Topological detection of ββ-decay with NEMO-3 and SuperNEMO

Ruben Saakyan University College London Particle Physics Seminar University of Birmingham 25 January 2012

- Motivation and Concept
 - ββ-decay and New Physics
 - Experimental approaches
- NEMO-3
 - Detector
 - Results
- SuperNEMO
 - Physics reach
 - R&D results
 - Demonstrator
 - Schedule

≜UCL

Neutrinos are massive and they mix

$$PMNS \text{ matrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}} \sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2 + i\beta} \end{pmatrix}$$
$$\Delta m_{23}^2 = \Delta m_{atm}^2 \approx 2.3 \times 10^{-3} eV^2 \\ \theta_{23} \approx 45^\circ \text{ (maximal?)} \qquad \theta_{13} < 11^\circ (\text{early indications } 5^\circ - 11^\circ ?) \qquad \Delta m_{12}^2 = \Delta m_{sol}^2 \approx 7.7 \times 10^{-5} eV^2 \\ \theta_{23} \approx 34^\circ$$

Different from quark sector. Can CP-violation in lepton sector address matter-antimatter puzzle?

Key Questions to Answer

Number of neutrinos: Are there sterile neutrinos?

 $h \theta_{13}$ (first hints from T2K and reactors?), Precision values of mixing angles and Δm² 's

 Absolute neutrino mass value. Only limits so far. Tritium: $m_{\bar{v}_{e}} < 2.3 \text{ eV}$ Cosmology: $\sum m_{v_{i}} < 1 \text{ eV}$

Neutrino mass spectrum: Normal (m₁ < m₂ < m₃) Inverted (m₃ < m₁ < m₂) or Quasi-degenerate (m₁≈m₂≈m₃)?

Λ Origin of matter-antimatter asymmetry. CP-violation in lepton sector: δ ≠ 0, π and/or α, β ≠ 0, π?

Nature of Neutrinos: Majorana (v = anti-v) or Dirac (v ≠ anti-v)?
 Full lepton number violation (required in most Grand Unification Theories).

addressed

Ονββ decay

by

Nature of Neutrinos: Majorana (v = anti-v) or Dirac (v \neq anti-v)? $\Delta L \neq 0$ $\Delta L = 0$

Directly related to fundamental symmetries of particle interactions

Provides important information on origin of neutrino mass

SEE-SAW

$$m_{\rm v} \equiv m_M^L = \frac{m_D^2}{M} << m_D$$

To obtain $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim m_t$, $M_3 \sim 10^{15} \text{GeV}$ (GUT!)

Lepton number violation is one of the key ingredients of **leptogenesis** as the mechanism to generate the baryon asymmetry of the Universe.

More matter than anti-matter!

Double Beta Decay in the Standard Model (Goeppert-Mayer, 1935)

Recall pairing term in SEMF

NME is **measured** in $2\nu\beta\beta$

â 🗍

- Second order process \Rightarrow rare (~10¹⁹-10²¹ yr)
- Nevertheless observed for 11 nuclei
- Experimental input for NME calculation

≜UCL

Double Beta Decay Beyond the Standard Model

Neutrinoless Double Beta Decay (Furry, 1939).

"Minimal" scenario - light Majorana mass

Coherent sum over neutrino amplitudes

$$\langle m_{v} \rangle = \left| \sum U_{ei}^{2} m_{i} \right| = \left| U_{e1}^{2} m_{1} + U_{e2}^{2} m_{2} e^{i\alpha_{21}} + U_{e3}^{2} m_{3} e^{i\alpha_{31}} \right|$$

Double Beta Decay. What is measured?

Double Beta Decay. Isotope Candidates.

