Status and prospects of the Belle II experiment.

Sam Cunliffe Birmingham, 05.12.2018

Status

- The project
- The apparatus
- Where we are in data-taking
- First results

and prospects

- dark sector
- $b \rightarrow s\ell\ell$

Status

- 700+ physicists
- 100+ institutes
- 23 countries

- Located at KEK, Tsukuba.
 (Japanese national HEP laboratory)
- つくば市
- 高エネルギー加速器研究機構

- Located at KEK, Tsukuba.
 (Japanese national HEP laboratory)
- つくば市
- 高エネルギー加速器研究機構

- Located at KEK, Tsukuba.
 (Japanese national HEP laboratory)
- つくば市
- 高エネルギー加速器研究機構

SuperKEKB

y (µm)

- Reason for the second iteration of the project: upgraded accelerator.
- A factor **40** increase in instantaneous luminosity
 - ×2 from upgraded ring (higher beam current)

First collisions

- 2018年4月26日
 - ▶ Probably $e^+e^- \rightarrow qq$
- 500 pb⁻¹ calibration data recorded this year.

Data?

Data?

Belle II

The detector In phase 2

1/8 vertex detector(for beam background and commissioning)

new (larger) Drift chamber tracking wires in 50:50 He:C₂H₆

Running without

high-level trigger

DESY. | Status and prospects of the Belle II experiment | S Cunliffe 05.12.2018

Belle II

The detector

Recent news

Belle II Collaboration added 3 new photos. August 22 · 🔇

After many years of development, assembly, and testing in Germany, the first half-shell of #Belle2's pixel detector arrived safely at KEK on August 21, 2018.

126 Likes 15 Shares

Belle II Experiment @belle2collab · Nov 22 VerteX Detector (VXD) successfully installed in #Belle2. The Belle II detector is now complete!

♀ 17 11 ♡ 22

Recent news

Photo: L. Zani

Recent news

Belle II

The detector early phase 3

Calorimeter details

Rediscoveries!

π⁰, **φ**⁰, **Λ**⁰, **τ**, J/ψ

Rediscoveries!

B mesons

Prospects dark sector $b \rightarrow s \ell \ell$

Perhaps dark matter doesn't interact directly.

Dark sector physics in a nutshell

- Dark sector can contain one or more dark matter particles.
- Interact with SM via coupling/mixing with a portal particle.
- Many theory possibilities.
- Categorise theories by the portal particle.
 - Axion-like particle: generic scalar
 - Dark photon: vector
 - Z': vector, maybe LFV
 - Higgs: scalar w/ mass coupling
 - Neutrinoes.
- Add terms to SM Lagrangian... see what happens.

Theory

- Axion-like particle a.
- Couples to EW sector post EWSB:

$$\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{4} aF_{\mu\nu}\tilde{F}^{\mu\nu} - \frac{g_{a\gamma Z}}{4} aF_{\mu\nu}\tilde{Z}^{\mu\nu} -\frac{g_{aZZ}}{4} aZ_{\mu\nu}\tilde{Z}^{\mu\nu} - \frac{g_{aWW}}{4} aW_{\mu\nu}\tilde{W}^{\mu\nu}$$

JHEP 1712 (2017) 094

Analysis

- Experimentally easier: ALP-strahlung.
 - Do this first.
- Three photons that add up to the beam energy + bump on diphoton mass. Nothing else in event.
- The SM background: ee $\rightarrow \gamma \gamma(\gamma)$.

JHEP 1712 (2017) 094

Analysis

- Experimentally easier: ALP-strahlung.
 - Do this first.
- Three photons that add up to the beam energy + bump on diphoton mass. Nothing else in event.
- The SM background: ee $\rightarrow \gamma \gamma (\gamma)$.
- Also search for "invisible" (more on that later).

