Heavy Neutrinos
and (Safe) Jet Vetoes !

University of Birmingham

Richard Ruiz

Institute for Particle Physics Phenomenology,
University of Durham, UK2

13 June 2018

elusi@es @ in@isiblesPlus

'with Silvia Pascoli and Cedric Weiland [1805.09335, 180X.YYYYY]
2JPPP — CP3, Universite Catholique de Louvain, Belgium (Fall '18)

TR i,y N and (Sofe) Jet Vetoes - Birmingham 1/ 33



The Challenge

Brief history: 2 years ago asked if possible to improve LHC searches for
leptonic decays of heavy neutrinos, N — /1 W — {14ov

o “improve” #= MVA or BDT but a qualitatively new pheno analysis

The impetus: new channels (W~ fusion), new technology (automated
NLO+PS), unclear if lepton number violating Zliéét + nj is observable

An idea: heavy N events typically contain fewer jets than backgrounds

The question: can jet activity be used to improve heavy N searches?
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Money Plot: Pushing the reach of the LHC

The result:
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Plotted: LHC 14 sensitivity to active-sterile neutrino mixing (coupling) vs
heavy neutrino mass in the TfejFEX ({x = e, u, ) final state
e Dash = standard search with b-jet veto (mirrors 13 TeV CMS for e/ )
@ Solid = “improved” analysis with special type of jet veto
Improv nsitivi 10 — 11x with £ = 3 ab—!. Now for the detallsI
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Heavy Neutrinos and (Safe) Jet Vetoes

A philosophically new approach to heavy N searches at colliders has
increased LHC sensitivity by an order of magnitude (in coupling space)

@ New channels, new tools/machinery, new understanding of jets

Today:
© Why heavy neutrinos?
@ Heavy neutrino production at colliders
© Safe Jet Vetoes
© Monte Carlo Campaign (an ongoing fight!)
Q Resultsv
O Outlook for future colliders
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Motivation for new physics from » physics

_——



Sanford Underground S

Research Facility Fermilab
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In neutrino fixed-target experiments, 1/, beams are prepared from 7+, then
studied at near and far detectors (reminiscent of early SLAC DIS expts)
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So, neutrinos have masses < O(0.1) eV.

Is this a problem?

Yes.
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Neutrinos Masses and the Standard Model (SM)

To generate  masses similar to other SM fermions, we need Ng

5 . ((®) +h
Ly, vuk. = =Yy ®Ng + H.c. = —y, (W )<< >0+ )NR+H.C.

—> mp7 Ng, where mp =y, (®) and y, is the neutrino’s Higgs Yukawa
coupling. However, Nr' do not exist in the SM, implying mp =0

Nonzero neutrino masses implies new degrees of freedom exist [Ma'98]:

m, # 0+ LH currents

VRN

LH Majorana Mass : mf7z§ and/or — Dirac Mass : mPop Np

| l

mL = y(A) or strong dynamics ml = y(®syr)
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Collider Connection to Neutrino Mass Models?

Neutrino mass models (aka Seesaw models) hypothesize new particles of
all shapes, spins, charges, and color:
N (Type I), TO* (Type lll), Zp_y, (Type I+11), ...

Through gauge couplings and mixing, production in ee/ep/pp collisions

DY :qg —~*/Z* =TT~ and qd - Wi = N

WBF : WrW+* — GF : gg — h*/Z* — Ny,

3®Review on v mass models at colliders, Y. Cai, T. Li, T.-Han,-RR [1711.02180]
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Collider Connection to Low-Scale Neutrino Mass Models*

Seesaw particles then decay to SM particles that are observed/inferred by
detector subsystems

T+ = WHy, Z0+, ht andfor Wi — NIT — (115 + nj,

Identification of particles and properties through reconstruction of
final-state kinematics, e.g., invariant mass peaks and angular distributions
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*Review on © mass models at colliders, Y. Cai, T. Li, T.-Han,-RR [1711.02180]
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Il: Heavy Neutrinos and Colliders
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(Heavy) Neutrino Mixing for Non-experts

