KM3NeT/ORCA

status & perspectives for ν oscillation and mass hierarchy measurements

Piotr Kalaczyński

Birmingham group particle physics seminar 16.12.2020

Outline

Neutrinos

2 KM3NeT

3 ORCA status

- Measurements with ORCA4 (with 4 DUs)
- Sensitivity studies for ORCA115 (with 115 DUs)
- Potential detector upgrades

4 Summary

Neutrino sources

Piotr Kalaczyński

KM3NeT/ORCA

Neutrino interactions

Possible interactions:

- gravitational
- weak:
 - charged current (CC): $v_l + N \xrightarrow{W^{\pm}} l + X$
 - neutral current (NC) : $v_l + N \xrightarrow{Z^0} v_l + X$
 - elastic scattering (ES): $v_l + l \xrightarrow{W^{\pm}/Z^0} v_l + l$
- ν oscillations

Electrically charged interaction products may produce Cherenkov light:

Neutrino oscillations in vacuum

Mixing of neutrino mass and flavour states:

$$\begin{bmatrix} \mathbf{v}_e \\ \mathbf{v}_\mu \\ \mathbf{v}_\tau \end{bmatrix} = U_{\mathsf{PMNS}} \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{bmatrix}$$

 U_{PMNS} - Pontecorvo-Maki-Nakagawa-Sakata matrix

- not measured as precisely as CKM
- CKM = Cabibbo–Kobayashi–Maskawa

U_{PMNS} parametrization

The usual PMNS parametrization:

where $c_{ij} \equiv \cos\theta_{ij}$, $s_{ij} \equiv \sin\theta_{ij}$, δ – CP-violating phase (charge-parity) and α_1 , α_2 – Majorana phases.

Oscillation probability for 2v case:

$$P_{\alpha \to \beta, \alpha \neq \beta} = \sin^2 2\theta_{ij} \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4E}\right) \tag{1}$$

Water Cherenkov neutrino telescopes

Outline

Neutrinos

2 KM3NeT

3 ORCA status

- Measurements with ORCA4 (with 4 DUs)
- Sensitivity studies for ORCA115 (with 115 DUs)
- Potential detector upgrades

4 Summary

Principle of detection (upgoing v_{μ} example)

Piotr Kalaczyński

Light sensors

DOM: Digital Optical Module (31 3" PMTs + electronics etc.)

PMT: Photomultiplier Tube

Piotr Kalaczyński

DOM arrangement

DU: Detection Unit (string with 18 DOMs)

https://youtu.be/omlFkdCkbYk

 $ORCA6 \iff ORCA with 6 DUs$

Piotr Kalaczyński

KM3NeT/ORCA

Detector comparison

ORCA – Oscillation Research with Cosmics in the Abyss (main goal: m_v ordering)

ARCA – Astroparticle Research with Cosmics in the Abyss (main goal: v_{astro})

Piotr Kalaczyński

KM3NeT/ORCA

KM3NeT-ORCA:

- Iocation:
 - 40km offshore Toulon (France)
 - coords: 42°48' N 06°02' E
- optimized for $E_{\rm V}$ range: few 100GeV
- full config: ORCA115

ORCA6 (with 6 DUs):

https://youtu.be/AjQx8NpQJ8Y

Piotr Kalaczyński

KM3NeT/ORCA

13/5

Event topologies (ORCA115 simulation)

showers (NC: $v_{e,\mu,\tau}$, CC: v_e , v_τ ($\tau \not\rightarrow \mu$))

Ball size \rightarrow # hit PMTs on a DOM

 $color \rightarrow time$

Piotr Kalaczyński

KM3NeT/ORCA

Birmingham 2020, 16.12.2020

14/5

The KM3NeT Collaboration

 KM3NeT – The Cubic Kilometre (km³) Neutrino Telescope

 Piotr Kalaczyński
 KM3NeT/ORCA
 Birmingham 2020, 16.12.2020

15/5

KM3NeT-PL Group

- Piotr Mijakowski (coordinator)
 - Conference and Outreach Commitee member
 - Institute Board and Review & Resources Board representative
- Rafał Wojaczyński (post-doc)
 - GC WIMP search sensitivity for ORCA
 - self-veto studies
- Piotr Kalaczyński (PhD student)
 - atm. v/μ CORSIKA simulations & data comparisons
 - prompt µ analysis

