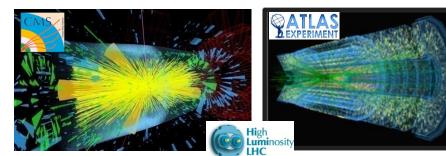
Overview of Particle Physics Detector R&D

Phil Allport

- Introduction
- Collider and Fixed Target
 - Hadron Collider Detectors
 - Lepton Collider Experiments
 - Lepton-hadron Colliders
 - Fixed Target

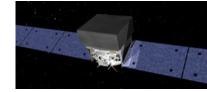
Accelerator and Reactor Neutrinos

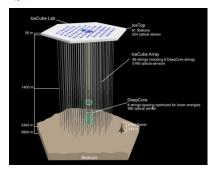
- Far Detector
- Near Detector
- Reactor
- Non-accelerator and Low Energy Searches for Rare Processes
 - Dark Matter
 - Neutrino-less Double β-decay
 - Low Energy (includes: g-2, n-EDM, e-EDM, anti-hydrogen, ...)
- Astro-particle Experiments
 - Charged Cosmic Rays
 - UHE Gamma-rays
 - UUHE Neutrinos
 - Solar, Atmospheric and Supernova Neutrinos
- Status of ECFA Detector Panel Survey
- Conclusions


Overview of Particle Physics Detector R&D

Phil Allport

- Introduction
- Collider and Fixed Target
 - Hadron Collider Detectors
 - Lepton Collider Experiments
 - Lepton-hadron Colliders
 - Fixed Target


Accelerator and Reactor Neutrinos

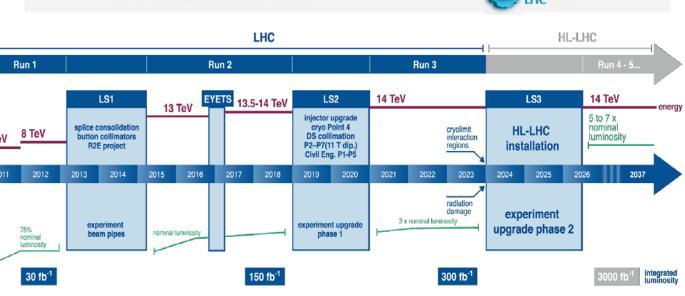

- Far Detector
- Near Detector
- Reactor
- Non-accelerator and Low Energy Searches for Rare Processes
 - Dark Matter
 - Neutrino-less Double β-decay
 - Low Energy (includes: g-2, n-EDM, e-EDM, anti-hydrogen, ...)
- Astro-particle Experiments
 - Charged Cosmic Rays
 - UHE Gamma-rays
 - UUHE Neutrinos
 - Solar, Atmospheric and Supernova Neutrinos
- Status of ECFA Detector Panel Survey
- Conclusions

Sanford Underground Pacility D0 miss / 1000 Nameter Pacility D0 miss / 1000 Nameter

Introduction

CERN Council has by virtue of the **Convention for the Establishment of a European Organization for Nuclear Research** responsibility for defining the strategic orientation of European particle physics and not just those relating to activities at CERN (see <u>https://council.web.cern.ch/en/content/european-strategy-particle-physics</u>)

The first "European Strategy for Particle Physics" was adopted by CERN Council on 14/7/06. The strategy was prepared by a Strategy Group consisting of eight members drawn from ECFA and the SPC, two co-chairmen, and a scientific secretary. This group took contributions from the community and at an Open Symposium held in Orsay 30/1/06 to 1/2/06.

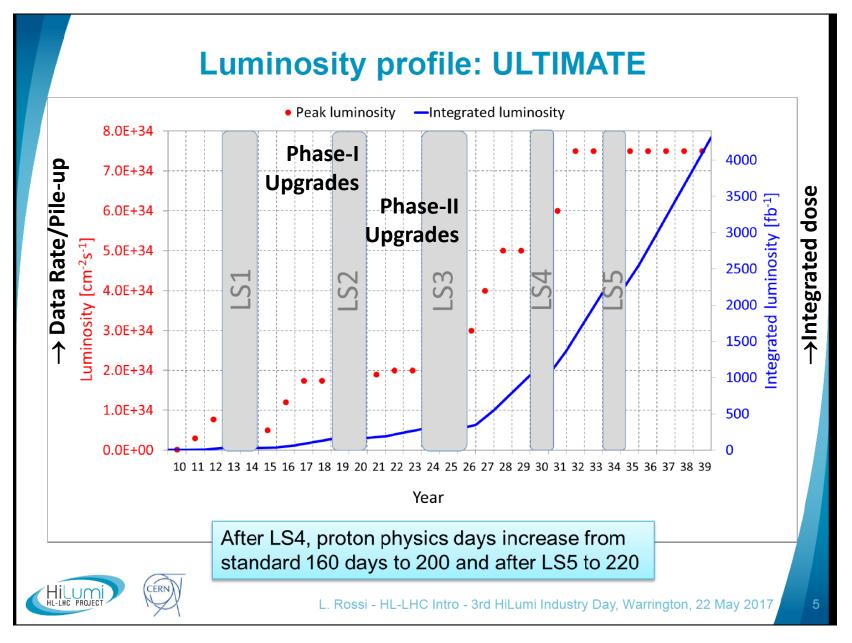

A Strategy Update was developed following the Open Symposium in Krakow on 10/9/12 to 12/9/12 and published by the European Strategy Group following its Update of Strategy meeting in Erice on 21/1/13 to 26/1/13. It was adopted following a "European Strategy Session" of CERN Council held on 28/5/13 in Brussels.

The next Update is expected to be published in 2020 with significant material developed in 2018 to provide inputs to meetings of the preparatory groups for the European Strategy during 2019.

Hadron Colliders: the HL-LHC Programme

LHC / HL-LHC Plan

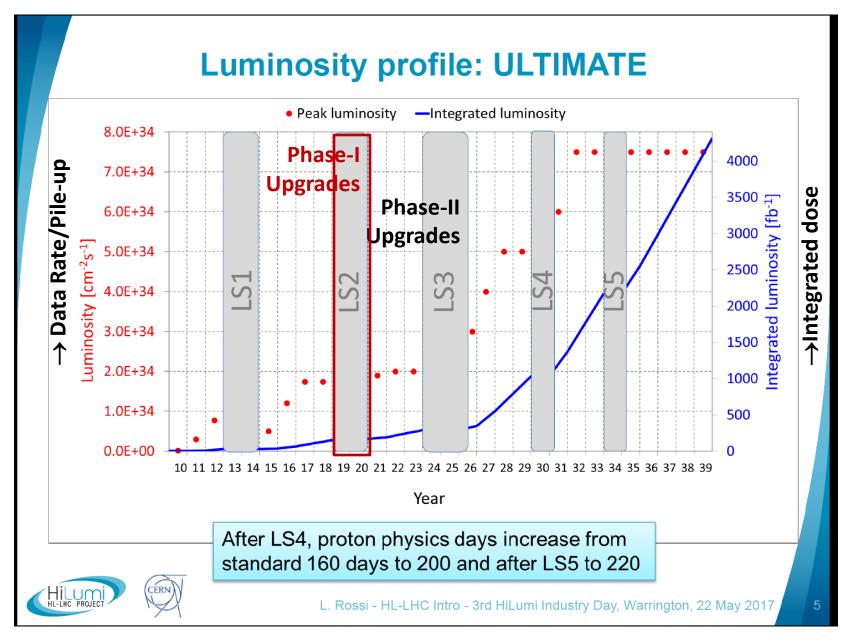
CERN Council (May 2013) "The discovery of the Higgs boson is the start of a major programme of work to measure this 7 TeV & TeV particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the

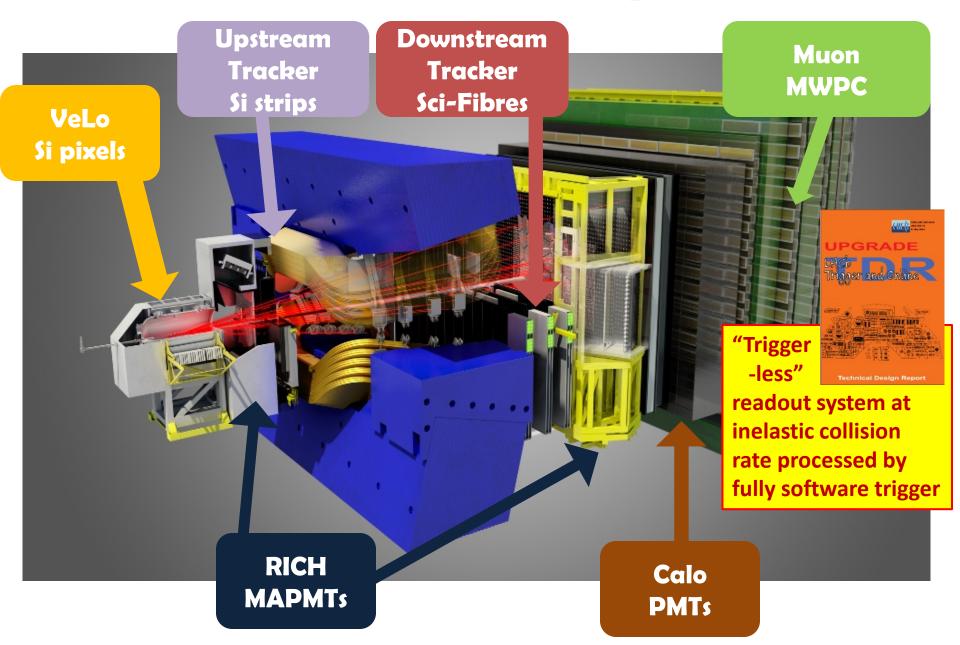

High Luminosity

energy frontier. The LHC is in a unique position to pursue this programme."

"Europe's top priority should be the exploitation of the full potential of the LHC, including the <u>high-luminosity upgrade of the machine and detectors</u> with a view to collecting ten times more data than in the initial design, by around 2030"

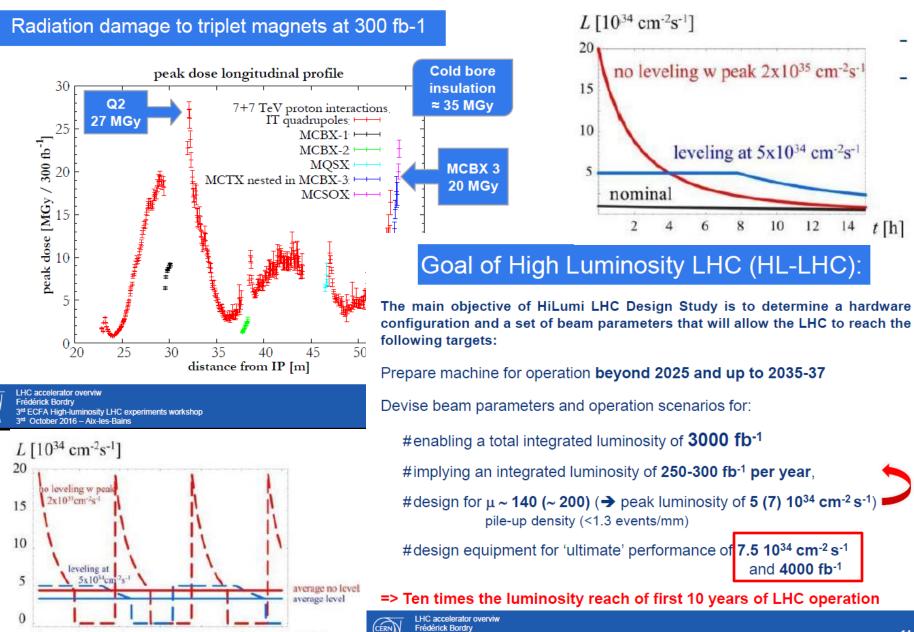
HEPAP in the US (May 2014) decided: "The <u>HL-LHC</u> is strongly supported and is the first high-priority large-category project in our recommended program"