After EWSB, 1/ and Ng are singlets under SU(3).®U(1)gm = mixing!
@ Neutrino oscillations already tell us mass states # flavor states

Example: In a two-state system, mixing between chiral eigenstates and
mass eigenstates is given by unitary transformation /rotation

v\ [ cosp sing V1
Ng) — \—sing cosgp N>
S—— S——

chiral basis mass basis

Decompose chiral states in an interaction theory into mass states by
making the replacement:

. Pl
1) = cospl1) +sinp|No) "= (1= 5¢°)|1) + ¢|Na)
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(Heavy) Neutrino Mixing for Non-experts

After EWSB, 1/ and Ng are singlets under SU(3).®U(1)gm = mixing!
@ Neutrino oscillations already tell us mass states # flavor states

Example: In a two-state system, mixing between chiral eigenstates and
mass eigenstates is given by unitary transformation /rotation

v\ [ cosp sing V1
Ng) — \—sing cosgp N>
S—— S——

chiral basis mass basis

Decompose chiral states in an interaction theory into mass states by
making the replacement:

. Pl
1) = cospl1) +sinp|No) "= (1= 5¢°)|1) + ¢|Na)

Simplify: Like CKM, messy for n > 1 gen., so parameterize [0901.3589]:
e Large active-light as |Up,, | ~ 1 — (m,/mp)
e Small active-heavy/active-sterile as |Vyn_, > ~ (m,,/mp)
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High-Scale vs Low-Scale Type | Seesaw

Realistic mixing is complicated®:

> 2 light mass eigenstates = multiple singlet neutrinos needed
Mass matrix sensitive to number of states and Dirac vs Majorana
Size of Dirac/Majorana masses = size of m,

Off-diagonal entries = lepton flavor violation

Majorana mass (up) < lepton number violation

Nonetheless, two limits:
e High-scale seesaw: pp > (®sy) and my, ~ mp(mp/um), my ~ im
o Low-scale seesaw: ppy < (®sy) and my, ~ ppm(mp/mg)?, my ~ mg

For discovery purposes, no need to complicate life. Take agnostic/pheno.
approach with generic Vyn parametrization and one N state

®See for example, C. Weiland’s thesis, [1311.5860]
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Heavy Neutrino Charged Currents

Consider left-handed (LH) SU(2), doublets (gauge basis):

L, = ( ’f) . a=1,2,3.
a L

The SM W chiral coupling to leptons in flavor basis is given by

g S up e
Lcc = —\/EW:; [VgL’y“PLE ] 4+ H.c
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Heavy Neutrino Charged Currents

Consider left-handed (LH) SU(2), doublets (gauge basis):

L, = ( ’f) . a=1,2,3.
a L

The SM W chiral coupling to leptons in flavor basis is given by

Lcc = —7W‘j [W’Y!LPLE—] 4+ H.c

The SM W chiral coupling to leptons in the mass basis

3

Lcc= —7 W, Z [Z Upe + N Vi,

= m:

VP~ +  H.c.

= N is accessible through W /Z/h currents
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Heavy Neutrino Production At Hadron Colliders

Heavy N can be produced through a variety of mechanisms in pp collisions
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In fact, a resurgence of calculations in recent years
@ Clarity needed on (i) conflicting claims and (ii) mp, /s dependence
= more physical collider definitions + public tools [1602.06957]

14 TeV LHC

GNLO/GLO

200 400 600 800 1000
Heavy Neutrino Mass, mg [GeV]

6

SDY@NLO [*1509.06375,]; VBF [1308.2209, *1411.7305, *1602.06957]; GF
[1408.0983, *1602.06957] @NNNLL [*1706.02298]; DY,VBF Automation@NLO
[¥1602.06957]; Review: [¥1711.02180]; (*) = Pittsburgh/IPPP
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Across different colliders, wild interplay of PDF and matrix elements

