The ATLAS Trigger System in Run-2

Rhys Owen¹

University of Birmingham¹ 14 Febuary 2018 Particle Physics Seminar

Introduction

- In Run-2 of the LHC increased centre-of-mass energies and instantaneous luminosity have lead to increases in the trigger rate but this is constrained by hardware requirements.
- The easiest solution to reduce the rate again would be to increase the energy thresholds used by the trigger, however this would severely curtail the ATLAS physics programme.
- This required significant upgrades at Level-1 and optimisations in the HLT to maintain signal efficiency while reducing the rate of events.

Phys. Lett. B 759 (2016) 601

EgammaTriggerPublicResults

The ATLAS Detector

The ATLAS Detector: Sub-detectors

- General purpose detector at the LHC.
- Several detector technologies and components used to detect and identify final state particles.
- Can be roughly split into layers, tracking, calorimetry and muon spectrometry.
- Responsibility of the trigger and data acquisition system to select and record "interesting" events at a reduced rate to disk.
- Due to detector design different information available to trigger system as the trigger decision progresses.

Run 2 Conditions

- LHC bunches filled with protons collide at 40 MHz
- Providing an instantaneous luminosity which peaked at $20.6 imes10^{33}\,{
 m cm^{-2}\,s^{-1}}$
- This leads to a large number of p-p interactions which could all produce a signature of interest.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2

The ATLAS Detector: Trigger / DAQ

- Level-1 reduced granularity information at full rate
- HLT full granularity information at reduced rate

Rhys Owen (University of Birmingham)

Level-1 Trigger

- Level-1 reduced granularity information at full rate
- Hardware based trigger
- Primarily derived from calorimeter and muon systems
- Provides a rate reduction from 40 MHz to 100 kHz limited by the maximum readout rate of the front end electronics.
- Also provides Regions Of Interest (ROIs) as the starting point for software algorithms.
- Significant hardware and firmware updates in Run-2

EventDisplayRun2Physics

Level-1 Trigger: Updates

- The largest update was the inclusion of Topological triggering with the L1Topo module.
- Other systems need to provide L1Topo with information
- This is done with Trigger OBjects (TOBs) which represent the potential physics objects which have been detected.
- Similar to the ROIs which are sent to the HLT.

Level-1 Trigger: L1Calo

- The Level-1 calorimeter trigger.
- Analogue sum of calorimeter cells provided by both electromagnetic and hadronic calorimeter.
- Fast digitisation performed to produce "trigger towers" (typically 0.1×0.1 in $\Delta \eta \times \Delta \phi$)
- Separate sub-systems then search for clusters compatible with electromagnetic, tau and hadronic jet like energy deposits

Cables carrying analogue signals from calorimeters.

Level-1 Trigger: L1Calo

- The Level-1 calorimeter trigger.
- Analogue sum of calorimeter cells provided by both electromagnetic and hadronic calorimeter.
- Fast digitisation performed to produce "trigger towers" (typically 0.1×0.1 in $\Delta \eta \times \Delta \phi$)
- Separate sub-systems then search for clusters compatible with electromagnetic, tau and hadronic jet like energy deposits
- The electromagnetic algorithm is based on windows such as this. where the sums of towers around a local maximum are calculated.

Level-1 Trigger: L1Calo - Run 2 Upgrades

- Digitisation
 - nMCM new Multi Chip Module, updated digitisation and dynamic baseline subtraction.
- Processing
 - CPM Cluster Processor Module, updated algorithm to allow
 E_T-dependent isolation
- Architecture
 - CMX Common Merger eXtended, merge Trigger OBjects (TOBs) instead of threshold counts and forward to the Level-1 topological system.

Level-1 Trigger: L1Calo - Run 2 Upgrades

- Digitisation
 - nMCM new Multi Chip Module, updated digitisation and dynamic baseline subtraction.
- Processing
 - CPM Cluster Processor Module, updated algorithm to allow
 E_T-dependent isolation
- Architecture
 - CMX Common Merger eXtended, merge Trigger OBjects (TOBs) instead of threshold counts and forward to the Level-1 topological system.

EgammaTriggerPublicResults

Level-1 Trigger: L1Muon

- The Level-1 muon trigger is based on dedicated triggering chambers
- RPCs (TGCs) found in the barrel (endcap)

Eur. Phys. J. C 77 (2017) 317 Green: Active, Red: Ready for 2018 data taking.