CERN Council (June 2016) Formal approval of the High Luminosity LHC project, HL-LHC


https://indico.cern.ch/category/4863/

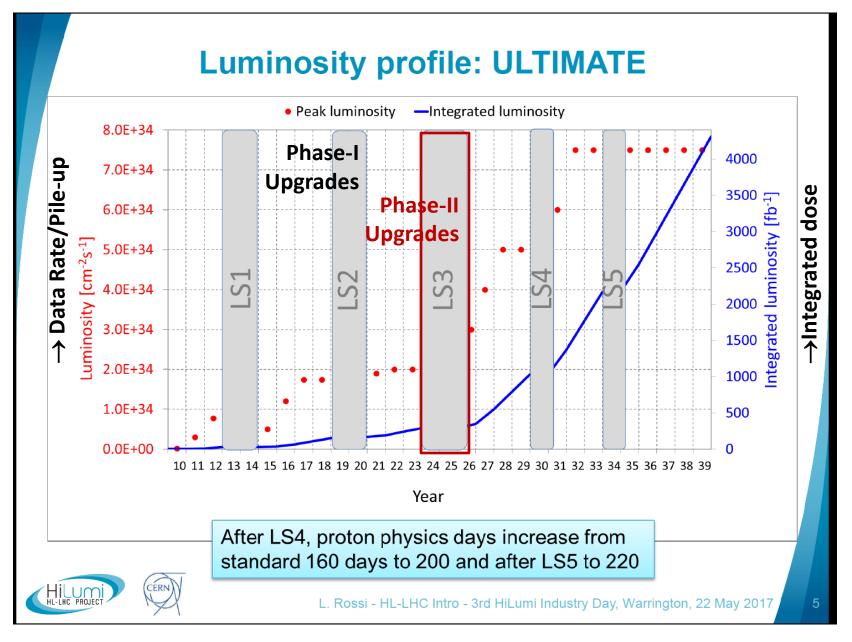
https://indico.cern.ch/event/524795/

LHCb: Phase-I Upgrades

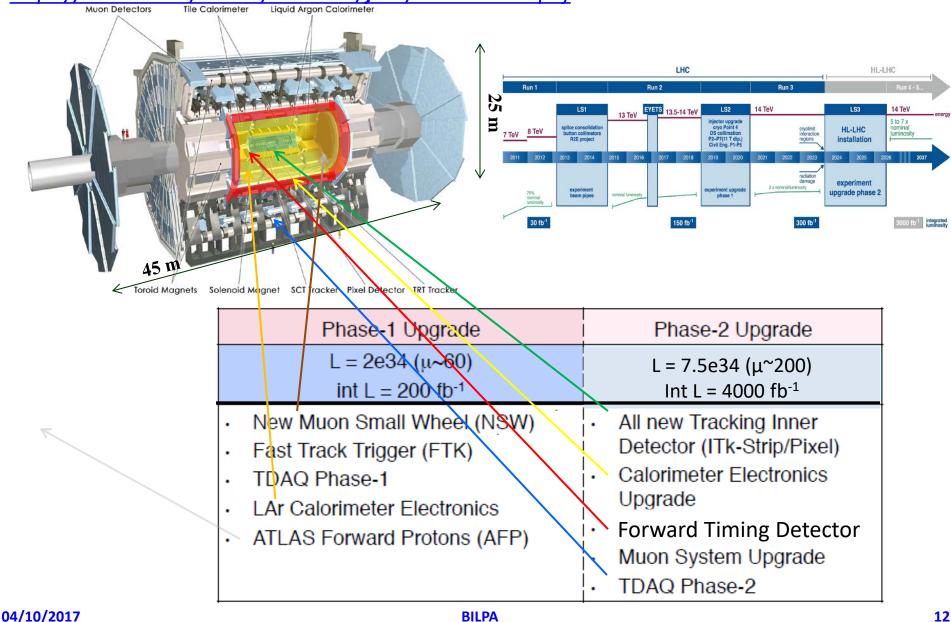


ALICE: Phase-I Upgrades

04/10/2017


Overview of HL-LHC Programme

3rd ECFA High-luminosity LHC experiments workshop


3rd October 2016 - Aix-les-Bains

30 t [h]

ATLAS: Phase-II Upgrades

https://cds.cern.ch/record/2055248/files/LHCC-G-166.pdf

CMS: Phase-II Upgrades

http://cds.cern.ch/record/2055167/files/LHCC-G-165.pdf?version=4

New Tracker

- Radiation tolerant high granularity less material
- Tracks (P_T>2GeV) in hardware trigger (L1)
- Coverage up to $\eta \sim 4$

Barrel ECAL

- Replace FE/BE electronics
- Cool detector/APDs

Trigger/DAQ

- L1 (hardware) with tracks and rate up $\,\sim\,$ 750 kHz
- L1 Latency 12.5 μs
- HLT output rate 7.5 kHz

Muons

- Replace DT and CSC FE/BE electronics
- Complete RPC coverage in forward region (new GEM/RPC technology)
- Muon-tagging up to $\eta\sim 3$

New Endcap Calorimeters

- Radiation tolerant
- High granularity
- Timing capability

Large Area High Rate Gas Detectors (>10⁴Hz/cm²)

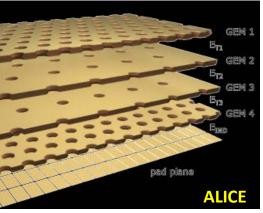
Major R&D activities on micro-pattern gaseous detectors for LHC large volume tracking (eg muon systems)

- Increase rate capabilities and radiation hardness
- Improved resolution (online trigger and offline analyses)^[±]
- Improved timing precision background rejection)
- Technologies
- Straws (NA62) and drift tubes (ATLAS)
- Gas Electron Multiplier (CMS, ALICE TPC R/O and current LHCb)

RD51: common micro-pattern gas detector R&D

induction gap

Cylindrical GEM KLOE-2 and for BESIII


💦 3µm Cu

50um Kapton

doi:10.1016/j.nima.2015

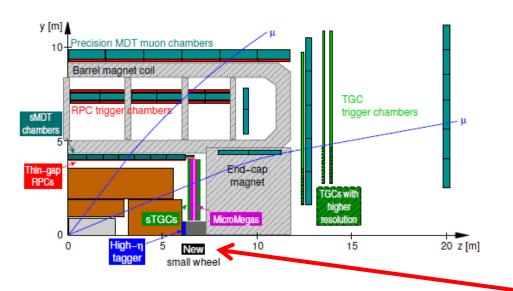
GEM foil

Fabio Sauli

4 layer GEM stack to target Ion backflow < 1% given continuous readout at 50kHz

04/10/2017

5 µm

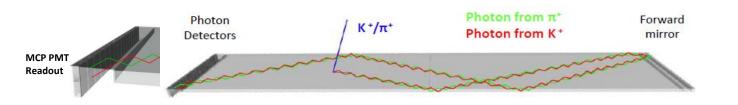

50 µm

55 µm

70 µm

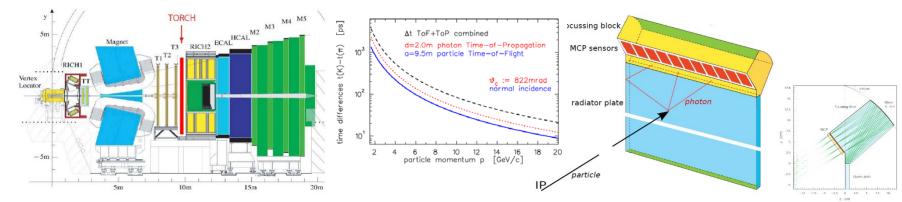
Large Area High Rate Gas Detectors (>10⁴Hz/cm²)

- MicroMegas and Thin Gap Chambers (TGCs): ATLAS "New Small Wheels"
- Many challenges including the development of commercial large-scale production capabilities (ATLAS NSW Forward Muons: 2*1200m² and 2.4M channels)

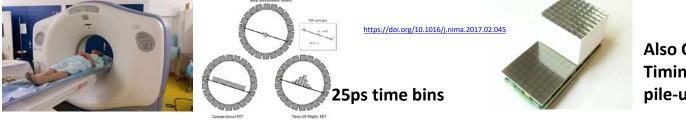

- Resistive Plate Chambers (RPCs) low resistivity glass for rate capability, multigap precision timing (ALICE/ATLAS/CMS)
- Cathode **MicroMegas Principle** Drift Electrode -300 V 5 mm : E Field Conversion/Drift Gap Micromesh Amplification Gap. E Field olla 128 µm +500V CB Board Readout Strips 400 µm **Resistive Strips**

Scintillating Fibre Tracking

Dose (Gy) for 50 fb-1 Large scale SciFi tracker for LHCb 600 100000 10000 400 SiPM readout SiPM 3 stations of X-U-V-X scintillating 200 location fibre planes (≤5° stereo). Every Y(cm) plane is made of 5 layers 0 $F_n = 6.10^{11} \text{ cm}^{-2}$ of 2.5 m long Ø250 μm fibres,. -200 fibre ends -400 mirrored 0.1 0.01 -600 -400 -300 -200 100 200 300 400 X(cm) SiPM readout 2 x ~ 2.5 m 4 layer proto mat 2 x ~3 m Challenges Large size – high precision 250 um pitcl O(10,000 km) of fibres **Operation of SiPM at -40°C** SiPM array (HPK) N_{pe} 3 million (SCSF-78MJ TDR baseline) scintillating $\Sigma = \sim 10-20 \text{ pe}$ fibres with up to 30kGy non-uniform exposure ch. # (CERN/LHCC 2014-001) 04/10/2017 **BILPA**


Timing Detectors (c=30cm/ns; 1/c= 33ps/cm)

- Many applications call for precision timing for particle ID (incl Time of Flight)
 - eg BELLE-II TOP (Time of Propagation) σ = 35ps: 2.5m x 0.45m x 2cm Quartz bars

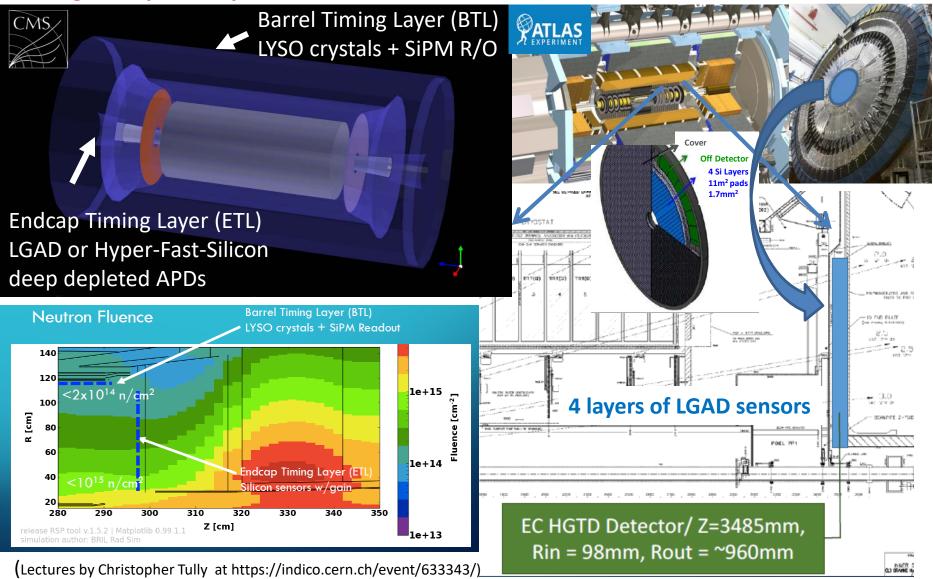


• eg LHCb TORCH (Time Of internally Reflected CHerenkov light) 15ps ToF (30 pe/track)

BILPA

PET Scanner technologies: ToF fast scintillator and photodetector (eg LYSO+SiPM)

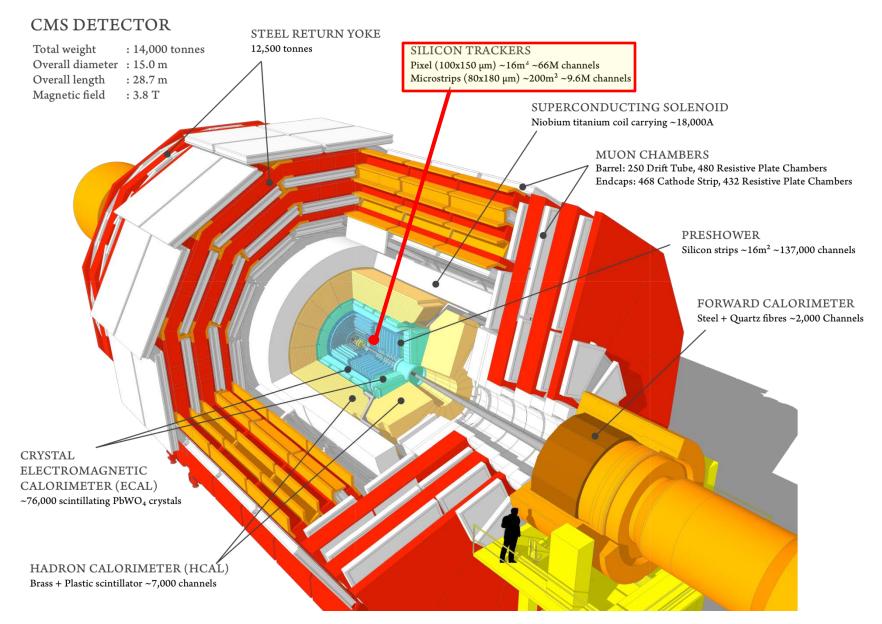
Also CMS Barrel Timing Layer (30ps pile-up mitigation)


Timing Detectors (c=30cm/ns; 1/c= 33ps/cm)