CC DY (NLO)

CC DY (NLO)
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Plotted: Normalized production rate (o/|V/|?) vs heavy N mass (my)
e For /s = 25 — 27 TeV GF greater than DY due to gg luminosity
e For my 2 1 —2 TeV, VBF dominant due to large Yukawa couplings

e A 100 TeV, for |Vyn|?> ~ 10732 and £ = 30 ab™!, one has O(30)
events if my = 10 TeV! If BRxe ~ XA%, then /Nops. > 30
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Heavy N Kinematics vs /s (1/2)
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Interestingly, pr-based observables retain shape across /s
o Important: for DY pp — N/, one has p& ~ my/3

R. Ru
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Heavy N Kinematics vs /s (2/2)
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Shape retention across /s also holds for more complex variables
@ Multi-body and cluster mass is a proxy for inv. mass of N — 2/v
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I1l: Heavy Neutrinos and Jet Vetoes
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Jets in Heavy Neutrino Production
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Well-known that QCD radiation (jets!) in Drell-Yan and color-singlet
processes are typically forward (high ) or soft (low pt), unlike QCD (tt)
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Heavy Neutrinos and Jet Vetoes

Unfortunately, also known that for Drell-Yan and color-singlet processes,
there is more/harder QCD radiations (jets!) as the system gets heavier

[ T T 1
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"Disclosure: discovered basis of idea in an unrelated CMS paper on WW = 0j
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Heavy Neutrinos and Jet Vetoes

Unfortunately, also known that for Drell-Yan and color-singlet processes,
there is more/harder QCD radiations (jets!) as the system gets heavier
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Then a thought”: What if we relaxed p\T/‘ato with increasing mpy?
@ No-go due to top quark background
New thought: What if we relaxed pveto with increasing myg,?
e For ttW — 3¢X, myy ~ 3My /2 and no change for increasing my

_e For pp — NI — 3/X, myy ~ my and changes for increasing my

"Disclosure: discovered basis of idea in an unrelated CMS paper on WW = 0j
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Heavy Neutrinos and Safe Jet Vetoes

New thought: how about p7 of the leading charged lepton in the event?
e For ttW — 3¢X, p%- ~ Mw//2 and no change for increasing my
e For pp — NI¢ — 30X, pgr ~ mpy/2 and increases for increasing my

s e ———



Heavy Neutrinos and Safe Jet Vetoes

New thought: how about p7 of the leading charged lepton in the event?
e For ttW — 3¢X, p%- ~ Mw//2 and no change for increasing my
e For pp — NI¢ — 30X, pgr ~ mpy/2 and increases for increasing my
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A final thought (I think a lot): does this actually work? Such a veto
cannot just be applied in tandem with “standard” cuts due to correlations.
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IV: The Monte Carlo (MC) Campaign
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Jet vetoes are nonstandard selection cuts and make MC generation tricky

@ Need reliable description of leading jet at high and low pr for both
(color-singlet) signal and (color-singlet) background processes

@ Veto requires resummation/parton shower and jet definition
= cannot apply veto at same time as other cuts

@ Major bkg have add’'l /~ outside fid. volume = inclusive samples

8C. Degrande, O. Mattelaer, RR, Jessica Turner [1602.06957]
9See W’'+jet veto analysis, Fuks, RR [1701.05263]
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Jet vetoes are nonstandard selection cuts and make MC generation tricky

@ Need reliable description of leading jet at high and low pr for both
(color-singlet) signal and (color-singlet) background processes

@ Veto requires resummation/parton shower and jet definition
= cannot apply veto at same time as other cuts