Over 40 nuclei can undergo $\beta\beta$ -decay (including $\beta^{+}\beta^{+}$ and 2K-capture) Only ~10 experimentally feasible

Isotope choice

- Q_{ββ}
- $T_{1/2}(2\nu)$ (the longer the better)
- Isotope abundance
- Enrichment opportunities
- NME Input from 2ν measurements is useful
- Phase space

25-Jan-2012

lsotope	Abundan ce (%)	Space*, G ^{0v} ×10 ⁻¹⁵ yr ⁻¹	Q _{ββ} (MeV)	
⁴⁸ Ca	0.187	75.8	4.274	more energetic deca easier to separate fro
⁷⁶ Ge	7.8	7.6	2.039	background
⁸² Se	9.2	33.5	2.996	
⁹⁶ Zr	2.8	69.7	3.348	
¹⁰⁰ Mo	9.6	54.5	3.035	
¹¹⁶ Cd	7.6	58.9	2.809	_
¹³⁰ Te	34.5	52.8	2.530	
¹³⁶ Xe	8.9	56.3	2.462	
¹⁵⁰ Nd	5.6	249	3.367	
				-

*J. Phys. G: Nucl. Part. Phys. 34 667 (2007)

Phase

Nat

enrichment often possible, always expensive !

Majorana Mass Physics Reach

 m^2

Experimental Sensitivity

≜UCL

Experimental Approaches

Calorimeter-only. <u>Source = Detector</u>

Main observable: Deposited energy

Excellent ∆E/E High efficiency Relatively compact Some particle ID capability

Main limiting factor: background

HPGe, Bolometers, (Liquid)-Scintillators, LXe.

Tracking + Calorimetry. <u>Source ≠ Detector</u> (ala NEMO3 and SuperNEMO)

R&D on technologies that include elements of both CdZnTe, HPXe TPC

A take-away message

- We need to measure different isotopes with different experimental approaches
 - NME uncertainties
 - Tiny signal Huge Background. Will you ever trust a single positive measurement?
 - Disentangle underlying physics mechanism

...and we have it!

Experiment	lsotope(s)	Technique	Main characteristics		
NEMO-3	¹⁰⁰ Mo, ⁸² Se, other	Tracking + calorimeter	Bckg rejection, isotope choice, topology		
SuperNEMO	⁸² Se, ¹⁵⁰ Nd, other	Tracking + calorimeter	Bckg rejection, isotope choice, topology		
Cuoricino	¹³⁰ Te	Bolometers	Energy resolution, efficiency		
CUORE	¹³⁰ Te	Bolometers	Energy resolution, efficiency		
GERDA	⁷⁶ Ge	Ge diodes	Energy resolution, eficiency		
Majorana	⁷⁶ Ge	Ge diodes	nergy resolution, efficiency		
COBRA	¹³⁰ Te, ¹¹⁶ Cd	CdZnTe semi-conductors	Efficiency, particle ID		
EXO	¹³⁶ Xe	TPC ionisation + scintillation	Mass, efficiency, particle ID		
MOON	¹⁰⁰ Mo	Tracking + calorimeter	Compactness, Bckg rejection		
CANDLES	⁴⁸ Ca	CaF ₂ scintillating crystals	Efficiency, Active background vetoing		
SNO++	¹⁵⁰ Nd	Nd loaded liquid scintillator	Mass, efficiency		
XMASS	¹³⁶ Xe	Liquid Xe	Mass, efficiency		
CARVEL	⁴⁸ Ca	CaWO4 scintillating crystals	Mass, efficiency		
Yangyang	¹²⁴ Sn	Sn loaded liquid scintillator	Mass, efficiency		
DCBA	¹⁵⁰ Nd	Gaseous TPC	Bckg rejection		
KamLAND-Zen	¹³⁶ Xe	Xenon balloon	Mass, efficiency		
NEXT	¹³⁶ Xe	Gaseous TPC	Bckg rejection, efficiency		