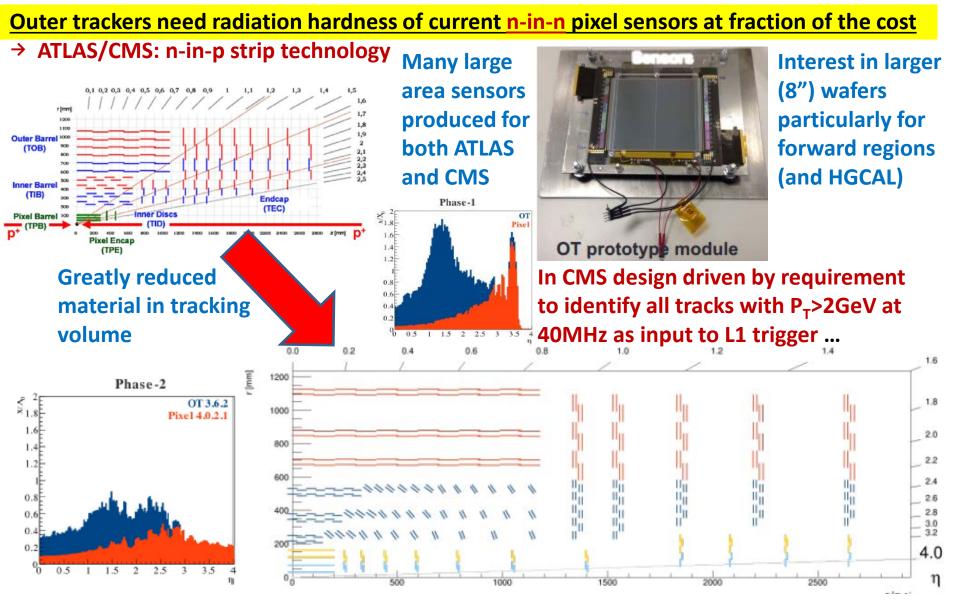
Charged particle detection with quartz/scintillator plus fast photodetectors eg ATLAS Forward Physics, or direct detection also possible with fast gas or semiconductor detectors

HL-LHC Timing Detectors

Use timing to help identify tracks with correct vertices

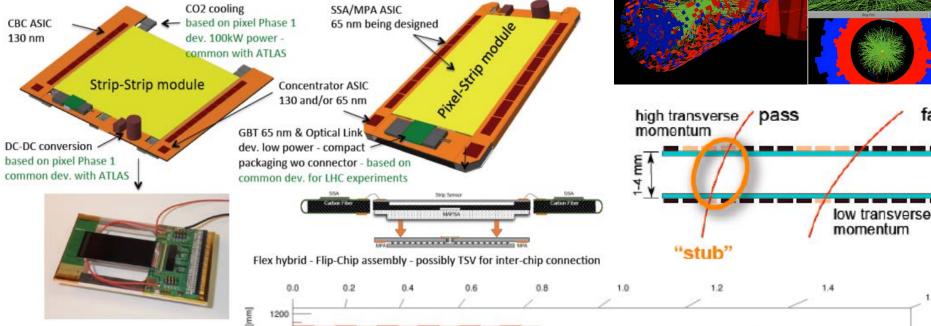


04/10/2017


BILPA

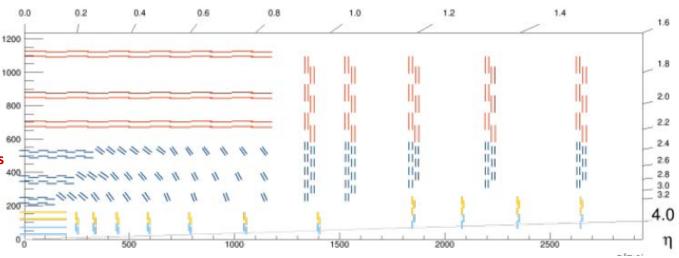
(Beamspot: $\sigma_z \sim 9 \text{ cm}; \sigma_t \sim 0.2 \text{ ns}$ 200 pile-up: 2017-03-16_HLLHC-TC.pdf)

CMS Tracker Upgrade



CMS Tracker Upgrade

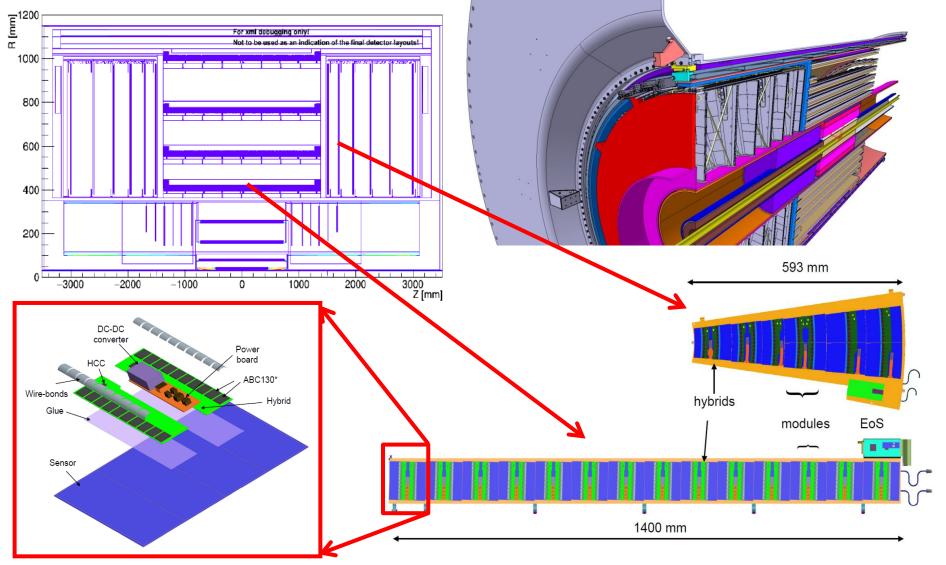
CMS Tracker Upgrade



5cm x 10cm silicon strip sensors

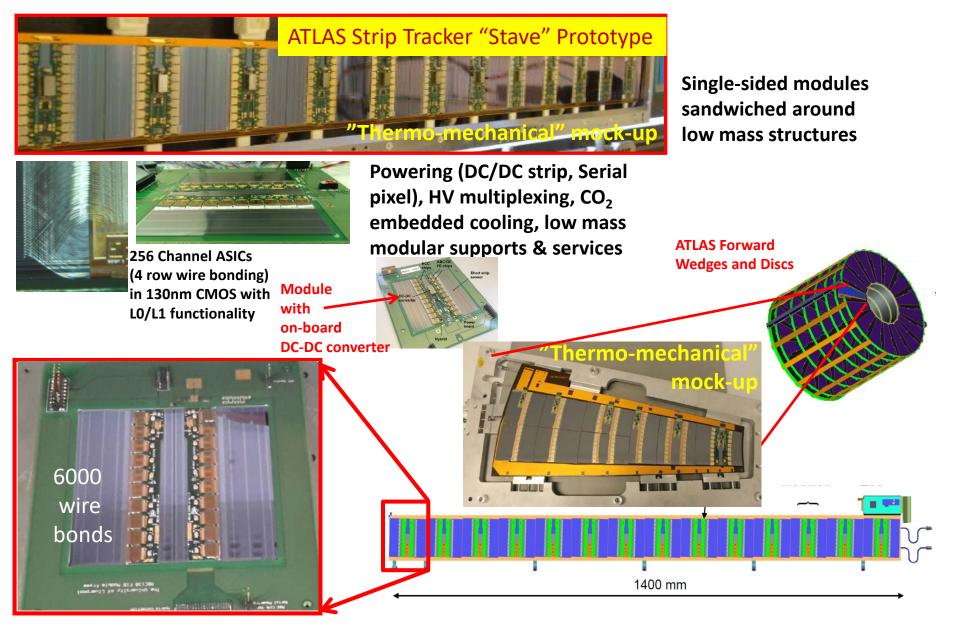
- strips: length 2.5cm, pitch 100μm
- AC coupled with poly-silicon bias resistors

5cm x 10cm silicon macro-pixel sensors

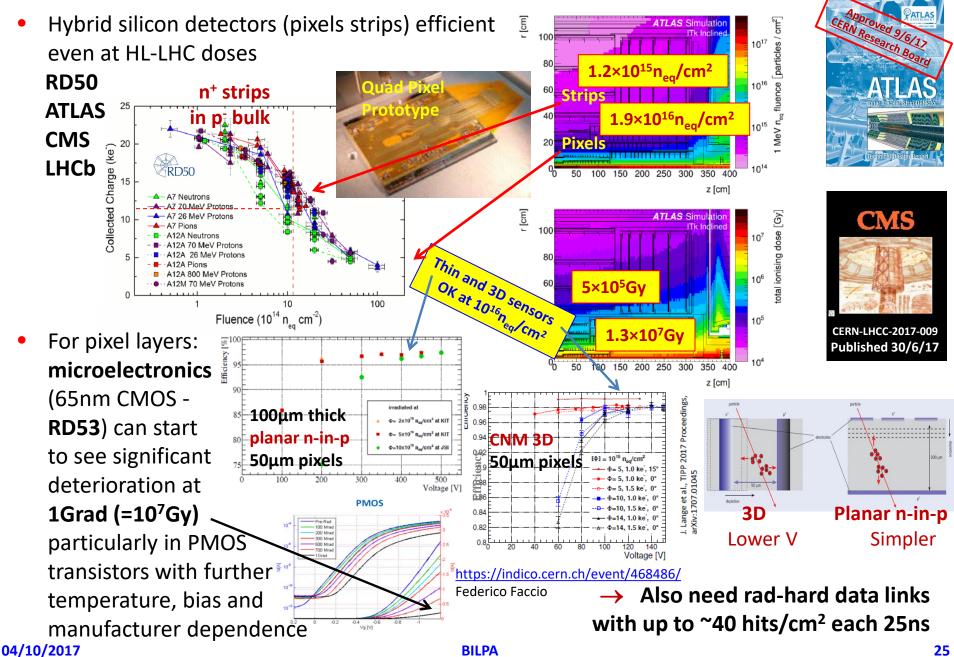

- strips: length 1.5mm, pitch 100µm
- DC coupled with punch-through biasing

fail

ATLAS Tracker Upgrade (ITk)


New All Silicon Inner Detector (200m², ~10¹⁰ channels)

04/10/2017


BILPA

ATLAS Tracker Upgrade (ITk)

BILPA

HL-LHC Radiation Hardness

Future Circular Collider

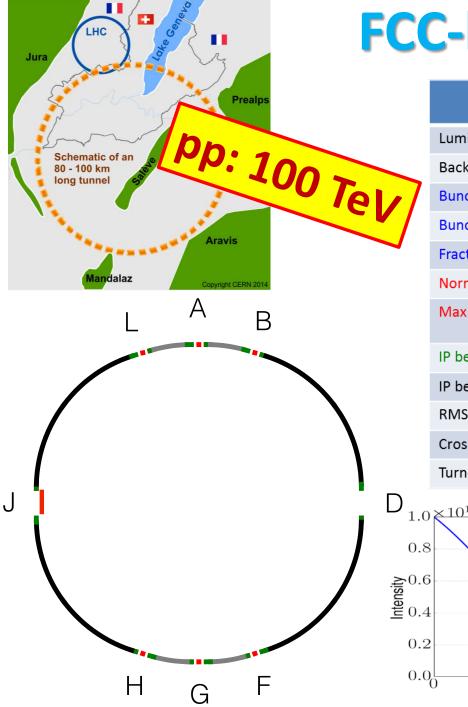
Work supported by the European Commission under the HORIZON 2020 project EuroCirCol, grant agreement 654305

2013 update of the European Strategy for Particle Physics

"Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update, when physics results from the LHC running at 14 TeV will be available."

FCC

"CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnets and highgradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide."


