cern.ch/record/202</u> 0886

MIP Timing Detector https://cds.cern.ch/record/2296612

Precision timing with:

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

Common Off-detector Electronics Technology -

- Prototype ATCA card (Advanced Telecommunications Computing Architecture) to provide back-end electronic services for CMS: Serenity
 - Flexible, dual FPGA card
 - Flexible, pluggable FPGA units
 - Generic, open processing platform
- Originated out of the UK CMS collaboration
- Backend electronics for:
 - HGCal trigger and DAQ
 - Outer-tracker readout,
 - L1 trigger

7Tb/s: 288 fibres @ 25Gb/s

Samuel Webb (Imperial College London) - Birmingham seminar - 16.10.19

Imperial College London

Tracker upgrade

Tracking in the Level-1 trigger

Imperial College

- Better trigger selectivity needed to exploit high luminosity ۲
 - Better p_T resolution, e-y discrimination
- Inclusion of data from the Outer Tracker at 1

The vast majority of tracks have low p_{T} and can be discarded from L1

London

FPGA based track-finder

- Two silicon sensors • with small spacing in a module
- **One ASIC correlates** • data from both sensors selecting tracker "stubs"

Tracking in the Level-1 trigger

Samuel Webb (Imperial College London) - Birmingham seminar - 16.10.19

High-granularity end-cap calorimeter (HGCal)

- Very high fluence and absorbed dose in forward region
 - Silicon sensors for the bulk of the calorimeter
 - Plastic scintillator tiles at the rear

Samuel Webb (Imperial College London) - Birmingham seminar - 16.10.19

High-granularity end-cap calorimeter (HGCal)

Physics motivation Boosted topologies become more relevant Need for high-granularity Fine longitudinal readout segmentation

- Good performance at high η (complements tracker upgrade)
- Exploit VBF production

14 GeV p_T photons at η =2.4 with 3 cm separation

34

High-granularity end-cap calorimeter (HGCal)

Hexagonal silicon cells, to make most efficient use of circular silicon wafers

Advantages of high granularity

Advantages of high granularity - jets

Longitudinal and lateral energy profiles

Using precise timing information

• Potential for 5D reconstruction (x,y,z, energy + time)

Particle reconstruction and identification

- Developing new **TICL** framework:
 - The Iterative Clustering
 - Combining clustering and pattern recognition iteratively

Electron identification

- Electron are a standard candle for particle flow
 - Compact, of known shape and associated to a track
 - Axis pointing improves rejection of PU photons with respect to bremsstrahlung

Electron shower shapes shown to be independent of pileup

Efficiency vs number of PU interactions

Samuel Webb (Imperial College London) - Birmingham seminar - 16.10.19

V. Palladino

HGCal trigger system

Trigger capabilities in the forward region are key feature of the CMS upgrade

Imperial College

London

- HGCal will generate 'trigger primitives' (3D energy clusters) to pass to the L1 trigger
- Two-stage backend design
 - Stage 1: data handling and calibration
 - Stage 2: trigger primitive generation

One end-cap

HGCal trigger system

- Reducing expensive bandwidth is a challenging element of the system
 - O(10000) links @10Gpbs from the front end to the trigger primitive generator
- Form basic "trigger cells" from the sensor cells in the front end
 - Combine either 4 or 9 depending on position in detector
- Cells are passed to the backend electronic after some selection
 - Simplest: threshold cut on energy

Backend stage 2

- Nearby TCs are associated to seeds in 3 dimensions forming 3D clusters
 - Passed to L1 trigger (after some selection)

HGCal trigger system

- The 3D clusters are then combined with the tracking information at L1
 - Particle flow at trigger level
- The firmware for stages 1 and 2 is currently being implemented

Number of 3D clusters per end-cap in tt events with 200 PU

Summary

- Important and interesting physics results are taking advantage of the large data set from the LHC run 2
 - Higgs, top, standard model, and new physics searches

41.5 fb⁻¹ (13 TeV)

+1.43 +0.83 +1.16

+0.62 +0.26 +0.56 -0.56 -0.26 -0.50

+0.90 +0.50 +0.76

10

 $\hat{\mu} = \hat{\sigma} / \sigma_{SM}$

1.49 +0.44 +0.21 +0.39 -0.40 -0.20 -0.35

-1.69

1.84

1.62

stat syst

CMS Preliminary

0

Fully-hadronic

Single-lepton

Dilepton

Combined