NEMO-3 and SuperNEMO

Unique Detection principle: reconstruct topological signature

- Reconstruct two electrons in the final state $(E_1+E_2 = Q_{\beta\beta})$
- Measure several final state observables
 - Individual electron energies
 - Electron trajectories and vertices
 - time of flight
 - Angular distribution between electrons
- \cdot Powerful Background rejection through particle ID: e⁻, e⁺, α , γ

- **Smoking gun**" evidence for 0vββ
- Open-minded search for any lepton violating process
- Possibility to disentangle underlying physics mechanism

Topology reconstruction: Open-minded search for any 0vββ mechanism

Topology detection is a more sensitive method for phenomena with continuous spectra, e.g. $2\nu\beta\beta$, $0\nu\beta\beta\chi$ (Majoron)

Topology can be used to disentangle underlying physics mechanism

≜ U C

Neutrino Ettore Majorana Observatory 3

Data taking: Feb'03 - Jan'11

NEMO-3 - 20 sectors with ~10 kg of isotopes

• Magnetic field: 25 Gauss

UC

- Gamma shield: 18 cm of pure iron
- Neutron shield:
 - 30cm borated water (external wall)
 - 40cm wood (top and bottom)
- Anti-Radon "factory" and "tent"

≜UCL

NEMO-3 design

- Tracker for full event
 reconstruction
 - 6180 drift cells in Geiger mode: Helium + 4% ethyl alcohol + 1% Ar + 0.1% H_2O
- Calorimeter for energy and time measurement
 - 1940 scintillator blocks coupled to low radioactivity PMTs
- Identify e⁻, e⁺, γ, α
- Identify external and internal events

ββ isotope foils

NEMO-3 ββ event selection

- 2 tracks with charge < 0
- 2 PMT, each > 200 keV

Common vertex

- PMT-Track association
- Internal hypothesis (external event rejection)
 No other isolated PMT (γ rejection)
 - No delayed track (²¹⁴Bi rejection)

External γ (if the γ is not detected in the scintillators)
 Origin: natural radioactivity of the detector or neutrons
 Major bkg for 2νββ but small for 0νββ

 $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

pair creation

Compton + Compton

Compton + Möller

e-

source

foil

Compton + Möller

γ

External γ (if the γ is not detected in the scintillators)
 Origin: natural radioactivity of the detector or neutrons
 Major bkg for 2νββ but small for 0νββ

 $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination inside the $\beta\beta$ source foil

beta + Möller

beta + Compton

source

foil

source

foil

 \succ **External** γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Major bkg for $2\nu\beta\beta$ but small for $0\nu\beta\beta$

 $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination **inside the** ββ **source foil**

Radon (²¹⁴Bi) inside the tracking detector

- deposits on the wire near the $\beta\beta$ foil
- deposits on the surface of the $\beta\beta$ foil

source

foil

 \succ **External** γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Major bkg for $2\nu\beta\beta$ but small for $0\nu\beta\beta$

 $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination **inside the** ββ **source foil**

Radon (²¹⁴Bi) inside the tracking detector

- deposits on the wire near the $\beta\beta$ foil
- deposits on the surface of the $\beta\beta$ foil

Radon

Pure sample of ²¹⁴Bi – ²¹⁴Po events

Radon

Anti-radon "factory" - trapping Rn in cooled charcoal. A must for a low-background lab.

Pure sample of ²¹⁴Bi – ²¹⁴Po events

[±]UC

Anti-Rn factory: Input=15Bq/m³ \rightarrow Output 15mBq/m³

Inside the detector:

- Phase 1: Feb'03 → Sep'04 A(Radon) ≈ 40 mBq/m³
- ➢ Phase 2: Dec. 2004 → Jan'11
 A (Radon) ≈ 5 mBq/m³

Radon

Anti-radon "factory" - trapping Rn in cooled charcoal. A must for a low-background lab.