Outline

Neutrinos

2 KM3NeT

ORCA status

- Measurements with ORCA4 (with 4 DUs)
- Sensitivity studies for ORCA115 (with 115 DUs)
- Potential detector upgrades

4 Summary

Current status of ORCA detector

KM3NeT-ORCA:

onfiguration:

- 6 DUs since January 2020
- new DU planned in Dec
- full detector: 115 DUs (in 2025)
- remote operation \rightarrow COVID-proof
- First v candidates (already shown in https://youtu.be/AjQx8NpQJ8Y)
- 6 DUs opertional for 6 months celebration:

Route 66: https://youtu.be/nkXg8g31SdU 6 strings, 6 months: https://youtu.be/gxToAs6lQ68

Outline

Neutrinos

2 KM3NeT

ORCA status

• Measurements with ORCA4 (with 4 DUs)

- Sensitivity studies for ORCA115 (with 115 DUs)
- Potential detector upgrades

4 Summary

Outline

Extensive Air Showers (EAS)

EAS simulations in KM3NeT

MUPAGE – atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes

- developed for ANTARES
- fast muon MC generator
- based on parametric formulas and MACRO measurements
- parameters can be freely tuned
- CORSIKA COsmic Ray SImulations for KAscade
 - developed for KASCADE experiment (Karlsruhe)
 - full simulation of air showers
 - customizable (models, primaries, etc.)

Atmospheric muon rate measurement

author: Piotr Kalaczyński (me ©)

- from poster #316 @Neutrino2020
- livetime: 35d (10.-11.2019) with 4 DUs
- obs. rate: $455k \frac{\mu}{day} (\sim 0.03 \cdot rate @sea level)$
- errors only stat. (syst. in progress)

Atmospheric neutrino flux measurement

authors: Luigi Antonio Fusco, Jannik Hofestädt, Dimitris Stavropoulos

- from poster #363 @Neutrino2020
- livetime: 4.5m (07.2019-01.2020) with 4 DUs
- purity: 99 %
- observed rate: $3\frac{v}{day}$
- oscillations hypothesis favoured (p = 0.17)!

Observation of the atmospheric neutrino flux with the Research Control of KM3HeT/ORCA		
Luigi Antonio Fosori", Januik Haleskick', Dinikris Stamspeolen' un behalf af the Kitcher Collisboration		CPPM
1 CPVH, Harsellie 12CAR, Srlangen 11KSR Denektron, Advers Highhooldopningsth		Pirst sestring oscillation results
The RHUNET Detector	Data sample and Neutrino selection	A refined event selection [2] has been used in shalp subtine coefficient, 043944(2006) A data/arrows the
EXCELT [1] is the send generation large volume analysis detention in the bindlew server large	6.5 months of high-quality XM29+COBCA data amplitud with 4 active Dick between July 2019 and	hypethesis of includence at a applicance level of moduly 2x by measuring the 2welth-dependent off-correct in track-like event rates.
the behavior of the country of control to being control to the country of controls frames, will be deviced to the itody of contribut physics using alreadylatic sensitive unifiediane.	induced track-like events, incomittanted as special-point, after for a 1990-point medicine sample with and revel sale of 2.0 c(lay).	NEbd pelobary
Rest La fold or en of the second seco		
s broxicio widz (DMA, estat deling) studiety ender et al. Dispation of the studiety of the origination of the studiety and particular studiety of the more a subset of the bios		Append 4 (b)(-) bestmussification to be good imposition of the absorbing sector and the sector and the sector interaction of the sector and the sector and the absorbing sector and the sector and the sector and and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sec- ing sector and the sector and the sector and the sec- ing sector and the sector and the sector and the sec- ing sector and the sector and the sector and the sec- ing sector and the sector and the sector and the sec- ing sector and the sector and the sector and the sec- ing sector and the sector and the sector and the sec- ing sector and the sector and the sector and the sec- ing sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sec- ing sector and the sector
Figure 2 - Discont deduced for ORDA Society Annual Control of Con	Hand for the second sec	And exercise Annual Annual Annual Content of Annual A

24 / !