JHEP 1712 (2017) 094

Physics reach

DESY. | Status and prospects of the Belle II experiment | S Cunliffe 05.12.2018

Physics reach

JHEP 1712 (2017) 094

DESY. | Status and prospects of the Belle II experiment | S Cunliffe 05.12.2018

Dark photon

Theory

• Massive vector particle A', mixes with the SM photon:

 $\mathcal{L} \supset \epsilon g_D A'_\mu J^\mu_{\rm EM}$

- Depending on dark photon/dark matter ratio:
 - Can decay directly to dark matter final state. Experimentally invisible A' $\rightarrow \chi_1 \chi_2$
 - Can decay to two leptons $A' \rightarrow I^+I^-$
- Experimentalist's trick: require ISR photon.

$$E_{\gamma_{\rm ISR}} = \frac{s - m_{A'}^2}{2\sqrt{s}}$$

PhysRevD.80.015003

Dark photon

Analysis

- First analysis: $ee \rightarrow \gamma A' \rightarrow \gamma(\chi_1 \chi_2)$
- Generic strategy: nothing in the event except one photon. (no tracks, other good photon clusters)
 - Bump search in recoil mass spectrum.
- **Backgrounds** ee \rightarrow ee $\gamma(\gamma)$ and ee $\rightarrow \gamma\gamma(\gamma)$

Dark photon

Analysis

- First analysis: $ee \rightarrow \gamma A' \rightarrow \gamma (\chi_1 \chi_2)$
- Generic strategy: nothing in the event except one photon. (no tracks, other good photon clusters)
 - Bump search in recoil mass spectrum.
- **Backgrounds** ee \rightarrow ee $\gamma(\gamma)$ and ee $\rightarrow \gamma\gamma(\gamma)$

Prospects dark sector $b \rightarrow s \ell \ell$

B physics from 2019+

Dramatis personae

The field is lead by different shaped detectors

In different environments

- Collision energy known.
- Full event contained*.
- Can boost into CMS system.
- Missing energy / neutrinos.
- Good at neutrals γ , K_s^{0} , K_L^{0} , π^0 , etc.

Full event interpretation

- "Generic" B meson reconstruction FastBDT.
- Layered classifier (track/neutral classifier, feeds up into combined classifier, ...).
- Return a B candidate, and a probability.
- BDT speed ⇒ can use many more channels.
- Factor ~2 improvement on Belle algorithm.
- O(2%) efficiency.

Is new physics in the b-quark loop processes?

$b \to s\ell\ell$ in a nutshell

- Perhaps new physics is very high mass scale.
- Should interact indirectly through loops (off mass-shell)
- Rare b-quark transitions are interesting, b → s is the "goldilocks" mix of *heavy-to-light* w/ relatively high rates.
- Measure a scattering of observables, interpret in an effective field theory context.
 - ► Wilson coefficients ↔ effective couplings.
 - Stupid numbering scheme: 9 is "vector", 10 is "axial vector"
- Theorists run global fits. There is tension with the SM.

$b \to s\ell\ell \text{ in a nutshell}$

- Perhaps new physics is very high mass scale.
- Should interact indirectly through loops (off mass-shell)
- Rare b-quark transitions are interesting, b → s is the "goldilocks" mix of *heavy-to-light* w/ relatively high rates.
- Measure a scattering of observables, interpret in an effective field theory context.
 - ► Wilson coefficients ↔ effective couplings.
 - Stupid numbering scheme: 9 is "vector", 10 is "axial vector"
- Theorists run global fits. There is tension with the SM.

$\textbf{b} \rightarrow \textbf{s\ell\ell} \text{ in a nutshell}$

- Perhaps new physics is very high mass scale.
- Should interact indirectly through loops (off mass-shell)
- Rare b-quark transitions are interesting, b → s is the "goldilocks" mix of *heavy-to-light* w/ relatively high rates.
- Measure a scattering of observables, interpret in an effective field theory context.
 - ► Wilson coefficients ↔ effective couplings.
 - Stupid numbering scheme: 9 is "vector", 10 is "axial vector"
- Theorists run global fits. There is tension with the SM.

$b \to s\ell\ell \text{ in a nutshell}$

- Perhaps new physics is very high mass scale.
- Should interact indirectly through loops (off mass-shell)
- Rare b-quark transitions are interesting, b → s is the "goldilocks" mix of *heavy-to-light* w/ relatively high rates.
- Measure a scattering of observables, interpret in an effective field theory context.
 - ► Wilson coefficients ↔ effective couplings.
 - Stupid numbering scheme: 9 is "vector", 10 is "axial vector"
- Theorists run global fits. There is tension with the SM.

$\textbf{b} \rightarrow \textbf{s\ell\ell} \text{ in a nutshell}$

- Perhaps new physics is very high mass scale.
- Should interact indirectly through loops (off mass-shell)
- Rare b-quark transitions are interesting, b → s is the "goldilocks" mix of *heavy-to-light* w/ relatively high rates.
- Measure a scattering of observables, interpret in an effective field theory context.