April 9-13 2018: FCC week Amsterdam

04/10/2017

BILPA

468 participants

INFN

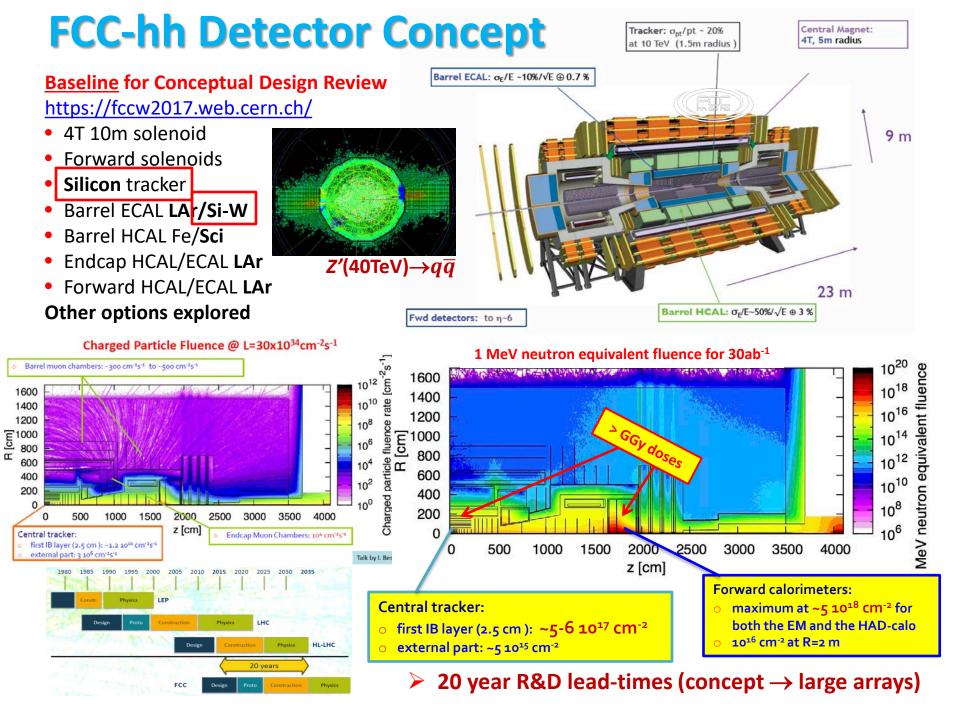
FCC-hh Parameters

	FCC-hh Baseline	FCC-hh Ultimate								
Luminosity L [10 ³⁴ cm ⁻² s ⁻¹]	5	20-30								
Background events/bx	170 (34)	(1020 (204)								
Bunch distance Δt [ns]	25	5 (5)								
Bunch charge N [10 ¹¹]	1 (0.2)									
Fract. of ring filled η_{fill} [%]	80									
Norm. emitt. [µm]	2.2(0.44)									
Max ξ for 2 IPs	0.01 (0.02)	0.03								
IP beta-function β [m]	1.1	0.3								
IP beam size σ [μm]	6.8 (3)	3.5 (1.6)								
RMS bunch length σ_z [cm]	8									
Crossing angle [$\sigma\Box$]	12	Crab. Cav.								
Turn-around time [h]	5	4								
$ \Rightarrow \text{Reach 8fb}^{-1}/\text{day} $ $ \Rightarrow 5ab^{-1} \text{ per 5} $		for 25ns spacin								

⇒ Beam is burned quickly
 ⇒ A reason to have enough charge stored

7

6


 $\mathbf{5}$

 $\hat{2}$

3

 $\overline{4}$

Time [h]

FCC Planning and Status

- Fastest "technically feasible" schedule
- Very/hopelessly optimistic schedule; scenario with no cash-flow limitations
- Not even consistent with HL-LHC schedule, but shows what could be achieved

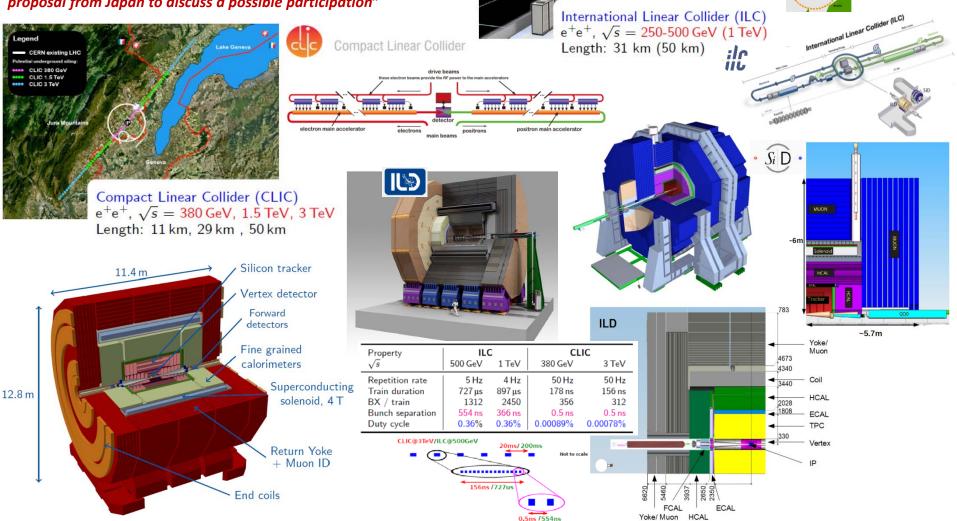
d FCC Week, Berlin, 29 May 2017

 Physics and performance simulations prepared for Rome FCC Week

Physics at the FCC-hh
 https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider
 Volume 1: SM processes (238 pages)

- Volume 2: Higgs and EW symmetry breaking studies (175 pages)
- Volume 3: beyond the Standard Model phenomena (189 pages)
- Volume 4: physics with heavy ions (56 pages)
- Volume 5: physics opportunities with the FCC-hh injectors (14 pages)

12 CDR Volumes (9 + 3 Annex)


- Full Conceptual Design Review (CDR) driven by European Strategy update in 2020
- FCC-hh summary volume (100-200 pages) as well as the extensive FCC-hh comprehensive CDR volume "Experiment and Detectors" (>1000 pages)
- November 22nd 2018: Publication

Energy Frontier e⁺e⁻ Facilities

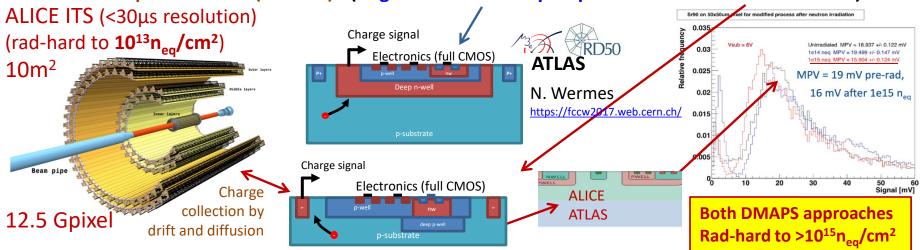
2013 update of the European Strategy for Particle Physics

"There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded The initiative from the Japanese particle physics community to host the ILC in Japan is most welcome, and European groups are eager to participate. Europe looks forward to a proposal from Japan to discuss a possible participation"

and the state of the second state of the second state of the

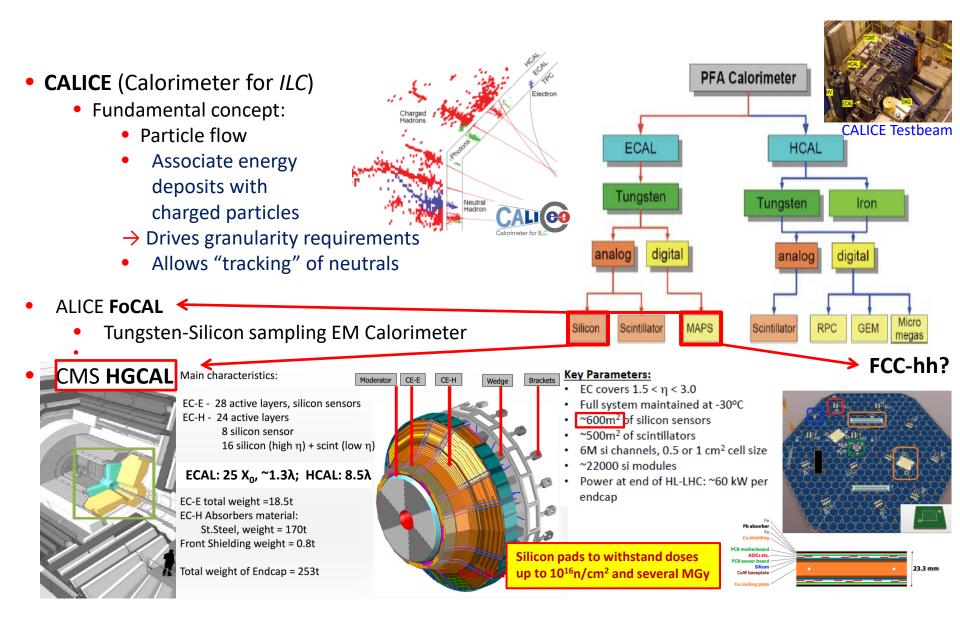
Circular Electron Positron Collider (CEPC)

Future Circular Collider (FCC) $e^+e^+, \sqrt{s} = 90-350 \text{ GeV};$


pp, \sqrt{s} :~100 TeV Circumference: 90-100 km

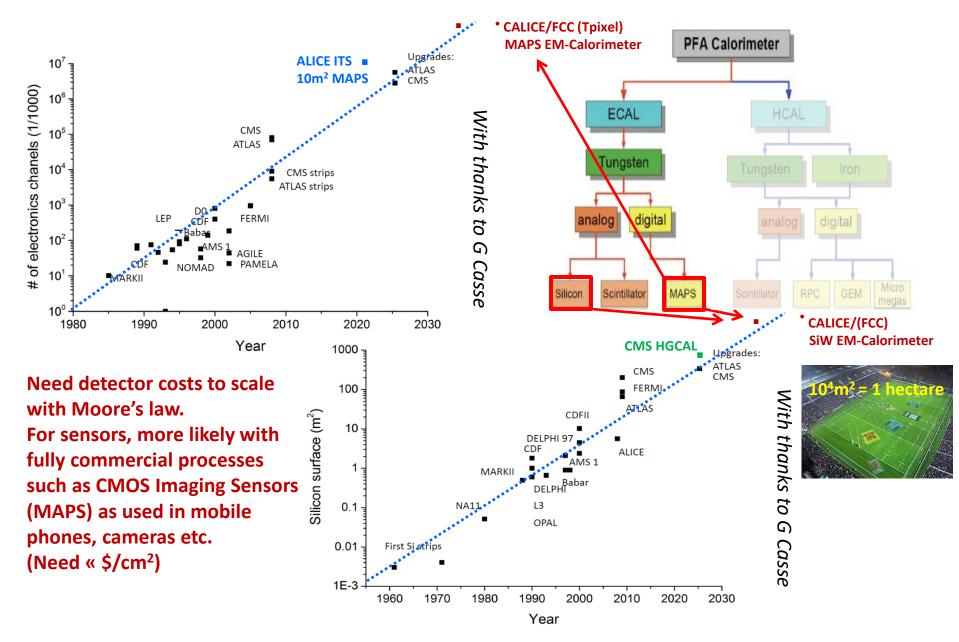
 e^+e^- , $\sqrt{s} = 240-250 \text{ GeV}$; SPPC pp, Circumference: 54-100 km

ILC/CLIC Inspired Pixel Technologies

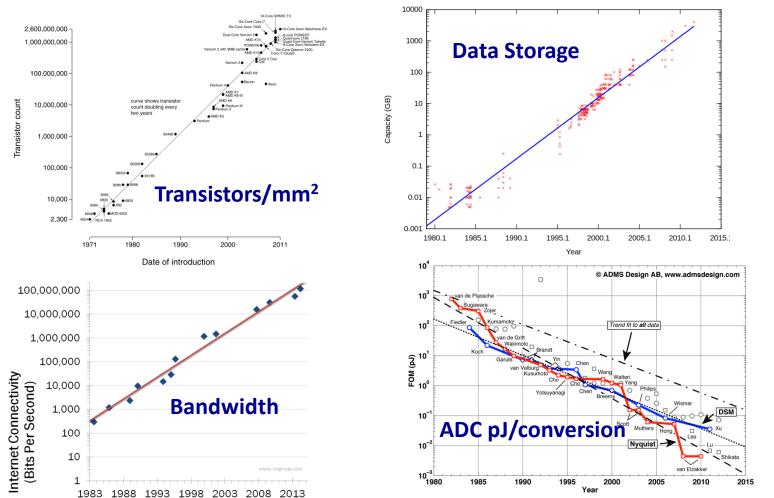

(See Vertex 2016 https://indico.cern.ch/event/452781/sessions/208678/#20160930)

- Demands of ultra-low mass, highest resolution, low power and fast time-stamp
- A wide range of technologies with many years of development:
 - DEPFET (see also BELLE-II)
 - FinePixel CCD
 - Thin Planar sensor or HV-CMOS Hybrid (C3PD)+CLICpix
 - Monolithic CMOS
 - Vertical integration with TSVs (FNAL 3D)
 - Chronopix
 - Sol for Fine Space and Time (SOFIST)
 - Monolithic Active Pixel Sensors (MAPS)
 - MIMOSA (developments since 2000 for ILC)
 - → STAR Heavy Flavour Tracker (doi: 10.1016/j.phpro.2015.05.067)
 - → ALPIDE for ALICE Inner Tracker System Upgrade (ALICE-TDR-017)
 - → Depleted MAPS (DMAPS): (large fill factor + deep-depletion or low fill factor = low C)

VERTEX 2016: J Goldstein Spatial resolution: highly granular sensor: A G Besson $\sigma_{R\phi} \sim 3 \ \mu m$ (pitch $\sim 20 \ \mu m$) multiple scattering : very low material budget: $O(0.1\%X_0/layer)$ Single bunch time resolution $\rightarrow 1$ st layer: $\sim 5 \ part/cm^2/BX \rightarrow few \%$ occupancy Power dissipation \leftrightarrow preferably gas cooling $\rightarrow <130 \ \mu W/mm^2$ (Power cycling, $\sim 3\%$ duty cycle)