Level-1 Trigger: L1Muon - Run 2 Upgrades

- Algorithm
 - Additional logic requiring a coincidence between the inner TGC layers (TGC-FI) or the TileCal and the outer layers. Reducing the trigger rate by up to 10% for the unprescaled muon trigger.
- Coverage
 - Additional RPC chambers made operational in the bottom of the spectrometer increase coverage by 3.6%.
- Architecture
 - An additional module MUCTPI2TOPO was introduced to transmit muon TOBs to the Level-1 topological system.

beam particle.

Level-1 Trigger: L1Muon - Run 2 Upgrades

- Algorithm
 - Additional logic requiring a coincidence between the inner TGC layers (TGC-FI) or the TileCal and the outer layers. Reducing the trigger rate by up to 10% for the unprescaled muon trigger.
- Coverage
 - Additional RPC chambers made operational in the bottom of the spectrometer increase coverage by 3.6%.
- Architecture
 - An additional module MUCTPI2TOPO was introduced to transmit muon TOBs to the Level-1 topological system.

Eur. Phys. J. C 77 (2017) 317

Level-1 Trigger: L1Muon - Run 2 Upgrades

- Algorithm
 - Additional logic requiring a coincidence between the inner TGC layers (TGC-FI) or the TileCal and the outer layers. Reducing the trigger rate by up to 10% for the unprescaled muon trigger.
- Coverage
 - Additional RPC chambers made operational in the bottom of the spectrometer increase coverage by 3.6%.
- Architecture
 - An additional module MUCTPI2TOPO was introduced to transmit muon TOBs to the Level-1 topological system.

MuonTriggerPublicResults

Level-1 Trigger: L1Topo

- Receives TOBs from both L1Calo and L1Muon systems
 - Muon TOBs represent reduced granularity in η/φ and have three energy thresholds.
 - Calo TOBs retain the L1Calo granularity and contain isolation information.
- Topological combinations of trigger objects add discrimination allowing low thresholds to be maintained.

Level-1 Trigger: L1Topo

- An example are 2τ triggers.
- As used for the $H \rightarrow \tau \tau$ analysis.
- The di-tau system is expected to be boosted and therefore have a small ΔR separation.
- Adding a requirement ΔR < 2.9 at Level-1 leads to a significant reduction in rates.

ATLAS-CONF-2017-061

Level-1 Trigger: L1Topo

- An example are 2τ triggers.
- As used for the $H \rightarrow \tau \tau$ analysis.
- The di-tau system is expected to be boosted and therefore have a small ΔR separation.
- Adding a requirement ΔR < 2.9 at Level-1 leads to a significant reduction in rates.

ATLAS-CONF-2017-061

HLT

- The higher level trigger runs offline-like algorithms
- Final trigger decision is an OR of many independent trigger chains.
- Each chain is defined as a series of algorithms with the ability to abort execution part way though to save CPU.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ

- In Run-1 HLT consisted of two levels, the first one with faster algorithms and mostly regional reconstruction, and the second one with full event reconstruction with higher precision.
- Updated in Run-2 to be an integrated system to save resources and simplify processing.

Rhys Owen (University of Birmingham)

HLT: Electrons and Photons - Algorithm

- Trigger reconstruction of electrons and photons share a similar chain of algorithms.
- Both seeded by L1Calo EM regions of interest.
- Calorimeter clustering is performed using higher granularity calorimeter cells (typically 0.025×0.025 in $\Delta \eta \times \Delta \phi$)
- Precision tracks extrapolated to the second layer of the EM calorimeter.
- Electrons use a likelihood based identification using calorimeter, tracking and transition radiation information.
- Photon identification based on calorimeter variables only.

HLT: Electrons and Photons - Performance

EgammaTriggerPublicResults

EgammaTriggerPublicResults

- The electromagnetic triggers performed well during 2017.
- The single unprescaled electron threshold was maintained at 26 GeV with a loose track based isolation.
- The single unprescaled photon threshold was 140 GeV.