@ Major bkg have add’'l /~ outside fid. volume = inclusive samples

Moto: “We start at NLO"
o Event Generation: HeavyNONLO UFO® 4 MadGraph5_aMC@NLO

» Bare-bones gen-level cuts on leptons + MadSpin for decay
@ Shower: Pythia8.2 (w/ QED shower + recoil + Monash* Tune)
o Particle-level Reco (lhe output): MadAnalysis5 + anti-kt with® R = 1
@ Smearing + offline analysis: private ROOT code

8C. Degrande, O. Mattelaer, RR, Jessica Turner [1602.06957]
9See W’'+jet veto analysis, Fuks, RR [1701.05263]
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The Monte Carlo Campaign: Modeling Heavy N

Dirac vs Majorana nature has major impact on spin correlation!®

Avoid this outright and drop Narrow Width Approximation for N
e DY: qq’ — (14, W at NLO in QCD, then decay W — (3v
e VBF: gy — ¢14,Wq' at NLO in QCD, then decay W — (3v

10 Confusion Theorem,” B.~Keyser [ PRD26, 1662 ('82); Moriond 2018 |;

T. Han, |. Lewis, RR, ZG Si [1211.6447]
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The Monte Carlo Campaign: Modeling Heavy N

Dirac vs Majorana nature has major impact on spin correlation!®

Avoid this outright and drop Narrow Width Approximation for N
e DY: qq’ — (14, W at NLO in QCD, then decay W — (3v
e VBF: gy — Elﬁg Wq at NLO in QCD, then decay W — /3

X_IncELL_N
IH ELL_NLC

rruiz@d19:~/Scripts/MA5slave/MCData Output ISSVeto$ I

Campaign will reach ~ 500+ GB since for each collider:
@ 100-200K evts per signal hypothesis and 1-10M evts per process
__o Will be made public via Zenodo (CERN-supported platform)

10“Confusion Theorem,” B.~Keyser [ PRD26, 1662 ('82); Moriond 2018 [;

T. Han, |. Lewis, RR, ZG Si [1211.6447]
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V: Results
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Flavor Hypothesis and Signal Definition
As a benchmark flavor mixing scenario we set:

|Vea| = |Vra| #0 and  [Vj4a| =0
Predicting two complementary'! signal processes (£x = e, i, 7p):

Signal I: pp — 7,77, {x+MET and Signal Il: pp — 77 eTlx+MET

Selection Cuts: Standard ID requirements and myg 3, cuts
Nonstandard Cuts:

@ Require p’71- < pgl (jet veto) and S% > 120 GeV
@ Given my hypothesis, cut on closest multi-body transverse mass i

2

i3, = [\ + s+ R )+ 3

L .08 4SS 2.
— [pgr(!’os:!‘?‘c’)Jr pr]T. i=1.2.

UBR(7/W — eX) are well-measured = can falsify no-LFV hypothesis if measured
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Backgrounds

Associated Top Quark Production: pp — ttl¢, ttly, tqlt (LO+PS)
o Typical pr of lepton from t: p‘f,- ~ 71+ %52‘/) ~ 50 GeV
e Typical pr of b from t: ph ~ Zt(1 — MTZ‘Q/) ~ 65 GeV

° pgr < p‘% —> top events vetoed without need of b-tagging
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Backgrounds

Associated Top Quark Production: pp — ttl¢, ttly, tqlt (LO+PS)
o Typical pr of lepton from t: p‘f,- ~ 71+ %52‘/) ~ 50 GeV
e Typical pr of b from t: ph ~ Zt(1 — —2) ~ 65 GeV

° pgr < p‘} —> top events vetoed without need of b-tagging

Electroweak Production: pp — 44, 30v, WWW, WW L
o Jet veto + multi-boson production = EW bosons at rest
e Typical St =, |pT| for 3W or WZ: St ~ M ~ 120 — 130 GeV
o Typical St for heavy N: St ~ BN + TN TN — 131';"’
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Backgrounds