Calorimetry and Particle Flow

04/10/2017


BILPA

Silicon Based Detector Evolution

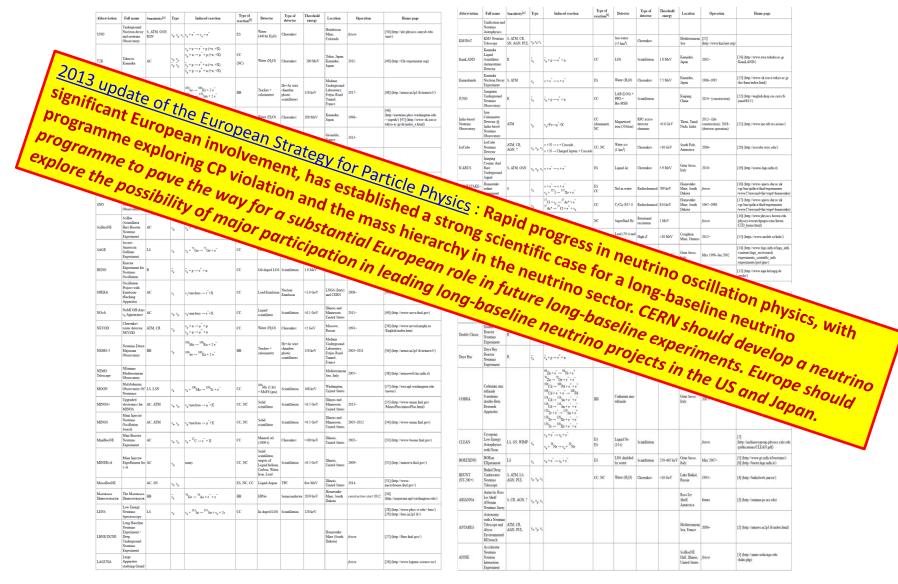
04/10/2017

Microelectronics/Computing Evolution

Microprocessor Transistor Counts 1971-2011 & Moore's Law

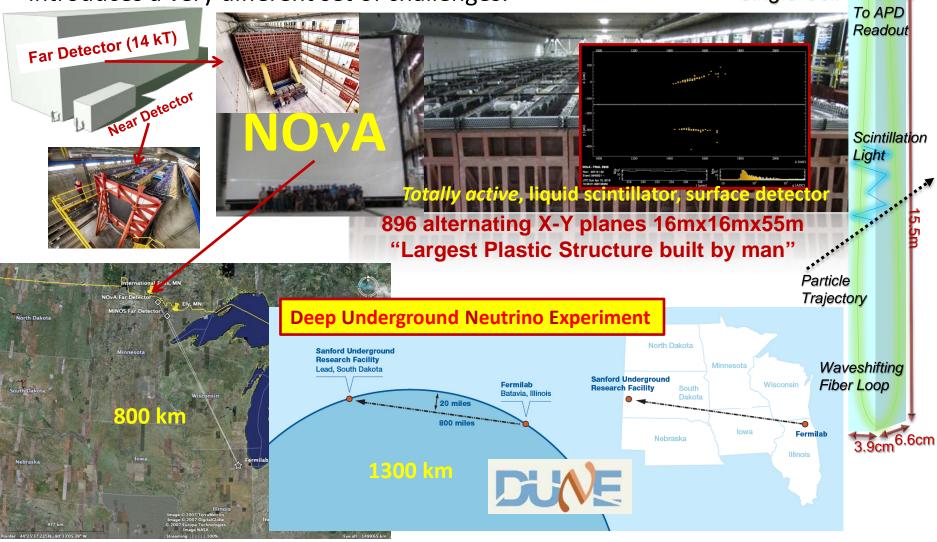
All these figures showed doubling times of < 2 years up to now. Some scalings will stop, but different improvements conceivable. Can still hope for major detector improvements and enhanced TDAQ plus computing capabilities. However, storage and CPU costs not expected to continue to scale this fast.

With thanks to W Riegler

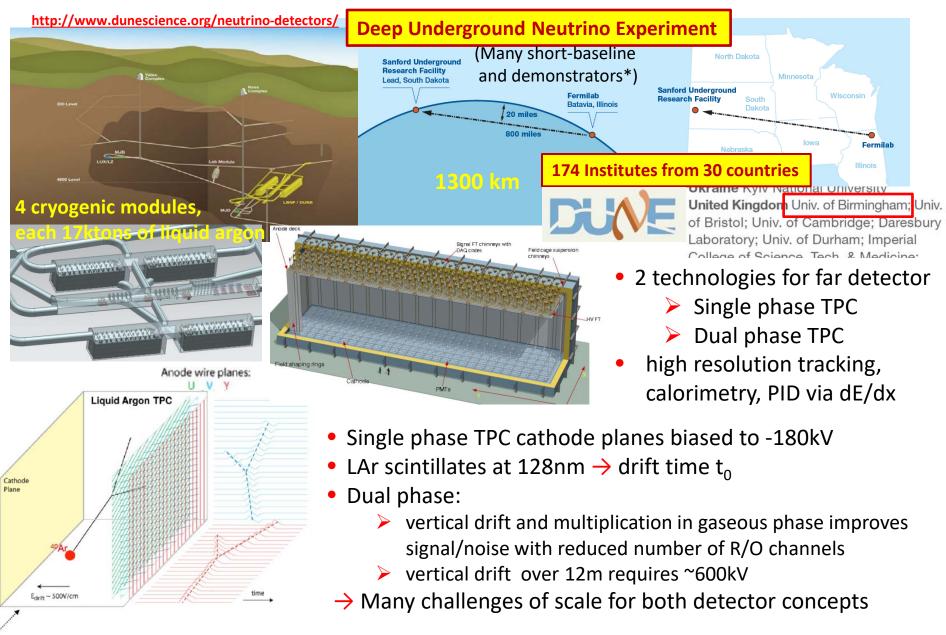

Accelerator and Reactor Neutrinos

<u>https://en.wikipedia.org/wiki/List_of_neutrino_experiments</u> gives over 50 experiments (but this list does include neutrinoless ββ decay and neutrino observatories)