HLT: Muons - Algorithm

- Muon reconstruction proceeds in two stages.
- A first "fast" reconstruction is performed on each Level-1 muon candidate with the p_T assigned by a lookup table based on MDT measurements.
- These tracks are then extrapolated to the inner detector to create combined muons.
- The second "Precision" pass produces a more accurate fit of the track at the cost of processing speed.

Eur. Phys. J. C 77 (2017) 317

HLT: Muons - Performance

- HLT Muon reconstruction is $\approx 100\%$ with respect to the Level-1 trigger.
- Single unprescaled muon threshold set at 26 GeV

- The algorithm starts from the Level-1 TAU ROI.
- Two-stage fast tracking
 - First a leading P_T track is identified within $\Delta R < 0.1$ of the cluster centre.
 - Further tracks are then identified ΔR < 0.4 from the leading track but originating within a fixed window along the beam pipe.
- Tracks are counted as Core $\Delta R < 0.2$ or Wide $0.2 < \Delta R < 0.4$
- Particle identification is provided by a boosted decision tree similar to that used offline

- The algorithm starts from the Level-1 TAU ROI.
- Two-stage fast tracking
 - First a leading P_T track is identified within $\Delta R < 0.1$ of the cluster centre.
 - Further tracks are then identified ΔR < 0.4 from the leading track but originating within a fixed window along the beam pipe.
- Tracks are counted as Core $\Delta R < 0.2$ or Wide $0.2 < \Delta R < 0.4$
- Particle identification is provided by a boosted decision tree similar to that used offline

- The algorithm starts from the Level-1 TAU ROI.
- Two-stage fast tracking
 - First a leading P_T track is identified within $\Delta R < 0.1$ of the cluster centre.
 - Further tracks are then identified ΔR < 0.4 from the leading track but originating within a fixed window along the beam pipe.
- Tracks are counted as Core $\Delta R < 0.2$ or Wide $0.2 < \Delta R < 0.4$
- Particle identification is provided by a boosted decision tree similar to that used offline

- The algorithm starts from the Level-1 TAU ROI.
- Two-stage fast tracking
 - First a leading P_T track is identified within $\Delta R < 0.1$ of the cluster centre.
 - Further tracks are then identified ΔR < 0.4 from the leading track but originating within a fixed window along the beam pipe.
- Tracks are counted as Core $\Delta R < 0.2$ or Wide $0.2 < \Delta R < 0.4$
- Particle identification is provided by a boosted decision tree similar to that used offline

Eur. Phys. J. C 77 (2017) 317

- The algorithm starts from the Level-1 TAU ROI.
- Two-stage fast tracking
 - First a leading P_T track is identified within $\Delta R < 0.1$ of the cluster centre.
 - Further tracks are then identified ΔR < 0.4 from the leading track but originating within a fixed window along the beam pipe.
- Tracks are counted as Core $\Delta R < 0.2$ or Wide $0.2 < \Delta R < 0.4$
- Particle identification is provided by a boosted decision tree similar to that used offline

HLT: Tau Leptons

- Single Tau threshold set at 160 GeV
- Use of two level tracking essential to identify candidates against increasing hadronic backgrounds.

HLT: Missing Transverse Momentum

- The increased number of hadronic interactions makes these triggers sensitive to the increase in instantaneous luminosity.
- The improvements to the Level-1 digitisation mean it is possible to keep the threshold relatively low (50 GeV)
- This is needed for a typical analysis selection of 200 GeV
- Several algorithms are run in parallel but due to the overlap between the resource intensive parts (clustering) this does not add much overhead.
- The algorithm pufit is used extensively to reduce the rate from pile up contributions.

MissingEtTriggerPublicResults

HLT: Missing Transverse Momentum

- The increased number of hadronic interactions makes these triggers sensitive to the increase in instantaneous luminosity.
- The improvements to the Level-1 digitisation mean it is possible to keep the threshold relatively low (50 GeV)
- This is needed for a typical analysis selection of 200 GeV
- Several algorithms are run in parallel but due to the overlap between the resource intensive parts (clustering) this does not add much overhead.
- The algorithm pufit is used extensively to reduce the rate from pile up contributions.

HLT: Hadronic Jets

- Jet triggers cover single and multi-jet topologies
- Jets are constructed using the anti-kT algorithm operating on calorimeter clusters.
- Radius parameters 0.4 and 1.0 are used.
- Some chains also include tracking information in order to improve the resolution subject to resource constraints.