Outline

Neutrinos

2 KM3NeT

ORCA status

• Measurements with ORCA4 (with 4 DUs)

• Sensitivity studies for ORCA115 (with 115 DUs)

• Potential detector upgrades

4 Summary

Neutrino Mass Ordering (NMO)

credit: JUNO Collaboration / JGU-Mainz

Analysis idea:

- traversing the Earth enhances $P_{\nu_{\mu} \leftarrow \rightarrow \nu_{e}}$ for NO and $P_{\bar{\nu}_{\mu} \leftarrow \rightarrow \bar{\nu}_{e}}$ for IO at $E \lesssim 15 \,\text{GeV}$
- KM3NeT does not distinguish ν and $\bar{\nu}$ events
- $\sigma_{interaction}$ and atm. flux are bigger for ν than for $\bar{\nu} \hookrightarrow$ net effect on oscillation patterns

Piotr Kalaczyński

KM3NeT/ORCA

Event classes in NMO analysis

Oscillation patterns in NMO analysis

Piotr Kalaczyński

Neutrino Mass Ordering (NMO) sensitivity

author: Mathieu Perrin-Terrin

- parameters: NuFit 4.1
- MC: 3y of full ORCA (115 DUs)

- for NO: 5σ after 4y
- paper in preparation

JUNO experiment

- Jiangmen Underground Neutrino Observatory (JUNO)
- reactor experiment in China
- main goal: precision θ_{13} measurement
- sensitive to: atmospheric, geo- and supernova ν 's
- scheduled to start taking data in 2021

NMO sensitivity for ORCA + JUNO

- from poster #480 @Neutrino2020
- tension between the best-fit Δm²₃₁ with a wrong ordering assumption enhances the sensitivity
- method: χ^2 minimization of an Asimov dataset
- parameters: NuFit 4.0
- for NO: 5σ after 1y (7.5 σ after 4y)

Atmospheric mixing parameters (reminder)

where $c_{ij} \equiv \cos\theta_{ij}$, $s_{ij} \equiv \sin\theta_{ij}$, δ – CP-violating phase (charge-parity) and α_1 , α_2 – Majorana phases.

Oscillation probability for 2v case:

$$P_{\alpha \to \beta, \alpha \neq \beta} = \sin^2 2\theta_{ij} \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4E}\right)$$
(2)

Sensitivity to Δm^2_{32} and θ_{23}

author: Mathieu Perrin-Terrin

motivation:

- improve the precision on Δm_{32}^2 , θ_{23}
- determine the octant of θ_{23}
- method: max. likelihood

- parameters: NuFit 4.1
- MC: 3y of full ORCA (115 DUs)
- paper in preparation

Piotr Kalaczyński

KM3NeT/ORCA

ν_τ appearance concept

credit: the IceCube Collaboration

 v_{τ} appearance:

- confirmation of oscillations (no other way to produce v_{τ})
- first measured by OPERA (Phys. Rev. Lett. 115, 121802 (2015))
- observed statistically by SK and IceCube

 τ normalization¹: measure of the unitarity² of U_{PMNS} (τ norm \neq 1 means new physics)

 ${}^{1}\tau \text{ normalization} = \frac{\# \text{detected} v_{\tau}}{\# \text{expected} v_{\tau} \text{ from standard oscillations}}$ ${}^{2}U^{*}U = \mathbb{I}$

Piotr Kalaczyński

 ν_τ signal

1st "bang": $v_{\tau} + N \rightarrow \tau + X$ 2nd "bang": $\tau \rightarrow v_{\tau} + X'$ or $\tau \rightarrow v_{\tau} + e + \bar{v_e}$ problems:

- rare events
- "bangs" hard to separate

There are other signatures, but generally hard to extract the ν_{τ} 's.