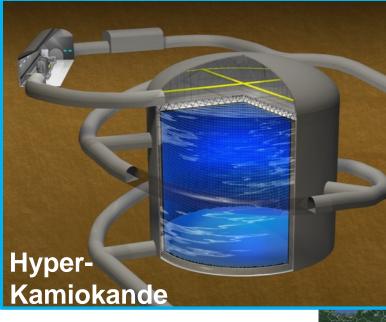
Abbreviation	Full name	Sensitivity ^(a)	Type	Induced reaction	Type of reaction ^[9]	Detector	Type of datactor	Threshold energy	Location	Operation	Home page	Abbreviation	Full name	Sensitivity ^[a]	Type	Induced reaction	Type of reaction ^[b]	Detector	Type of detector	Threshold energy	Location	Operation	Home page
UNO	Underground Nucleon decay and neutrino	S, ATM, GSN, RSN	V., V., V.	$v_e + e^- \rightarrow v_e + e^-$	reaction ¹⁺¹ ES	Water (440 kt H2O)	Cherenkov		Henderson Mine,	fature	[50] (http://ale.physics.sunysb.edu /mmo/)		Unification and Neutrino Astrophysics										
	Observatory	1.5.0				(440 & H2O)			Colorado		(1880)	KM3NeT	Telescope	S, ATM, CR, SN, AGN, PUI	v _µ v _e v _t			Sea water (≈5 km ³)	Cherenkov		Mediterraseas Sea	[25] (http://www.km3net.org)
	Tokai to Kamioka	AC	v_e, v_μ v_e, v_μ	$\begin{split} v_{\phi} + n &\rightarrow e^{-} + p (+\pi, +X) \\ v_{\mu} + n &\rightarrow \mu^{-} + p (+\pi, +X) \\ \hline v_{\phi} + p &\rightarrow e^{+} + n (+\pi, +X) \\ \hline v_{\mu} + p &\rightarrow \mu^{+} + n (+\pi, +X) \end{split}$	CC (NC)	Water (H ₂ O)	Cherenkov	200 MeV	Tokai, Japan Kamioka, Japan	2011-	[49] (http://t2k-experiment.org)	KanLAND	Kamioka Liquid Scimillator Antineutrino Detector	R	Ÿ.	$\bar{v}_e^+ p \rightarrow e^+^+ n$	сс	LOS	Scintillation	1.8 MeV	Kamioka, Japan	2002-	[24] (http://www.awa.tohoku.ac.jp /KamLAND/)
							He+Ar wire		Modane Underground			Kamiokande	Kamioka Nucleon Decay Experiment	S, ATM	ve	v+e_→v+e_	ES	Water (H ₂ O)	Cherenkov	7.5 MeV	Kamioka, Japan	1986-1995	[23] (http://www-sk.icmu-tokyo.ac.jp /doc.kam/index.html)
SuperNEMO	SuperNEMO	BB	×.	${}^{100}Se \rightarrow {}^{100}Kr + 2 e^{-100}Nd \rightarrow {}^{150}Sm + 2 e^{-10}Nd \rightarrow {}^{150}Sm$	BB	Tracker + calorimeter	chamber, plastic scintillators	150 keV	Laboratory; Fréjus Road Tunnel, France	2017-	[48] (http://nemo.in2p3.fs/nemow3/)	JUNO	Jiangmen Underground Neumino Observatory	R	v.	$\bar{v}_e + p \rightarrow e^+ + n$	сс	LAB (LOS) + PPO + Bis-MSB	Scintillation		Kaiping, China	2014- (construction)	[22] (http://english.ihep.cas.co/s/fs /juno0815/)
	Super- Kamiokande Short baseline	S, ATM, GSN	ve. v _p . v	$v_e + e^- \rightarrow v_e + e^-$ $v_e + n \rightarrow e^- + p$ $v_e + p \rightarrow e^+ + n$	ES CC CC	Water (H2O)	Cherenkov	200 MeV	Kamioka, Japan	1996-	[46] (http://neutrino.phys.umshington.edu /-superk/) [47] (http://www.sk.icm.u- tokyo.ac.jp/sk/index_e.html)	India-based Neutrino Observatory	Iron Calorimeter Detector @ India-based	ATM	Υµ	v _µ +Fe→µ ⁻ +X	CC (dominant). NC	Magnetised iron (50 kton)	RPC active detector elements	≈0.6 GeV	Theni, Tamil Nadu, India	2012- (lab construction); 2018- (detector operation)	[21] (http://www.ino.tife.res.in/ino/)
STEREO	Short basenne Oscillation Search with LS Detector	R	Ÿ.	$\bar{v}_{e} + p \rightarrow e^{+} + n$	cc	liquid organic scintillator loaded with Gd	Scintillation	≈2 MeV	Grenoble, France	2013-		IceCube	Neutrino Observatory IceCube Neutrino	ATM, CR,	-	$v + N \rightarrow v + Cascade$.	CC, NC	Water ice	Cherenkov	≈10 GeV	South Pole,	2006-	[20] (http://icecube.wisc.edu/)
SoLid	Short baseline Oscillation Search with Lithium-6 Detector	R	ve	$\bar{v}_e + p \rightarrow e^+ + n$	сс	plastic and anorganic scintillator	Scintillation	≈2 MeV	Mol, Belgium	2015-		ICARUS	Detector Imaging Cosmic And Rare	AGN, ? S, ATM, GSN		$v + N \rightarrow Charged lepton + Cascade$ $v + e^- \rightarrow v + e^-$	ES	(1 km ³) Liquid Ar	Cherenkov	5.9 MeV	Anterctica Gran Sasso, Italy	2010-	[19] (http://icerus.lngs.infn.it)
SNO+	SNO with liquid scintillator	S.LS.R.T. SN.LSN	ve	$v_x + e^- \rightarrow v_x + e^-$ $\bar{v}_e + p \rightarrow e^+ + n$	ES, BB	linear alkylbenzene (LAB) + PPO	Scintillation	≈lMeV	Creighton Mine, Ontario	2014-	[45] (http://www.sno.phy.queensu.ca/)	HOMESTAKE- IODINE	Underground Signal Homestake iodine	s	v _e	v+e ⁻ v+e ⁻	ES CC	Nall in water	Rediochemical	1 789 keV	Homestake Mine, South Dakota	fature	[18] (http://www-spires.duc.ac.uk /cpi-bin/spiface/find/experiments /www2?nswcmd+fin+exp+homestak
SNO	Sudbury Neutrino Observatory	S, ATM, GSN	ve. v _p . v _t	$v_e + {}^2D \rightarrow 2p + e^-$ $v_x + {}^2D \rightarrow v_x + n + p$	CC NC ES	Heavy water (1 kt D ₂ O)	Cherenkov	3.5 MeV	Creighton Mine, Ontario	1999-2006	[44] (http://www.sno.phy.queensu.ca/)	HOMESTAKE- CHLORINE	Homestake chlorine experiment	s	ve	${}^{37}Cl + v_e \rightarrow {}^{37}Ar^* + e^-$ ${}^{37}Ar^* \rightarrow {}^{37}Cl + e^* + v_e$	сс	C2Cl4 (615 t)	Radiochemical	814 keV	Homestake Mine, South Daketa	1967-1998	[17] (http://www-spires.dor.ac.uk /cgi-bin/spiface/find/experiments /www2?zwwcmd=fin+exp+t-homestak
	SciBar (Scintillator Bar) Booster	10		$v_e + e^- \rightarrow v_e + e^-$ $v_\mu + {}^{12}C \rightarrow \mu^- + X$	CC. NC	Plastic (CH,10	Scintillation	=100 keV	Illincis,	2007-2008	[43] (http://www-sciboone.fnal.gov)	HERON	Helium Roton Observation of Neutrinos	LS	ve (mainly	ve+e-~ve+e	NC	Superfluid He	Rotational excitation	1 MeV		future	[16] (http://www.physics.brown.edu /physics/breearchpages/cme/heron /LTD_home.html)
	Neutrino Experiment Soviet-	~	×μ	v _µ + C→µ +x		ton)	S. III III III	-100 82.1	United States		fed (mb), and according margins)	HALO	Helium And Lead Observatory	SN	v _e , v _X	$\begin{array}{c} v_{e} + {}^{208}Pb \rightarrow e^{-} + {}^{209}Bi^{*} \\ v + {}^{208}Pb \rightarrow v + {}^{206}Pb^{*} \end{array}$	CC, NC	Lead (79 t) and ³ He	High-Z	=10 MeV	Creighton Mine, Ontario	2012-	[15] (https://www.snolab.ca/halo/)
SAGE	American Gallrum Experiment Reactor	LS	×.	$v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$	сс	GaClj	Radiochemical	233.2 keV	Baksan Valley, Russia	1990-2006	[42] (http://ewi.npl.washington.edu /SAGE/sage.html)	GNO	Gallium Neutrino Observatory	LS	ve	$v_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$	сс	GaCl ₃ (30 t)	Radiochemical	1 233.2 keV	Gran Sasso, Italy	May 1998–Jan 2002	[14] (http://www.lngs.infn.it/lngs_infi /contents/lngs_en/research /experiments_scientific_info /emperiments/past/gao/)
RENO	Experiment for Neutrino Oscillation	R	×.	$\overline{v}_q + p \rightarrow e^+ + n$	сс	Gd-doped LOS	Scintillation	1.8 MeV	South Korea	2011-		GERDA	The GERmanium Detector Array	вв	ī,	$^{16}\text{Ge} \rightarrow ^{76}\text{As} + e^- + e^-$	вв	HPGe	Semiconductor	¢	Gran Sasso, Italy		[13] (http://www.mpi-hd.mpg.de /gerda/)
OPERA	Oscillation Project with Emulsion- tRacking	AC	ve	$v_{\tau}\text{+nucleus} \rightarrow \tau^{-}\text{+}X$	сс	Lead Entailsion	Nuclear Emolsion	=1.0 GeV	LNGS (Italy) and CERN	2008-	[41] (http://operaweb.lngs.infn.it/)	GALLEX	GALLinn	LS		$v_e + {}^{71}G_1 \rightarrow {}^{71}Ge + e^-$	cc	GaCl ₃ (30 t)	Radiochemical	1 222 2 1-37	Gran Sasso,	1991-1997	[12] (http://www.mpi-bd.mpg.de
	Apparatus NuMI Off-Axis v _a Appearance	АС	v _e . v _µ	v_{e} +mcleus $\rightarrow e^{-}$ +X	cc	Liquid scintillator	Scintillation	≈0.1 GeV	Illinois and Minnesota,	2011-	[40] (http://www-nova.fnal.gov)	to see the	EXperiment Enriched Xenon	1.3	ve.	$^{134}Xe \rightarrow {}^{134}Ba + e^- + e^-$	BB	Liquid Xenon	Passo and a	1 233.2 MEV	WIPP, New	2009-	(11) (http://www-
NEVOD	Cherenkov water detector NEVOD	ATM, CR	νµ	$v_{\mu} + n \rightarrow \mu^{-} + p$ $v_{\mu} + p \rightarrow \mu^{+} + n$	сс	Water (H2O)	Cherenkov	=2 GeV	United States Moscow, Russia	1993-	[39] (http://www.nevod.mephi.ru /English/index.htm)		Observatory Double Chooz Reactor			$^{136}Xe \rightarrow ^{136}Ba + e^- + e^-$		272 872			Menico		project sinc stanford edu/exo/)
NEMO-3	Neutrino Entore Majorana Observatory	BB	ve	$^{100}Mo \rightarrow ^{100}Ru + 2 e^{-100}Se \rightarrow ^{100}Kr + 2 e^{-100}Se^{-100}Kr + 2 e^{-100}Kr + 2 e^{-10}Kr +$	BB	Tracker + calorimeter	He+Ar wire chamber, plastic scintillators		Modane Underground Laboratory, Fréjus Road Tunnel.	2003-2011	[36] (http://nemo.inlp3.fs/nemow3/)	Double Chooz	Neutrino Experiment Duya Bay Reactor Neutrino	R	Ÿe V.	$\bar{v}_e + p \rightarrow e^+ + n$ $\bar{v}_e + p \rightarrow e^+ + n$	cc	Gd-doped LOS Gd-doped LAB		1.8 MeV	Chooz, France Daya Bay,	2011-	 [10] (http://doublechooz.in2g3 fr/) [9] (http://dayamme.ihep.ac.cn/)
NEMO	NEutrino Mediterranean								France Mediterranean Sea, Italy	2007-	[38] (http://nemoweb.lns.infn.it)		Experiment		-	$^{64}Z_{B} + e^{-} \rightarrow ^{64}N_{1} + e^{+}$		(2003)			Cattor		
	Observatory Molybdenum Observatory Of	LS, LSN	Ye.	$v_e + {}^{100}M_0 \rightarrow {}^{100}T_c + e^-$	cc	¹⁰⁰ Mo (1 kt) + MoF6 (gas)	Scintillation	168 keV	Washington, United States		[37] (http://ewi.npl.washington.edu /moom/)		Codmiren zinc telluride			${}^{30}Z_{41} \rightarrow {}^{30}Ge + e^{-} + e^{-}$ ${}^{106}Gd \rightarrow {}^{106}Pd + e^{+} + e^{+}$ ${}^{108}Gd + e^{-} + e^{-} \rightarrow {}^{108}Pd$							
MINOS+	Upgraded electronics for MINOS	AC, ATM	v _e , v _µ ,	$v_{\mu}\text{+nucleus} \rightarrow \mu^-\text{+}X$	CC, NC	Solid scintillator	Scintillation	=0.5 GeV	Illinois and Minnesota, United States	2013-	[35] (http://www-nami faal.gov /MinosPlus/minosPlus.html)	COBRA	0-neutrino double-Beta Research Appenatus			$\begin{array}{c} ^{111}Cd \rightarrow \ ^{115}Sn + e^{-} + e^{-} \\ ^{116}Cd \rightarrow \ ^{116}Sn + e^{-} + e^{-} \\ ^{116}Cd \rightarrow \ ^{116}Sn + e^{-} + e^{-} \\ ^{120}Te + e^{-} \rightarrow \ ^{120}Sn + e^{-} \end{array}$	BB	Cadmium rin: telluride			Gran Sasso, Italy	2007-	[8] (http://www.cobea-experiment.org
MINOS	Main Injector Neutrino Oscillation Search	AC, ATM	v _e , v _µ	$v_{\mu}^{+} macleus \rightarrow \mu^{-} + X$	CC, NC	Solid scintillator	Scintillation	≈0.5 GeV	Illinois and Minnesota, United States	2005-2012	[34] (http://www-nami final.gov)					$^{1/3}$ Te \rightarrow $^{1/3}$ Xe + e ⁻ + e ⁻ $^{1/0}$ Te \rightarrow $^{1/0}$ Xe + e ⁻ + e ⁻							
MiniBooNE	Mini Booster Neutrino Experiment	AC	v _e , v _µ	v_e + ¹² C \rightarrow e ⁻ + X	сс	Mineral oil (1000 t)	Cherenkov	≈100 keV	Illinois, United States	2002-	[33] (http://www-boone-final.gov)	CLEAN	Cryogenic Low-Energy Astrophysics with Neon	LS, SN, WIMP	v.,	$v_k + e \rightarrow v_k + e$ $v_e + {}^{23}Ne \rightarrow v_e + {}^{20}Ne$	ES ES	Liquid Ne (10 t)	Scintillation			future	[7] (http://mckinseygroup.physics.yale.er /publications/CLEAN.pdf)
MINERvA	Main Injector ExpeRiment for	AC	Υ.	шаюу	CC, NC	Solid scintillator, targets of Liquid helium,	Scintillation	=0.5 GeV	Illinois, United States	2009-	[32] (http://minerva.fnal.gov/)	BOREXINO	BORon EXperiment	LS	ve	$v_{\mathbf{x}} + e^{-} \rightarrow v_{\mathbf{x}} + e^{-}$	ES	LOS shielded by water	Scientillation	250-665 keV	Gran Sasso, Italy	Мау 2007	 [5] (http://www.ge.infn.it/borexino/) [6] (http://borex.logs.infn.it/)
MicroBooNE		AC. SN			ES. NC. CC	Carbon, Water, Iron, Lead Liquid Argon	TPC	few MeV	Illinois,	2014-	[31] (http://www-	BDUNT (NT-200+)	Baikal Deep Underwater Neutrino	S, ATM, LS, AGN, PUL	v _e , v _p , v	t -	CC, NC	Water (H2O)	Cherenkov	≈10 GeV	Lake Baskal, Rossia	1993-	[4] (http://baikalweb.jint.tw/)
Majorasa	The MAJORANA DEMONSTRATOR	BB	ν _e , ν _μ	$^{76}Ge \rightarrow {}^{76}As + e^- + e^-$	BB	HPGe	Semiconductor		United States Homestake Mine, South Dakota	construction start 2012	microboone final gov/) [30] (http://majorana.mpl.washington.edu/)	ARIANNA	Telescope Antarctic Ross Ice-Shelf	S. CR. AGN. ?							Ross Ice Shelf	future	[3] (http://anianna.ps.uci.edu)
LENS	Low Energy Neutrino Spectroscopy	LS	v.,	$v_{e}^{+} + {}^{115}In \rightarrow {}^{115}Sn + v_{e}^{+} + 2\gamma$	cc	In-doped LOS	Scintillation	120 keV	L'ALOIS		[28] (http://www.phys.vt.edu/~lens/) [29] (http://lens.in2p3.fr/)		ANtenna Neutrino Array Astronomy	a en reit (Ve ^{, V} p ^{, V}	1					Astrectica		(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
LBNE/DUNE	Long-Baseline Neutrino Experiment / Deep Underground								Homestake Mine (South Dakota)	fature	[27] (http://lbne.fnal.gov/)	ANTARES	with a Neutrini Telescope and Abyss Environmental RESearch	ATM, CR, AGN, PUL	۷ _e , ۷ _g , ۷	¢					Mediterration Sea, France	2005-	[2] (http://instares.in2p3.fc/index.html
	Neutrino Experiment Large Apparatus		_								[26] (http://www.laguaa-science.ew/)	ANNIE	Accelerator Neutrino Neutron Interaction								SciBooNE Hall, Illinois. United States	fatore	[1] (http://annie.uchicago.edu /doku.php)

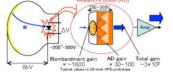

Accelerator and Reactor Neutrinos

<u>https://en.wikipedia.org/wiki/List_of_neutrino_experiments</u> gives over 50 experiments (but this list does include neutrinoless ββ decay and neutrino observatories)

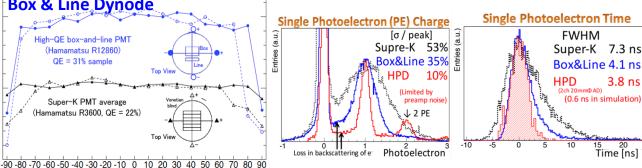


Long Baseline Neutrino Detectors


• The issue of scale associated with current and future neutrino experiments introduces a very different set of challenges: Single Cell


Long Baseline Neutrino Detectors

Long Baseline Neutrino Detectors



- New 50 cm PMT completed × 2 single photon efficiency
 - ×2 timing resolution
 - ×2 hydrostatic pressure tolerance Box & Line Dynode (all w.r.t. Super-K PMT) 2
- Hybrid-Photo-Detector (HPD): R&D development with avalanche diodes

- Tank : 60 m tall × 78 m diameter
- 260 kton ultrapure water • 190 kton fiducial mass : 10 × Super-K
- Innermost main volume viewed by 40,000 of new 50cm photo-sensors
- Improved photon sensitivity: 2 × Super-K
- Second tank as upgrade path (6 yr later)