JetTriggerPublicResults

HLT: b-Jets

- Several analyses rely on "b-jets" where the jet is initiated by the decay of a B hadron indicating a bottom quark in the final state. For example $H \rightarrow b\bar{b}$
- The trigger uses the MV2 algorithm which uses inputs from the impact parameter, displaced vertexing and jet structure algorithms in a configuration close to the offline configuration.
- Two stage fast tracking is again employed to aid in the finding of the primary vertex avoiding the performance cost of having to perform tracking over the whole detector.

HLT: b-Jets

- Several analyses rely on "b-jets" where the jet is initiated by the decay of a B hadron indicating a bottom quark in the final state. For example $H \rightarrow b\bar{b}$
- The trigger uses the MV2 algorithm which uses inputs from the impact parameter, displaced vertexing and jet structure algorithms in a configuration close to the offline configuration.
- Two stage fast tracking is again employed to aid in the finding of the primary vertex avoiding the performance cost of having to perform tracking over the whole detector.

HLT: B-Physics

- Several di-muon triggers are defined for selecting J/ψ , B and $\Upsilon(nS)$ states.
- These rely on a low di-muon threshold at Level-1 and the relevant invariant mass selection in the HLT.
- Even small increases in the threshold for either leg can have a large effect on the efficiency.

BPhysicsTriggerPublicResults

HLT: B-Physics

- Several di-muon triggers are defined for selecting J/ψ , B and $\Upsilon(nS)$ states.
- These rely on a low di-muon threshold at Level-1 and the relevant invariant mass selection in the HLT.
- Even small increases in the threshold for either leg can have a large effect on the efficiency.
- A good example of where L1Topo can help alleviate a Level-1 bottleneck.

TriggerOperationPublicResults

Trigger Level Analysis

- There are not only rate restrictions at Level-1.
- It is also important to consider the rate to disk from the HLT and the available resources for prompt reconstruction.
- Jets for example have a Level-1 threshold $\mathcal{O}(100 \, GeV)$ but a HLT threshold $\mathcal{O}(400 \, GeV)$.
- One solution being considered is to perform the analysis selection online in the trigger and vastly decrease the data volume by only saving the selected objects.
- The plot shows a search for Di-Jet resonances using this technique.

ATLAS-CONF-2016-030

Trigger Level Analysis II

• TLA represents a high HLT rate but tiny bandwidth user.

TriggerOperationPublicResults

Trigger Level Analysis II

• TLA represents a high HLT rate but tiny bandwidth user.

TriggerOperationPublicResults

Summary

- The LHC is performing well and delivering instantaneous luminosities above its design value.
- The increased number of interactions per bunch crossing add pressure to the trigger system due to the increased event complexity.
- Several notable improvements to the trigger system during the first LHC long shutdown provide good tools to mitigate these challenges.
 - Level-1 improved calorimeter isolation and the introduction of topological triggering can avoid a bottle neck at the front end readout and help the HLT by providing better seeds.
 - ► The single stage HLT allows for chains with a flexible set of algorithms which can share outputs reducing any unnecessary duplication of calculations.
- Given the anticipated running conditions in 2018 the trigger will also be able to perform well for the rest of Run-2 before the next round of planned updates.