 \implies Solution: look at statistical excess due to taus!
ν_{τ} appearance results

authors: Michael Moser and Thomas Eberl

- from poster #202 @Neutrino2020
- fit robust against θ_{23} and mass ordering
- CNN's outperform max *L* by >10% in constraining deviations from expected τ normalization (=1)
- confirmation of τ appearance possible within few months of operation with full ORCA

37 / !

Sterile v simplest scenario (3+1):

$$\begin{bmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \\ \mathbf{v}_{s} \end{bmatrix} = U_{3+1} \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{4} \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{4} \end{bmatrix}$$

 \hookrightarrow new mixing parameters: θ_{i4} , Δm_{i4}^2 (*i* = 1,2,3), δ_{i4} (*i* = 1,2,3)

- standard U_{PMNS}
- 🛛 sterile

Exclusion limits on sterile mixing parameters

39/5

Core-collapse Supernovae (CCSN)

CCSN:

- 99% of $E_{grav} \rightarrow v$ when γ cannot escape
- Explosion mechanism not fully understood
- $\bullet\,$ First and only observation: 24 ν from SN1987A $\rightarrow\,$

Detecting a CCSN with neutrinos

There are 2 ways to detect:

- measure the v
- Iook at the PMT background rate

CCSN produce MeV $\nu {\rm 's}$

KM3NeT has few GeV threshold \rightarrow 2nd approach

authors: Marta Colomer, Massimiliano Lincetto, Vladimir Kulikovskiy, Damien Dornic and Alexis Coleiro

CCSN detection sensitivity

authors: Marta Colomer, Massimiliano Lincetto, Vladimir Kulikovskiy, Damien Dornic and Alexis Coleiro 1 building block full ORCA&ARCA, multiplicity 7-11, 500ms window

- from poster #245 @Neutrino2020
- multiplicity number of hit PMTs on a DOM
- >95% of galactic CCSN progenitors at 5σ (20kpc)
- ORCA6 can trigger up to 5.4 (9.5) kpc for 11 (27) M_{\odot} progenitors

Dark matter (DM)

Illustration by Sandbox Studio, Chicago with Ana Kova

Piotr Kalaczyński

KM3NeT/ORCA

Birmingham 2020, 16.12.2020 43 / 5

DM from the Sun

DM from the Sun sensitivity

authors: Daniel Lopez-Coto, Sergio Navas and Juande Zornoza spin-dependent (coupling to splin; mainly for odd A)

Outline

Neutrinos

2 KM3NeT

ORCA status

- Measurements with ORCA4 (with 4 DUs)
- Sensitivity studies for ORCA115 (with 115 DUs)
- Potential detector upgrades

4 Summary

Potential upgrades

Goal: measure δ_{CP}

Super-ORCA:

- ~10x denser
- improved E and θ resolution
- more details in PoS(ICRC2019)911 (arXiv:1907.12983)

Protvino to ORCA (P2O):

- neutrino beam from Protvino (near Moscow)
- 2595km baseline
- Lol: Eur. Phys. J. C (2019) 79: 758 (arXiv:1902.06083)

Both: Protvino to Super-ORCA Timeline: undefined Piotr Kalaczyński KM3NeT/ORCA

P2O sensitivity to the NMO

improved overall performance

P2O sensitivity to $\delta_{CP}\colon$ ORCA vs Super-ORCA

Outline

Neutrinos

2 KM3NeT

3 ORCA status

- Measurements with ORCA4 (with 4 DUs)
- Sensitivity studies for ORCA115 (with 115 DUs)
- Potential detector upgrades

④ Summary

Summary

- Detector:
 - ORCA6 running stably
 - new DU expected in December 2020
- Data analyses:
 - ORCA4:
 - ★ first measurements
 - ★ we see the oscillations!
 - ORCA6: analyses ongoing
- Sensitivity studies for ORCA115
 - promising results
 - world-first NMO measurement possible!
 - not all shown!

Take-home message: ORCA lives and bites hard. Exciting physics ahead!

Thank you for your attention. Any questions?