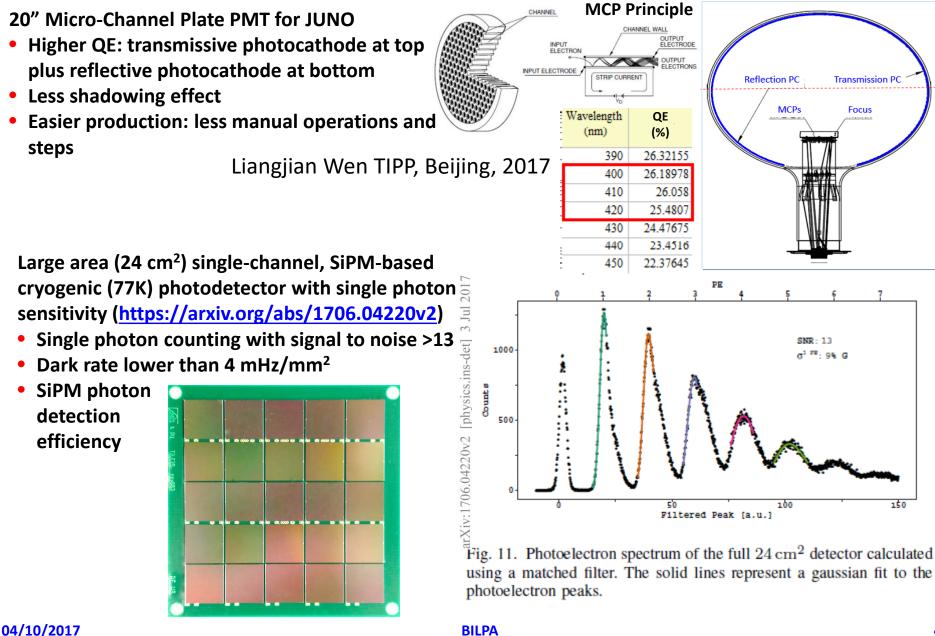
E box-and-line PM

Hamamatsu R12860)

Super-K PMT average Hamamatsu R3600, QE = 22%)

OF = 31% sampl

Reactor Neutrino Detectors



Liangjian Wen TIPP, Beijing, 2017 **Daya Bay** Electronics Calibration Liquid Filling + Top Tracker **Scintillator** Overflow pilot plant Linear alkyl benzene (LAB) as solvent Central detector 2,5-diphenyloxazole (PPO) as fluor SS latticed shell Acrylic Sphere: D: 35.4m Acrylic sphere p-bis-(o-methylstyryl)-benzene Thickness:120mm (20Kt LS in it) (bis-MSB) as wavelength shifter AS: ID35.4m SSLS: ~18000 20" PMT Technologies to achieve ${}^{14}C/{}^{12}C \sim 2.7 \times 10^{-18}$ SSLS: ID40.1m ID: 40.1m +~25000 3" PMT OD: 41.1m required radio-purity: ²³⁸U (Bi-Po 214) Water pool < 9.7 x 10⁻¹⁹ g/g (95% CL) Al_2O_3 column, Water Cherenkov D: 43.5m distillation, gas striping, Height: 44m ²³²Th (Bi-Po 212) ~2000 20" PMT Water Depth: < 1.2 x 10⁻¹⁸ g/g (95% CL) water extraction 43.5m Levels achieved at JUNO ⁴⁰K no evidence (TBD) Detectors Borexino: N. Rossi Pool ID:43.5m ³⁹Ar << ⁸⁵Kr AS: Acrylic sphere; SSLS: stainless steel latticed shell (Neutrino2016)

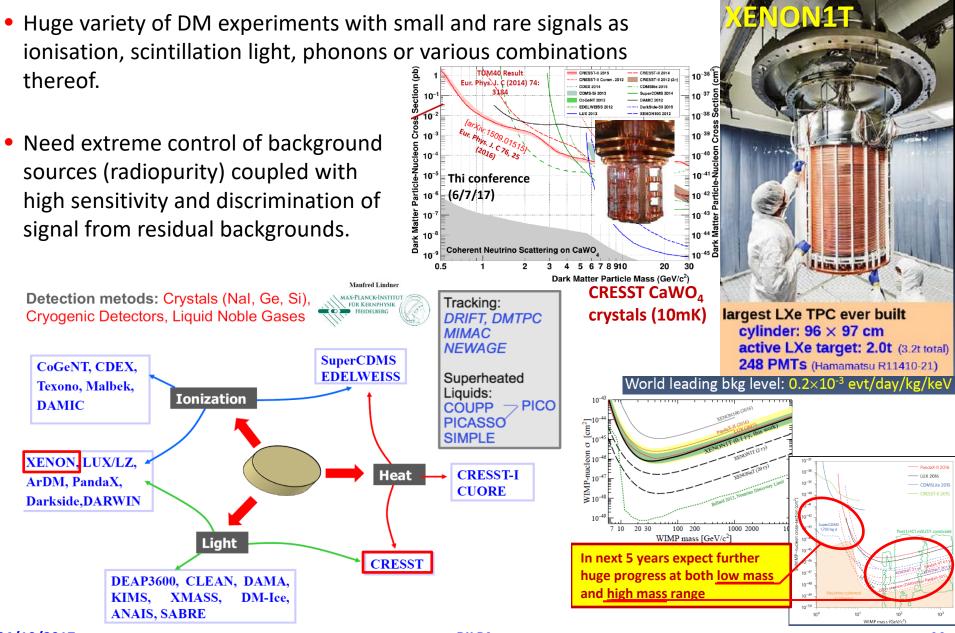
04/10/2017

BILPA

Neutrino Experiment Photodetectors

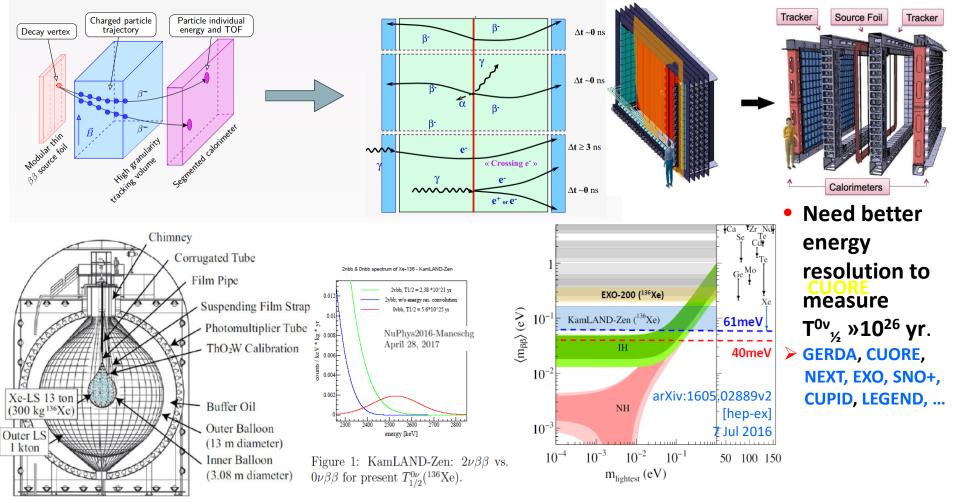
42

Non-accelerator and Low Energy Searches for Rare Processes


Facilities

- Underground laboratories for Dark Matter searches
- Underground laboratories for neutrino-less double β decay
- No and low energy accelerator ultra-rare processes (eg g-2,COMET, Mu3e, edm, ...)

Some Key Techniques

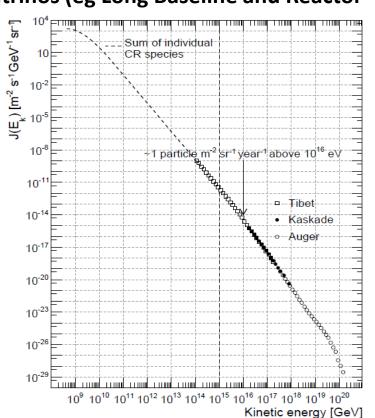

- Tracking semiconductor detectors
- Gaseous tracking detectors
- Scintillating Fibres
- Sampling Calorimeter
- Homogenous Calorimetry
- Superconducting Detectors
- Liquid Noble gas
- Liquid Scintillator

Underground Experiments for Dark Matter

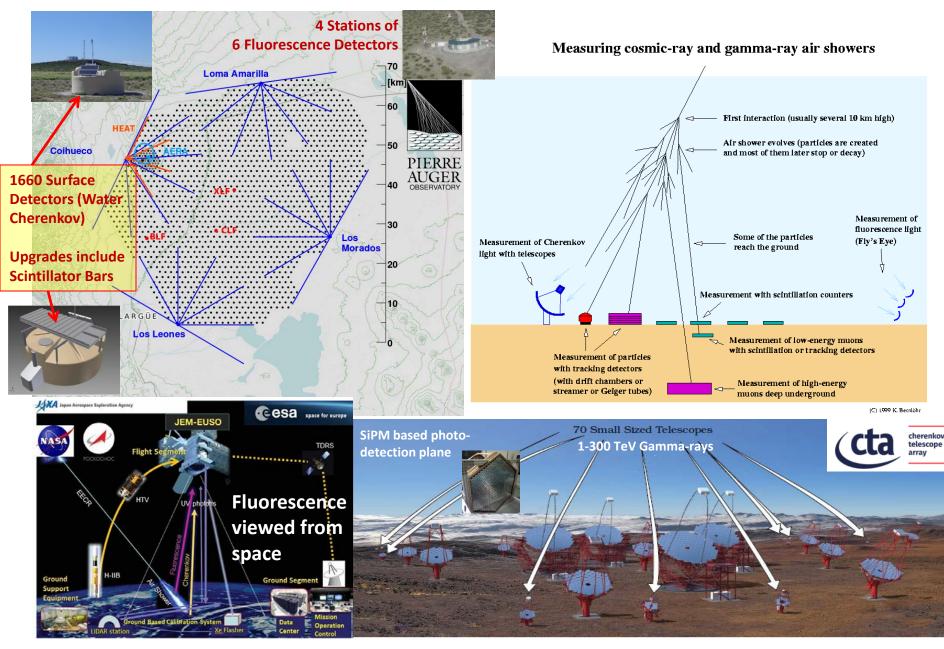
Underground Experiments for 0v2_β

 Many techniques also for neutrinoless double-beta decay involving many different techniques (SuperNEMO, EXO, CUPID, Majorana, KamLAND-Zen, NEXT, GERDA, SNO+, LEGEND, CUORE, AXEL, PANDAX, ... but all with a requirement of high radio-purity, background rejection, extreme detector resolution and isotope enrichment

Astro-particle Detectors

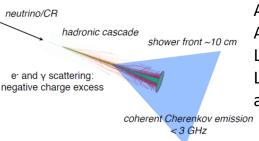

Huge Topic (35 space based, 23 balloon and 57 ground based experiments listed at https://www.mpi-hd.mpg.de/hfm/CosmicRay/CosmicRaySites.html)

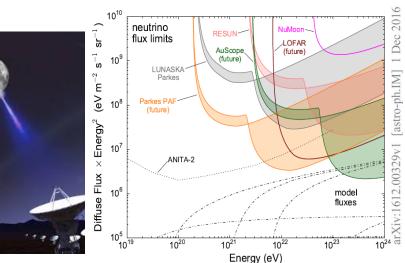
Facilities


- Charged Cosmic Rays (eg Pierre Auger, ...)
- Ultra High Energy Gamma-rays (eg CTA, ...)
- Ultra and Ultra² High Energy Neutrinos (eg IceCube, ...)
- Solar, Atmospheric and Supernova Neutrinos (eg Long Baseline and Reactor experiments, SNO+, INO, ...)