Backup

Trigger Rates from 2015 @ $5 \times 10^{33} cm^{-2} s^{-1}$

	Typical offline selection	Trigger Selection		Level-1 Rate	HLT Rate	
Trigger		Lough 1 [CoV]	HIT [CoV]	[kHz]	[Hz]	
		reserved [Gev]	IIII [Gev]	$L = 5 \times 10^{33}$	$cm^{-2}s^{-1}$	
Single leptons	Single iso μ , $p_T > 21 GeV$	15	20	7	130	
	Single $e, p_T > 25GeV$	20	24	18	139	
	Single μ , $p_T > 42 GeV$	20	40	5	33	
	Single τ , $p_T > 90 GeV$	60	80	2	41	
	Two μ 's, each $p_T > 11 GeV$	2×10	2×10	0.8	19	
	Two μ 's, $p_T > 19, 10 GeV$	15	18, 8	7	18	
Two leptons	Two loose e 's, each $p_T > 15 GeV$	2×10	2×12	10	5	
	One e & one μ , $p_T > 10, 26 GeV$	20 (µ)	7, 24	5	1	
	One loose e & one μ , $p_T > 19, 15 GeV$	15, 10	17, 14	0.4	2	
	Two τ 's, $p_T > 40, 30 GeV$	20, 12	35, 25	2	22	
	One τ , one μ , $p_T > 30, 15 GeV$	12, 10 (+jets)	25, 14	0.5	10	
	One τ , one e , $p_T > 30, 19 GeV$	12, 15 (+jets)	25, 17	1	3.9	
	Three loose e 's, $p_T > 19, 11, 11 GeV$	$15, 2 \times 7$	$17, 2 \times 9$	3	< 0.1	
	Three μ 's, each $p_T > 8GeV$	3×6	3×6	< 0.1	4	
Three leptons	Three μ 's, $p_T > 19, 2 \times 6 GeV$	15	$18, 2 \times 4$	7	2	
	Two μ 's & one $e, p_T > 2 \times 11, 14 GeV$	$2 \times 10 \ (\mu's)$	$2 \times 10, 12$	0.8	0.2	
	Two loose e 's & one μ ,	2 × 8 10	2 × 12 10	0.3	< 0.1	
	$p_T > 2 \times 11, 11 GeV$,		0.0		
One photon	One γ , $p_T > 125 GeV$	22	120	8	20	
m 1 .	Two loose γ 's, $p_T > 40, 30 GeV$	2×15	35, 25	1.5	12	
1 wo photons	Two tight γ 's, $p_T > 25, 25 GeV$	2×15	2×20	1.5	7	
a	Jet $(R = 0.4)$, $p_T > 400 GeV$	100	360	0.9	18	
Single jet	Jet $(R = 1.0)$, $p_T > 400 GeV$	100	360	0.9	23	
E_{T}^{miss}	$E_T^{\text{miss}} > 180 GeV$	50	70	0.7	55	
Multi-jets	Four jets, each $p_T > 95 GeV$	3×40	4×85	0.3	20	
	Five jets, each $p_T > 70 GeV$	4×20	5×60	0.4	15	
	Six jets, each $p_T > 55 GeV$	4×15	6×45	1.0	12	
b-jets	One loose b , $p_T > 235 GeV$	100	225	0.9	35	
	Two medium b's, $p_T > 160, 60 GeV$	100	150,50	0.9	9	
	One b & three jets, each $p_T > 75 GeV$	3×25	4×65	0.9	11	
	Two b & two jets, each $p_T > 45 GeV$	3×25	4×35	0.9	9	
B-physics	Two μ 's, $p_T > 6, 4GeV$	6.4	6.4	8	52	
	plus dedicated J/ψ -physics selection					
Total				70	1400	