Pure sample of ²¹⁴Bi – ²¹⁴Po events

[±]UC

Anti-Rn factory: Input=15Bq/m³ \rightarrow Output 15mBq/m³

Inside the detector:

- Phase 1: Feb'03 → Sep'04 A(Radon) ≈ 40 mBq/m³
- ➢ Phase 2: Dec. 2004 → Jan'11
 A (Radon) ≈ 5 mBq/m³

NEMO-3 latest results (2011)

661 g of ¹³⁰Te

1275 days N(2νββ) = 178 ± 23

$$T_{1/2}^{2v} = [7.0 \pm 0.9(stat) \pm 1.1(syst)] \times 10^{20} \text{ yr}$$

Phys. Rev. Lett. 107, 062504 (2011)

c.f.

Indirect observations (geochemistry): - ~2.7 x 10²¹ yrs in 10⁹ yr old rocks - ~8 x10²⁰ yrs in 10⁷-10⁸ yr old rocks

Indication from MIBETA

 $T_{1/2}^{2\nu} = \left[6.1 \pm 1.4(stat)_{-3.5}^{+2.9}(syst) \right] \times 10^{20} \text{ yr}$

$2\nu\beta\beta$ Results

Isotope	Mass (g)	$Q_{\beta\beta}(keV)$	T _{1/2} (2v) (10 ¹⁹ yrs)	S/B	Comment	Reference
⁸² Se	932	2996	9.6 ± 1.0	4	World's best	Phys.Rev.Lett. 95(2005) 483
¹¹⁶ Cd	405	2809	2.8 ± 0.3	10	World's best	
¹⁵⁰ Nd	37	3367	0.9 ± 0.07	2.7	World's best	Phys. Rev. C 80, 032501 (2009)
⁹⁶ Zr	9.4	3350	2.35 ± 0.21	1	World's best	Nucl.Phys.A 847(2010) 168
⁴⁸ Ca	7	4271	4.4 ± 0.6	6.8 (h.e.)	World's best	
¹⁰⁰ Mo	6914	3034	0.71 ± 0.05	80	World's best	Phys.Rev.Lett. 95(2005) 483
¹³⁰ Te	454	2533	70 ± 14	0.5	First direct detection	Phys. Rev. Lett. 107, 062504 (2011)

Unprecedented accuracy with ¹⁰⁰Mo

2) Ultimate background characterisation for 0v

Search for 0vßß

Data period: Feb'03 - Dec'09

[2.8-3.2] MeV: DATA = 18; MC = 16.4 ± 1.4 T_{1/2}(0v) > 1.0×10²⁴ yr at 90%CL <m_v> < (0.31 - 0.96) eV [2.6-3.2] MeV: DATA = 14; MC = 10.9 ± 1.3 T_{1/2}(0v) > 3.2×10²³ yr at 90%CL <m_v> < (0.94 - 2.6) eV

c.f. CUORICINO: $< m_v > < (0.3 - 0.7) \text{ eV}$; Combined H-M/IGEX $< m_v > < (0.22 - 0.41) \text{ eV}$

Other $0\nu\beta\beta$ modes

ββ decays to excited states

From NEMO-3 to SuperNEMO

NEMO-3

¹⁰⁰Mo

7 kg

²⁰⁸TI: ~ 100 μBq/kg
 ²¹⁴Bi: < 300 μBq/kg
 Rn: 5 mBq/m³

8% @ 3MeV

 $T_{1/2}(\beta\beta0v) > 1 \div 2 \times 10^{24} y$ $< m_v > < 0.3 - 0.9 eV$

R&D since 2006

Isotope

Isotope mass M

Contaminations in the $\beta\beta$ foil

Rn in the tracker

Calorimeter energy resolution (FWHM)

Sensitivity

supernemo

collaboration

SuperNEMO

⁸²Se (or ¹⁵⁰Nd or ⁴⁸Ca)