- sensitivity to galactic sources is not reduced for 2 building blocks, provided they are large enough (at least 0.5km³ each)
- more optimal for regional funding and human resources
- complies with the technical specifications for the construction and operation

- $\Delta t \simeq 10 20$ ms @10kpc, depending on the progenitor
- dedicated CCSN MC for the signal of a single DOM
- for bgd we use data directly
- No significant excess found for GCN #26751(retracted) and #26249 alerts

Event classes in NMO analysis

Oscillation patterns in NMO analysis

$$\mathcal{L}_{0}^{2} = \sum_{i \in [\text{Erec, } \cos\theta_{z}^{\text{rec}}]} \mathcal{L}_{0,i}^{2} = \sum_{i \in [\text{Erec, } \cos\theta_{z}^{\text{rec}}]} -2.0 \times (n_{i}^{\text{alt}} - n_{i}^{\text{null}} - n_{i}^{\text{alt}} \ln \frac{n_{i}^{\text{alt}}}{n_{i}^{\text{null}}}), \quad (3)$$
$$\mathsf{TS} : \mathcal{L}_{eff}^{2} = \mathcal{L}_{0}^{2} + \sum_{i \in parameters} \frac{(p_{i}^{exp} - p_{i}^{obs})^{2}}{\sigma_{i}^{2}} \qquad (4)$$

NMO separation power (tracks vs showers)

NMO E reconstruction

NMO E resolution

Piotr Kalaczyński

NMO E reconstruction

NMO angular resolution

Piotr Kalaczyński

NMO muon and noise suppression

Parameter	Null Hypothesis ValuesNOIO		Constraints
Δm_{32}^2	$2.528 \times 10^{-3} \text{ eV}^2$	$2.436 \times 10^{-3} \text{ eV}^2$	free
δ_{CP}	$221.0^{\circ}, 0^{\circ}, 180.0^{\circ}$	$282.0^{\circ}, 0^{\circ}, 180.0^{\circ}$	free
θ_{13}	8.60°	8.64°	$\pm 0.13^{\circ}$
Δm^2_{21}	$7.39 \times 10^{-5} \ \mathrm{eV^2}$		fixed
$ heta_{12}$	33.82°		fixed
θ_{23}	$[40^\circ - 50^\circ]$		free

Parameter	Null NO	Hypothesis Values IO	Constraints
δ_{CP}	221.0°	282.0°	free
$ heta_{13}$	8.60°	8.64°	$\pm 0.13^{\circ}$
Δm_{21}^2	$7.39 \times 10^{-5} \text{ eV}^2$		fixed
θ_{12}	33.82°		fixed
θ_{23}	$[40^{\circ}-50^{\circ}]$		fixed
Δm^2_{32}	$[2.2 \times 10^{-3}; 2.8 \times 10^{-3}] \text{ eV}^2$		fixed

Sensitivity to Δm^2_{32} and θ_{23} comparison for IO

References:

- M. G. Aartsen et al. (IceCube Collaboration), 'Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore', Phys. Rev. Lett. 120 (2018), p. 071801, doi:10.1103/PhysRevLett.120.071801
- K. Abe et al., 'Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV', Phys. Rev. D 97.7 (2018), p. 072001, doi: 10.1103/PhysRevD.97.072001, arXiv: 1710.09126 [hep-ex]
- K. Abe et al., 'Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations', Nature 580.7803 (2020), pp. 339-344, doi: 10.1038/s41586-020-2177-0, arXiv: 1910.03887 [hep-ex]
- Adam Aurisano, 'Recent Results from MINOS and MINOS+', June 2018. doi: 10.5281/zenodo.1286760, url: https://doi.org/10.5281/zenodo.1286760
- M.A. Acero et al., 'First Measurement of Neutrino Oscillation Parameters 543 using Neutrinos and Antineutrinos by NOvA', Phys. Rev. Lett. 123.15 544 (2019), p. 151803, doi: 10.1103/PhysRevLett.123.151803, arXiv: 545 1906.04907 [hep-ex]