ATL-DAQ-PUB-2016-001

Trigger Rates from 2016 @ $1.2 \times 10^{34} cm^{-2} s^{-1}$

Trigger	Typical offline selection	Trigger Selection		Level-1 Peak	HLT Peak
		Level-1 (GeV)	HLT (GeV)	Rate (kHz)	Rate (Hz)
				$L = 1.2 \times 10^{3}$	$4 \text{ cm}^{-2}\text{s}^{-1}$
Single leptons	Single isolated μ , $p_T > 27 \text{ GeV}$	20	26 (i)	13	133
	Single isolated tight $e, p_T > 27 \text{ GeV}$	22 (i)	26 (i)	20	133
	Single μ , $p_T > 52 \text{ GeV}$	20	50	13	48
	Single $e, p_T > 61 \text{ GeV}$	22 (i)	60	20	13
	Single τ , $p_T > 170 \text{ GeV}$	60	160	5	15
	Two μ 's, each $p_T > 15 \text{ GeV}$	2×10	2×14	1.5	21
	Two μ 's, $p_T > 23, 9$ GeV	20	22, 8	13	30
	Two loose e's, each $p_T > 18 \text{ GeV}$	2×15	2×17	8	7
Two leptons	One <i>e</i> & one μ , $p_T > 8,25 \text{ GeV}$	20 (µ)	7, 24	13	2
1 wo reptons	One loose e & one μ , $p_T > 18, 15 \text{ GeV}$	15, 10	17, 14	1.5	2.6
	Two τ 's, $p_T > 40, 30 \text{ GeV}$	20 (i), 12 (i) (+jets)	35, 25	6	35
	One τ & one isolated μ , $p_T > 30, 15 \text{ GeV}$	12 (i), 10 (+jets)	25, 14 (i)	1.5	7
	One τ & one isolated $e, p_T > 30, 18 \text{ GeV}$	12 (i), 15 (i) (+jets)	25, 17 (i)	3	9
	Three loose e 's, $p_T > 18, 11, 11 \text{ GeV}$	$15, 2 \times 8$	$17, 2 \times 10$	15	< 0.1
	Three μ 's, each $p_T > 7 \text{ GeV}$	3×6	3×6	0.1	3
Three leptons	Three μ 's, $p_T > 21, 2 \times 5 \text{ GeV}$	20	$20, 2 \times 4$	13	4
	Two μ 's & one loose $e, p_T > 2 \times 11, 13 \text{ GeV}$	$2 \times 10 \ (\mu's)$	$2 \times 10, 12$	1.5	0.2
	Two loose e's & one μ , $p_T > 2 \times 13, 11 \text{ GeV}$	$2 \times 8, 10$	$2 \times 12, 10$	1.1	0.1
One photon	One loose γ , $p_T > 145 \text{ GeV}$	22 (i)	140	20	30
Turn all stores	Two loose γ 's, $p_T > 40, 30 \text{ GeV}$	2×15	35, 25	8	40
1 wo photons	Two tight γ 's, $p_T > 27, 27 \text{ GeV}$	2×15	2×22	8	16
Single jet	Jet $(R = 0.4)$, $p_T > 420 \text{ GeV}$	100	380	3	38
	Jet $(R = 1.0)$, $p_T > 460 \text{ GeV}$	100	420	3	35
E_{T}^{miss}	$E_T^{\text{miss}} > 200 \text{ GeV}$	50	110	6	230
	Four jets, each $p_T > 110 \text{ GeV}$	3×50	4×100	0.4	18
Multi-jets	Five jets, each $p_T > 80 \text{ GeV}$	4×15	5×70	3.5	14
	Six jets, each $p_T > 70$ GeV	4×15	6×60	3.5	5
	Six jets, each $p_T > 55$ GeV, $ \eta < 2.4$	4×15	6×45	3.5	18
	One b ($\epsilon = 60\%$), $p_T > 235$ GeV	100	225	3	24
b-jets	Two b's ($\epsilon = 60\%$), $p_T > 160, 60 \text{ GeV}$	100	150, 50	3	20
	One b ($\epsilon = 70\%$) & three jets, each $p_T > 85 \text{ GeV}$	4×15	4×75	3.5	19
	Two b ($\epsilon = 60\%$) & one jet, $p_T > 65, 65, 110 \text{ GeV}$	$2 \times 20,75$	$2 \times 55,100$	2.7	25
	Two b ($\epsilon = 60\%$) & two jets, each $p_T > 45 \text{ GeV}$	4×15	4×35	3.5	56
b-physics	Two μ 's, $p_T > 6, 6 \text{ GeV}$ plus dedicated <i>b</i> -physics selections	6,6	6,6	4.7	20
Total				85	1500