Associated Top Quark Production: pp — ttl¢, ttly, tqlt (LO+PS)
o Typical pr of lepton from t: p‘f,- ~ 71+ %52‘/) ~ 50 GeV

e Typical pr of b from t: ph ~ Zt(1 — —2) ~ 65 GeV

° pgr < p‘} —> top events vetoed without need of b-tagging

Electroweak Production: pp — 44, 30v, WWW, WW L
o Jet veto + multi-boson production = EW bosons at rest
e Typical St =, |pT| for 3W or WZ: St ~ M ~ 120 — 130 GeV

o Typical St for heavy N: St ~ TN 4 Mv | My — 137w

Fake Leptons:

o Fake e®: Random j in tt reassigned; evts weighted using [1611.05032]

o Fake 7%: (mis)tagging rates from 13 TeV Det. Performance studies

@ Color conservation = second jet with comparable pt likely exist
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Results for 14 TeV LHC: et Scenario

—3510,3 : 95% global upper limit on \VJ" [1605. 03774%> 107 r 95% global upper limit on \vd\l [1605.08774] 7
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Plotted: LHC 14 sensitivity to active-sterile neutrino mixing (coupling) v
heavy neutrino mass

o Dash = standard search'? with b-jet veto (13 TeV CMS for e/ )

@ Solid = “improved” analysis with special type of jet veto

Improved sensitivity up to 10 — 11x with £ =3 ab~1,

2More aggressive cuts on charged leptons: e.g., peT1 > 55.GeV,;im3p > 80 GeV
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More Results at 14 TeV LHC: eu Scenario
Benchmark flavor mixing scenario Il:

|Vea| = [Vua| #0 and  |V4| =0
Predicting two complementary signal processes ({x = e, i, Th):

Signal I: pp — utp lx+MET and Signal Il: pp — pteFlx+MET

" S 950 CL upper it on V_f | ] i 95% CL uppr it on V'
13TeV, 359 bt (130202965 3 TeV, 35.9 ! [1802.02
F95% CL, 36 fb _ — 3
~ 107F S 3
= E 3
>0 ]
e :
1 1073 T 95% elobal upper imiton [V_F [1605.08774] T
3 r -
> E E
— F—--— Standard Analysis (p,"*" =25 GeV) 3 4~ — Standard Analysis (p,“** =25 GeV)
107 E—— Safe Veto Analysis ("= ) 3 —+— Safe Veto Analysis (p\""/ = pl)
F I V_[=0 ] £ o V=0 ]
10— \LHCIA\ HHZX\ . l‘?lw T sl \LHCl4\ H?IX\ . l‘?lw
200 400 600 800 1000 200 400 600 800 1000
my [GeV] my [GeV]

Again, improved sensitivity > 10x with £ =3 ab™!,

e e ———



Preliminary Results at 27 TeV LHC: et Scenario

Benchmark flavor mixing scenario | with e — 7 mixing:

Signal: pp — 7teTlx+MET
SURPRISE
(L) 14 TeV vs (R) 27 TeV with £ = 3,15,30 ab~!

WARNING VERY PRELIMINARY: Missing stats and uses 14 TeV cuts
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Summary

Heavy neutrinos remain one of the best (but not the only!) explanations
for tiny neutrino masses

We have investigated a new approach to searches for heavy N in pp
collisions based on a dynamical jet veto (pYe'® = pe-ll)
@ New veto scheme reveals > 90 — 95% signal acceptance with
little-to-no dependence on my (contrary to previous methods)
@ Substantial reduction in QCD theory uncertainty at
NLO+NNLL(Veto) = less need for high-precision resummation
@ Redesigned search analysis with better reduction of background

= Improved LHC sensitivity by up to 10x over LHC's lifetime

Remember: “The LHC is planned to run over the next 20 years, with
several stops scheduled for upgrades and maintenance work” [press.cern]
e High-Luminosity LHC and Belle Il goals: 3-5 ab™! and 50 ab~!
@ Premature to claim “nightmare scenario” (SM Higgs + nothing else)
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Thank you.
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