 - Stupid numbering scheme: 9 is "vector", 10 is "axial vector"
- Theorists run global fits. There is tension with the SM.

Inclusive $\mathbf{B} \to \mathbf{X} \mathbf{y}$

- Belle II 'golden channel'.
 - High yield. Usually good S/B ratio.
- Sub-percent-level uncertainties for A_{CP},
 ΔA_{CP}, Isospin asymmetry (Δ₀₊) w/ 50ab⁻¹
- Percent-level uncertainties for branching fraction, and time-dependent CPV (S_{CP}), and | V_{td} / V_{ts} |

LHCb has left things in an interesting state

Lepton universality ratios with $B \to K^{(*)} \ell^+ \ell^-$

- Not a Belle II golden channel.
 - We won't beat LHCb with charged final states.
- Similar results to LHCb (now) in ~2021.
- Confirm or refute LHCb w/ indep. 5σ in ~2023.

Belle II:

- e and µ are similar analysis objects.
- Should have better precision at low q².
- $K^{*+} \rightarrow K_s \pi^+; K_L^0$

Lepton universality ratios with $B \to X\ell^+\ell^-$

- Additional ratio built from inclusive decays R_x possible at Belle II.
- Uncertainty below 10% w/ 10 ab⁻¹.
- Could also do fully inclusive.
- Better precision at low/high q².

$$R_X \equiv \frac{\mathcal{B}[B \to X\mu^+\mu^-]}{\mathcal{B}[B \to Xe^+e^-]}$$

$B \to K^{(\star)} \nu \bar{\nu}$

- The golden channel.
- Observable with Belle II (assuming SM rate)
 - 10-12% uncertainty w/ 50ab⁻¹.
- Pin down C₉.
- Exploit E*_{miss} + cp*_{miss} (missing energy plus sum of missing 3-momentum in the CMS).

Mode	$\mathcal{B}[10^{-6}]$	Efficiency	$N_{\rm Backg.}$	$N_{\rm Sig-exp.}$	$N_{\rm Backg.}$	$N_{\rm Sig-exp.}$	Statistical	Total
		Belle	$711 {\rm fb}^{-1}$	$711 {\rm fb}^{-1}$	50 ab^{-1}	50 ab^{-1}	error	Error
		$[10^{-4}]$	Belle	Belle	Belle II	Belle II	$50 {\rm ~ab^{-1}}$	
$B^+ \to K^+ \nu \bar{\nu}$	4.68	5.68	21	3.5	2960	245	20%	22%
$B^0 o K^0_{ m S} \nu \overline{ u}$	2.17	0.84	4	0.24	560	22	94%	94%
$B^+ \to K^{*+} \nu \bar{\nu}$	10.22	1.47	7	2.2	985	158	21%	22%
$B^0 \to K^{*0} \nu \bar{\nu}$	9.48	1.44	5	2.0	704	143	20%	22%
$B \to K^* \nu \bar{\nu}$ combined							15%	17%

Conclusions

- Belle II, a B factory with 50x more data.
- "Full physics" data starting next year.
- 500 pb⁻¹ commissioning data available now.

$ee \to \gamma a \to 3\gamma$	Direct production a to two photons	\bigcirc		?
$ee \to \gamma A'$	Direct production A' or a to invisible	\bigcirc		\bigcirc
$B\toX\gamma$	Improve precision	\bigcirc	?	\bigcirc
$B \to K^{(\star)} \nu \overline{\nu}$	Observe if SM	\bigcirc	×	×
$B \to X\ell^{\scriptscriptstyle +}\ell^{\scriptscriptstyle -}; \ R_{X}$	Orthogonal check of LHCb	\bigcirc	?	
$B \to K^{(\star)} \ell^{\scriptscriptstyle +} \ell^{\scriptscriptstyle -}; \ R_{K,K^{\star}}$	Indep. check of LHCb's indications of LNU		\bigcirc	×

Appendix

Page 56

DESY.

$\textbf{B} \rightarrow \textbf{D^{(*)} t^{\pm} v}$

 Systematic uncertainty overtakes statistics at 5 ab⁻¹. *

- With 50 ab⁻¹:
 - Percent-level uncertainties.
 - Moves into the realm of "ridiculously significant".

Contact

DESY. Deutsches Elektronen-Synchrotron

Sam Cunliffe sam.cunliffe@desy.de orcid: 0000-0003-0167-8641

www.desy.de