ATL-DAQ-PUB-2017-001

Trigger Rates from 2017 @ $1.7 \times 10^{34} cm^{-2} s^{-1}$

Trigger	Typical of ine selection	Trigger Sele	Level-1 Peak	HLT Peak	
		Level-1 (GeV)	HLT (GeV)	Rate (kHz)	Rate (Hz)
		Level 1 (GeV)	mar (oer)	$L = 1.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	
Single leptons	Single isolated μ , $p_T > 27 \text{ GeV}$	20	26 (i)	16	187
	Single isolated tight $e, p_T > 27 \text{ GeV}$	22 (i)	26 (i)	26	178
	Single μ , $p_T > 52 \text{ GeV}$	20	50	16	65
	Single $e, p_T > 61 \text{ GeV}$	22 (i)	60	26	17
	Single τ , $p_T > 170 \text{ GeV}$	100	160	1.2	49
	Two μ 's, each $p_T > 15$ GeV	2×10	2 ×14	2.0	30
	Two μ 's, $p_T > 23$, 9 GeV	20	22, 8	16	42
	Two very loose e 's, each $p_T > 18$ GeV	2 × 15 (i)	2 × 17	1.6	11
Two lantons	One e & one μ, p _T > 8, 25 GeV	20 (µ)	7,24	16	5
rwo ieptons	One e & one μ, p _T > 18, 15 GeV	15, 10	17, 14	2.0	4
	One e & one μ , $p_T > 27, 9$ GeV	22 (e, i)	26, 8	26	2
	Two τ's, p _T > 40, 30 GeV	20 (i), 12 (i) (+jets, topo)	35, 25	5.1	59
	One τ & one isolated μ , $p_T > 30$, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	2.1	9
	One τ & one isolated e , $p_T > 30$, 18 GeV	12 (i), 15 (i) (+jets)	25, 17 (i)	3.9	16
	Three loose e 's, $p_T > 25$, 13, 13 GeV	20, 2 × 10	24, 2 × 12	1.2	< 0.1
	Three μ 's, each $p_T > 7 \text{ GeV}$	3 ×6	3 ×6	0.2	8
Three leptons	Three μ 's, $p_T > 21$, 2 × 5 GeV	20	20, 2 ×4	16	8
	Two μ 's & one loose e , $p_T > 2 \times 11$, 13 GeV	2 × 10 (µ's)	2 ×10, 12	2.0	0.3
	Two loose e 's & one μ , $p_T > 2 \times 13$, 11 GeV	2 ×8, 10	2 ×12, 10	1.6	0.2
One photon	One loose γ , $p_T > 145 \text{ GeV}$	22 (i)	140	26	46
	Two loose γ 's, $p_T > 55, 55 \text{ GeV}$	2 × 20	50, 50	2.4	6
Two photons	Two medium γ 's, $p_T > 40$, 30 GeV	2 × 20	35, 25	2.4	18
	Two tight γ 's, $p_T > 25$, 25 GeV	2 × 15 (i)	2 ×20 (i)	2.4	15
Circula int	Jet ($R = 0.4$), $p_T > 435 \text{ GeV}$	100	420	3.4	33
Single jet	Jet (R = 1.0), $p_T > 480 \text{ GeV}$	100	460	3.4	24
E ^{miss}	$E_T^{miss} > 200 \text{ GeV}$	50	110	4.4	100
	Four jets, each pT > 125 GeV	3 × 50	4 × 115	0.5	16
Multi-jets	Five jets, each pT > 95 GeV	4 × 15	5 × 85	4.9	10
	Six jets, each $p_T > 80 \text{ GeV}$	4 × 15	6 × 70	4.9	4
	Six jets, each $p_T > 60$ GeV, $ \eta < 2.0$	4 ×15	6 × 55, η < 2.4	4.9	15
b-jets	One b (=40%), $p_T > 235 \text{ GeV}$	100	225	3.4	15
	Two b's ($=60\%$), $p_T > 185$, 70 GeV	100	175, 60	3.4	12
	One b (=40%) & three jets, each $p_T > 85 \text{ GeV}$	4 × 15	4 ×75	4.9	15
	Two b's (=70%) & one jet, $p_T > 65, 65, 160 \text{ GeV}$	2 × 30, 85	2 ×55, 150	2.7	15
	Two b's (=60%) & two jets, each $p_T > 45 \text{ GeV}$	4 × 15	4 × 35	4.9	13
B-Physics	Two μ's, p _T > 11, 6 GeV	11,6	11, 6 (di-µ)	3.1	50
	Two μ 's, $p_T > 6, 6 \text{ GeV}, 2.5 < m(\mu, \mu) < 4.0 \text{ GeV}$	2 ×6 (J /ψ, topo)	2 ×6 (J /ψ)	1.8	59
	Two μ 's, $p_T > 6, 6$ GeV, $4.7 < m(\mu, \mu) < 5.9$ GeV	2 ×6 (B, topo)	2×6(B)	1.8	7
	Two μ 's, $p_T > 6$, 6 GeV, 7 $< m(\mu, \mu) < 12$ GeV	2 ×6 (Y, topo)	2 ×6 (Y)	1.5	10
Total Rate				85	1550

TriggerPublicResults

Full Size Event Display

Dijet event collected in 2017, with $m_{ii} = 9.3 TeV$.

EventDisplayRun2Physics