100+ kg

 208 TI $\leq 2 \mu$ Bq/kg 214 Bi $\leq 10 \mu$ Bq/kg

 $Rn \leq 0.15 \text{ mBq/m}^3$

4% @ 3 MeV

 $T_{1/2}(\beta\beta0v) > 1 \times 10^{26} y$ $< m_v > < 0.04 - 0.1 eV$

- Modular design
 - 20 modules, each with 5kg of isotope
- Each Module:
 - Source: (40mg/cm²) 4x2.7m²
 - ⁸²Se (High Q_{ββ}, long T_{1/2}(2ν), proven enrichment technology)
 - ¹⁵⁰Nd, ⁴⁸Ca being looked at
 - Tracking
 - drift chamber ~2000 cells in Geiger mode
 - Calorimeter:
 - 550 PMTs + scintillators
 - Module surrounded by passive shielding (water)

Submodule calorimeter

Submodule Source and calibration

2 m (assembled, ~0.5m between source and calorimeter)

SuperNEMO Physics Studies

Full chain of GEANT-4 based software + detector effects + backgrounds + <u>NEMO3 experience</u>

5 yr with 100kg of ⁸²Se:

 $T_{1/2} > 10^{26}$ yr, $< m_v > < 50-100$ meV at 90%CL with target detector parameters

Much more than 1 result!

- Other mechanisms: V+A, Majoron, etc
- Disentangling $< m_{\nu} >$ and V+A

"Probing new physics models of $0\nu\beta\beta$ with SuperNEMO", EPJ C (2010) 70, 972-943. (next slide)

- $\beta\beta0\nu$ (and 2ν) to excited states
- Other isotopes

"Probing new physics models of $0\nu\beta\beta$ with SuperNEMO", EPJ C (2010) 70, pp. 972-943.

Exploit topological reconstruction available in SuperNEMO (angular distributions and individual electron energies) to disentangle/constrain new physics

Main Calorimeter Wall

a la prese la prese de la p

1 1.2 1.4

Energy (MeV)

5

0.4 0.6 0.8

SuperNEMO Tracker

- Automated wiring robot design to mass produce under ultra low background conditions
 - 500,000 wires to be strung, crimped and terminated
- Basic design developed and verified with several prototypes
 - Resolution: 0.7mm transverse, 1cm longitudinal
 - Cell efficiency > 98%
- Readout electronic being developed:
 - Allow for single and double-cathode readout
 - Differentiate anode signal

UCL

Source Radiopurity

- ~2.7m "composite" foil strips of 40-50 mg/cm² (~80 μm)
- Radiopurity (⁸²Se)
 - ²⁰⁸TI < 2 μBq/kg
 - ²¹⁴Bi < 10 μBq/kg

HPGe detectors are used for screening but not sufficient to reach required levels

Dedicated **BiPo** detector developed and

installed in Canfranc (running in 2012)

Radon activity measurement

<u>Requirement</u>: Rn activity inside tracker < 150 µBq/m³

SuperNEMO Demonstrator

Technology Ultimate proof of BG levels Physics Sensitive to K-K claim

7kg of ⁸²Se (5 kg in hand) Bgrd ≤ 0.06 events/yr in the Rol

A Zero-Background Experiment

 $T_{1/2}^{0\nu}(90\% CL) = 2.56 \times 10^{24} \times t \text{ yrs}$

Gerda-I sensitivity in 2.5 years - 6.5×10²⁴ yr (equivalent to 3×10²⁵yr with ⁷⁶Ge)

UCL

SuperNEMO Demonstrator Construction has started

Assembly hall prepared for tracker integration and commissioning

NEMO3 dismantled and removed to free underground space at LSM for Demonstrator

Figure of Merit

$$T_{1/2}^{0\nu}(90\%CL) = 2.54 \times 10^{26} \text{ y} \left(\frac{\varepsilon}{W}\right) \sqrt{\frac{M \times t}{b \times \Delta E}} \qquad FOM = T_{1/2}^{0\nu}(90\%CL) \times \frac{G^{0\nu}}{G_{7^{6}Ge}^{0\nu}} - Phase-space \text{ factor normalised to } ^{76}\text{Ge}$$