Piotr Kalaczyński

Neutrino oscillations in matter

Presence of electrons affects the Hamiltonian:

$$H_{\rm eff} = H_{\rm vacuum} + \underbrace{\sqrt{2}G_{\rm F}n_e}_{\rm MSW}$$

Modified 2v oscillation probability:

$$P_{\alpha \to \beta} = \sin^2 2\theta_{\rm M} \sin^2 \left(\frac{\Delta m_{\rm M}^2 L}{4E}\right), \tag{5}$$

where $\sin^2 2\theta_{\rm M} = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - x)^2}, \ \Delta m_{\rm M}^2 = \Delta m^2 \sqrt{\sin^2 2\theta + (\cos 2\theta - x)^2}$
with $x = \frac{2\sqrt{2}G_{\rm F}n_e E}{\Delta m^2}$ ($G_{\rm F}$ – Fermi constant, n_e – electron number density).
 $\theta_{\rm M}$ and $\Delta m_{\rm M}^2$ are the effective angle and mass square difference respectively.

with

Exclusion limits on sterile mixing parameters

- from poster #179 @Neutrino2020
- method: χ^2 minimization of an Asimov dataset
- MC: 3y with full ORCA (115 DUs)
- model: 3+1
- assumptions: NO, $\Delta m_{41}^2 > 0$, NuFit 4.1 (Δm_{21}^2 , θ_{12})

Non-Standard Interactions (NSI) (mini-intro)

NC NSI of v_{α} with matter fermions (*e*, *u*, *d*) distort the standard ($\varepsilon_{\alpha\beta} = 0$) MSW effect: (arXiv:1907.00991v2)

$$H_{\text{eff}} = \frac{1}{2E} U_{\text{PMNS}} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{bmatrix} U_{\text{PMNS}}^{\dagger} + \sqrt{2}G_{\text{F}}N_e \begin{bmatrix} 1 + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{bmatrix}$$
neutrinos
neutrinos
antineutrinos
neutrinos
neutrinos
neutrinos
neutrino set of the set

Piotr Kalaczyński

KM3NeT/ORCA

Birmingham 2020, 16.12.2020 17 / 2

Non-Standard Interactions (NSI)

author: Nafis Rezwan Khan Chowdhury, Tarak Thakore

- from poster #178 @Neutrino2020
- method: χ^2 minimization of an Asimov dataset
- MC: 3y with full ORCA (115 DUs)

Dark matter (DM) from the Sun

used topology: only tracks

Piotr Kalaczyński

The actual ORCA footprint

Piotr Kalaczyński
Super-ORCA expected detector performance

Piotr Kalaczyński

KM3NeT/ORCA

P2O spectra for NO and IO

Plots for 3y with the 90kW beam

P2(S-)O expected performance

E distribution at Super-ORCA

Plots for 3y with the 450kW beam

CP symmetry

Settings used for simulations:

- hadronic interaction models:
 - HE : SIBYLL 2.3
 - LE: GHEISHA 2002d
- Charmed particles handled explicitly
- 5 primaries: p, He, C, O, Fe
- statistics: 5.10⁶ showers per primary
- $10^3 < \frac{E_{\rm primary}}{{\rm GeV}} < 10^9$

Other v_{τ} signatures (in IceCube)

Tau Neutrino Signatures in IceCube: Overview

	Signature	Cartoon	Description
Decreasing IceCube Acceptance Energy →	Lollipop	V _t O _t	Tau created outside (un- detected), decays→cascade
	Inverted Lollipop	- ¥t - t	Tau created inside→cascade, decays outside (undetected)
	Sugardaddy (see talk by T. DeYoung)	ν _τ γ	Tau created outside (un- detected), decays \rightarrow muon, see Δ in light level along track
	Double Bang	- <u>Y</u> _T	Tau created and decays inside, cascades well-separated
	Double Pulse		Double bang, w/cascades un- resolvable, but nearby DOM(s) see double pulsed waveform
	Low $E_{\tau}\;\mu$ Lollipop		Inverted lollipop but low-E tau decays quickly to μ ; Study ratio E_{sh}/E_{tr}
Tau Neutrinos in IceCube D. Cowen/Penn State			

6

Atmospheric spectrum at the sea [MCEq]

https://mceq.readthedocs.io/en/latest/index.html

Piotr Kalaczyński

KM3NeT/ORCA