Normalised to exposure 500 kg yr and assuming the same NMEs

Project	Isotope	ϵ in $Q_{\beta\beta}$ window	b [cnts kg⁻¹keV⁻¹ yr⁻¹]	FWHM keV	Total B, counts	T _{1/2} (90%CL) yr	$\frac{G^{0\nu}}{G^{0\nu}_{_{76}}_{_{76}}}$	F.O.M yr
GERDA	⁷⁶ Ge	80%	0.01	4	40	2.1×10 ²⁶	1	2.1×10 ²⁶
Super- NEMO	⁸² Se	17%	6×10⁻⁵	120	7	1×10 ²⁶	4.4	4.4×10 ²⁶
CUORE	¹³⁰ Te	80%	0.01	5	185	5.7×10 ²⁵	6.9	4×10 ²⁶
EXO200	¹³⁶ Xe	70%	6.3×10 ⁻⁴	94	73	7.6×10 ²⁵	7.4	5.6×10 ²⁶
SNO+	¹⁵⁰ Nd	70%	7.5×10 ⁻⁴	300	3996	9.4×10 ²⁴	32.8	3.1×10 ²⁶

Reliability of expected performance numbers is **not** taken into account

Ton-experiment, 10 meV and other speculations

- O(100kg) generation will reach FOM ~ 4×10²⁶ yr by 2018-2020. <m_v> = 50-100 meV
- To exclude IH, i.e. to get 10-20 meV, we need FOM = $\sim 10^{28}$ yr.
- <u>Example</u>: A ⁷⁶Ge experiment even with ambitious b = 0.001 cnts/(kg keV yr) would need **30 tons** (!) of enriched (!!) ⁷⁶Ge measured over 5yr! Similar for other projects.
- Thus for 10 meV stage we have to find a "background-free" solution
 - Example:150kg x 5 yrs of ⁴⁸Ca, if no background and ε~40%, gives required FOM =10²⁸ yr.
 - NEMO-3 had virtually no background in this region after 8 years of running!
 - But we need to learn how to enrich ⁴⁸Ca (0.19% nat. abundance)

to break away from ²²²Rn progeny

²¹⁴Bi 3.27 MeV

Summary

- 0νββ is the only way to answer questions on Full Lepton Number violation and nature and mechanism behind neutrino mass
- Reach interplay with other areas
 - Neutrino mass from end-point β -decay, cosmology, neutrino oscillations
- Several next generation experiments starting in the next few years
 - K-K "claim" tested
 - Benchmark sensitivity of 50 meV
- NEMO-3 demonstrated feasibility of topological detection of ββ
 - Competitive 0vββ result with open-minded approach to mechanism of LNV
 - $2\nu\beta\beta$ measurements with **unprecedented accuracy**. Many more results.
- SuperNEMO will probe 50 meV region with a unique topological detection approach
 - Different isotopes can be probed. Possibility to disentangle underlying physics if $\langle m_v \rangle \ge 100$ meV.
 - Excited states, precision SM ββ-studies
- Need a common strategy to get down to 10 meV (and lower?).
- Topological ββ detection could provide an alternative to (multi)ton-scale detectors if enrichment of high-Q_{ββ} isotopes proves feasible

BACKUP

The Roadmap

≜UCL

Projet d'extension Ulisse

lerie de

Italie

LSM Extension

Provisional Schedule

- Safety tunnel construction start Sep 2009
- Safety tunnel, end of civil construction 2013
- Detailed study of LSM extension (ULISSE) 2010
- Deadline for final decision/money commitment 2012
- Excavation of new Lab completed 2014
- Outfitting completed, Lab ready to host experiments 2015

45,000m³ (100m long), 10M€ excavation + 3M€ outfitting

2^d ULISSE workshop in October'09. 11 LOIs received.

Ecance