Some Key Techniques

- Tracking detectors
- Sampling Calorimeter
- Liquid Noble gas
- Liquid Scintillator
- Air/Water/Ice/rock
- Cherenkov and Fluorescence
- Large scale engineering


Detectors for Cosmic Rays and UHE Gammas


Ultra High Energy Neutrinos

Southern Hemisphere: **Northern Hemisphere:** IceTop KM3NeT collaboration megaton-80 stations, each with scale neutrino detectors 2500m 2 IceTop Cerenkov detector tanks depth in Mediterranean. IceCube 2 optical sensors per tank KM3NeT (Mediterraneo) laboratory 320 optical sensors □ < 25% □ 25% - 75% □ > 75% HQE DOM Normal DO PINGLI DOM 50 m (164 ft) IceCube array 86 strings including 6 DeepCore strings 60 optical sensors on each string 5160 optical sensors IceCube (Polo Sud) 100% Amanda II array 10 DOM's (precurser to IceCube) 10 m spacing 1450 m DeepCore dust layer (4760 ft) 6 strings-spacing optimized for lower DeepCore PINGU 50 DOM's energies, 360 optical sensors 60 DOM's m spacing Precision IceCube Next Generation Upgrade Eiffel Tower 2450 m 324 m (1063 ft) Energy threshold of a few GeV, able to distinguish between the normal (8040 ft) and inverted mass hierarchy at 3o significance with ~3.5 years of data 2820 m (9250 ft) 1 Dec 201 neutrino NuMoo bedrock RESUN flux limits _م LOFAR AuScope, (future) s^{-1} 10⁹ (future) [astro-ph.IM]

Askaryan effect

ARA/ARIANNA (array in ice) ANITA (Antarctica from balloon) LOFAR/NuMoon/AUScope LUNASKA Parkes (the Moon as an U²HE neutrino detector)

European Committee for Future Accelerators (ECFA) Detectors Panel Survey

- Only a fraction of different experiments and techniques covered
- List of facilities is one way of grouping the different styles of experiments
- Another possibility is a taxonomy of technologies:
- a. Pixel sensors (silicon: hybrid, monolithic)
- b. Inner tracking (silicon)
- c. Inner tracking and muon tracking (gas: MPGD, wires, TPC, straws and drift tubes)
- d. Scintillating fibre tracking
- e. Sampling calorimetry (scintillators)
- f. Sampling calorimetry (liquid noble gases)
- g. Sampling calorimetry (high granularity particle flow)
- h. Homogenous calorimetry (crystals, plastics)
- i. Fast timing detectors (semiconductor, crystal/scintillator, gas)
- j. Detectors exploiting superconductivity
- k. Particle Identification (Cherenkov plus efficient single photon detection)
- I. Large volume liquid noble gas for track and energy reconstruction
- m. Large volume liquid scintillators for timing and energy reconstruction
- n. Air/Water/Ice/Rock Cherenkov and fluorescence detection (light, sound, Askaryan effect)
- o. Custom microelectronics and other front-end electronics
- p. Data links and optoelectronics
- q. Mechanics, large-scale engineering, cooling and services
- r. Trigger, data acquisition and computing
 - everything I've forgotten

List of key technology challenges in the context of different facilities

Technique	1.1 (hadron	1.2 (lepton	1.3 (lepton-	1.4 (fixed	Comment
	collider)	collider)	hadron)	target)	
1.a (Si)	Rad-hard (pp)	Low mass	Fine pitch	Fast R/O	Monolithic devices incorporate
Vertexing	Low mass (AA)	Fine pitch	Low mass	Fine pitch	electronics. Time structure dictates
(& Lumi/FP)	Data rate (pp)	Time stamp		Radiation	on-detector R/O.
1.b Inner	Area/cost	Low mass	Area/cost	Radiation	Can be few 10 ¹⁵ n _{eq} /cm ² radiation
track (Si)	Radiation (pp)	Area/Cost			levels
1.c Track gas	Area/cost	Volume (TPC)	Area/cost	Hit rate	Industrialisation of gas micro-
(inlc muons)	Hit rate, aging		Hit rate		pattern detectors
1.d Sci	Radiation incl			Efficiency	Photodetector radiation hardness
Fibre	photodetectors				
1.e Scint	Radiation	Granularity	Granularity	EM Resolution	Timing for ToF or pile-up mitigation
Calo	Granularity	EM Resolution	EM Resolution		
1.f Calo	Charge collection	EM Resolution	EM Resolution	EM Resolution	Rate capabilities
L-noble	time			Speed	
1.g HG-Calo	Area/cost Resolution	Area/cost	Area/cost EM Resolution	EM Resolution	Particle Flow Analysis (EM Resolution?)
					,
1.h Calo	Radiation	EM Resolution	EM Resolution	EM Resolution	Timing for ToF or pile-up
homogenous	Granularity	Granularity	Granularity	Granularity	mitigation
1.i Fast Timing	Radiation,	Time	Area/cost	Speed	Primary vertexing.
(Si, gas,	Speed, Rate Area/cost	stampArea/cost		Sensitivity	Time of Flight for lower momenta PID
scintillator)					
1.k Particle ID	Volume	Volume	Volume	Volume	Efficiency for single photo-detection
RICH	Area/cost Radiation	Area/cost Channel #,	Area/cost Cost/channel #,	Area/cost Speed/data	Prototyping costs for doop sub
1.0 FE	Cost/channel #	Power, fine-pitch	Power	volumes	Prototyping costs for deep-sub- micron engineering runs
Electronics & Interconnect	Power	rower, me piten	1 Ower	volumes	
1.p Data links	Radiation	Channel #	Channel #	Speed/ data	How to exploit commercial
(incl opto-	Cost/channel #	Low mass	Low mass	volumes	developments?
electronics)	Low mass				
1.q Mech,	Low mass, reliable,	Low mass, reliable,	Low mass,	Low mass,	Large-scale magnet systems
		stable	reliable, stable	reliable, stable	
cool. services	stable	Stable			
cool, services	Cost, Speed	Cost	Cost, Speed	Speed/ data	Is Moore's Law safe forever?
cool, services 1.r TDAQ + Computing			Cost, Speed Commercial	Speed/ data volumes	Is Moore's Law safe forever?

Aspects of some areas are the topics of dedicated international R&D programmes

Technique	1.1 (hadron	1.2 (lepton	1.3 (lepton-	1.4 (fixed	Comment
	collider)	collider)	hadron)	target)	
1.a (Si)	Rad-hard (pp)	Low mass	Fine pitch	Fast R/O	Monolithic devices incorporate
Vertexing	Low mass (AA)	Fine pitch	Low mass	Fine pitch	electronics. Time structure dictates
(& Lumi/FP)	Data rate (pp)	Time stamp		Radiation	on-detector R/O.
1.b Inner	Area/cost	Low mass	Area/cost	Radiation	Can be few $10^{15}n_{eq}$ /cm ² radiation
track (Si)	Radiation (pp)	Area/Cost			levels
1.c Track gas	Area/cost	Volume (TPC)	Area/cost	Hit rate	Industrialisation of gas micro-
(inlc muons)	Hit rate, aging		Hit rate		pattern detectors
1.d Sci	Radiation incl			Efficiency	Photodetector radiation hardness
Fibre	photodetectors				
1.e Scint	Radiation	Granularity	Granularity	EM Resolution	Timing for ToF or pile-up mitigation
Calo	Granularity	EM Resolution	EM Resolution		
1.f Calo	Charge collection	EM Resolution	EM Resolution	EM Resolution	Rate capabilities
L-noble	time			Speed	
1.g HG-Calo	Area/cost	Area/cost	Area/cost	EM Resolution	Particle Flow Analysis (EM
	Resolution		EM Resolution		Resolution?)
1.h Calo	Radiation	EM Resolution	EM Resolution	EM Resolution	Timing for ToF or pile-up
homogenous	Granularity	Granularity	Granularity	Granularity	mitigation
1.i Fast Timing	Radiation,	Time	Area/cost	Speed	Primary vertexing.
(Si, gas,	Speed, Rate	stampArea/cost		Sensitivity	Time of Flight for lower momenta
scintillator)	Area/cost				PID
1.k Particle ID	Volume	Volume	Volume	Volume	Efficiency for single photo-detection
RICH	Area/cost	Area/cost	Area/cost	Area/cost	
1.0 FE	Radiation	Channel #,	Cost/channel #,	Speed/ data	Prototyping costs for deep-sub-
Electronics &	Cost/channel #	Power, fine-pitch	Power	volumes	micron engineering runs
Interconnect	Power				
1.p Data links	Radiation	Channel #	Channel #	Speed/ data	How to exploit commercial
(incl opto-	Cost/channel # Low mass	Low mass	Low mass	volumes	developments?
electronics)					
1.q Mech,	Low mass, reliable,	Low mass, reliable,	Low mass,	Low mass,	Large-scale magnet systems
cool, services	stable	stable	reliable, stable	reliable, stable	
1.r TDAQ +	Cost, Speed	Cost	Cost, Speed	Speed/ data	Is Moore's Law safe forever?
Computing	Commercial Solutions	Channel #	Commercial Solutions	volumes	
	Solutions		Solutions		

BILPA

Aspects of some areas are the topics of dedicated international R&D programmes

Tec	hnique	1.1 (hadron collider)	1.2 (lepton collider)	1.3 (lepton- hadron)	1.4 (fixed target)	Comment
	(Si) rtexing Lumi/FP)	Rad-hard (pp) Low mass (AA) Data rate (pp)	Low mass Fine pitch Time stamp	Fine pitch Low mass	Fast R/O Fine pitch Radiation	Monolithic devices incorporate electronics. Time structure dictates on-detector R/O.
	Inner ck (Si)	Area/cost Radiation (pp)	Low mass Area/Cost	Area/cost	Radiation	Can be few 10 ¹⁵ n _{eq} /cm ² radiation levels
1.c	Track gas	Area/cost	Volume (TPC)	Area/cost	Hit rate	Industrialisation of gas micro-

AIDA-2020: 1.1.a, 1.2.a, 1.1.b, 1.1c, 1.2c,1.1g, 1.1.i, 1.1.n, 1.2.n, 1.1.p, 1.2.p, 1.1.q, 1.2.q CALICE: 1.2.g Crystal Clear Collaboration: 1.1.e, 1.2.e, 1.3.e, 1.4.e, 1.2.h, 1.3.h, 1.4.h ILC/CLIC FCAL Collaboration: 1.2.g ILC TPC Collaboration: 1.2c RD42: 1.1.a, 1.2.a, 1.1.i, 1.2.i RD50: 1.1.a, 1.2.a, 1.1.b, 1.4.b, 1.1.i RD51: 1.1.c, 1.2.c, 1.4.c, 1.2i, 1.4i, 1.2.i, 1.4.i RD52: 1.2.e RD53: 1.1.n, 1.2.n Versatile Link Project: 1.1.o

Apologies to other collaborations I am not aware of particularly outside Europe

1.q Mech, cool, services Low mass, reliable, stable Low mass, reliable, stable Low mass, reliable, stable Low mass, reliable, stable Large-scale magnet systems 1.r TDAQ + Computing Cost, Speed Cost Cost, Speed Speed/ data Is Moore's Law safe forever? Computing Commercial Solutions Channel # Commercial Solutions Solutions Solutions				
Computing Commercial Channel # Commercial volumes				Large-scale magnet systems
Solutions	· · ·	<i>,</i> ,	• •	Is Moore's Law safe forever?

Aspects of some areas are the topics of dedicated international R&D programmes

Technique	1.1 (hadron collider)	1.2 (lepton collider)	1.3 (lepton- hadron)	1.4 (fixed target)	Comment
1.a (Si) Vertexing (& Lumi/FP)	Rad-hard (pp) Low mass (AA) Data rate (pp)	Low mass Fine pitch Time stamp	Fine pitch Low mass	Fast R/O Fine pitch Radiation	Monolithic devices incorporate electronics. Time structure dictates on-detector R/O.
1.b Inner track (Si)	Area/cost Radiation (pp)	Low mass Area/Cost	Area/cost	Radiation	Can be few 10 ¹⁵ n _{eq} /cm ² radiation levels

AIDA-2020: http://aida2020.web.cern.ch/activities CALICE: https://twiki.cern.ch/twiki/bin/view/CALICE/WebHome Crystal Clear Collaboration: https://crystalclear.web.cern.ch/crystalclear/ ILC/CLIC FCAL Collaboration: <u>http://fcal.desy.de/</u> ILC TPC Collaboration: https://www.lctpc.org/ RD42* (diamond): <u>http://rd42.web.cern.ch/rd42/</u> RD50* (rad-hard silicon): https://www.cern.ch/rd50/ RD51* (micro-pattern gas detectors): <u>http://rd51-public.web.cern.ch/rd51-public/</u> RD52* (dual readout calorimetry): http://cds.cern.ch/record/2255826/files/ RD53 (rad-hard electronics): https://rd53.web.cern.ch/RD53/ VL Project: <u>https://espace.cern.ch/project-Versatile-Link-Plus/SitePages/Home.aspx</u> * See LHCC 10/5/17 presentations at https://indico.cern.ch/event/632309/ Apologies to other collaborations I am not aware of particularly outside Europe

cool, services	stable	stable	reliable, stable	reliable, stable	
1.r TDAQ +	Cost, Speed	Cost	Cost, Speed	Speed/ data	Is Moore's Law safe forever?
Computing	Commercial	Channel #	Commercial	volumes	
	Solutions		Solutions		

2. Accelerator and Reactor Neutrinos

List of key technology challenges in the context of different facilities

	2.1 Long Baseline	2.2 Short Baseline	2.3 Reactor/source
2.c Gas detectors	Amplification	High pressure	
2.e,h Solid scintillator	Photodetector costs	Energy threshold	Energy and spatial
(sampling and	Material costs	Noise, Timing	resolution. Low noise.
homogeneous)	Large scale engineering	Granularity	Calibration. Shielding.
2.l,q Liquid scintillator	Photodetector sensitive	Photo-detector QE	Photo-detector QE
and associated	area and cost, Radio-purity,	Mechanics	Radio-purity, Gd
engineering	Large scale engineering	Shielding	doping, flux modelling
2.m,q Liquid noble gas	Purification	In cryostat low	Coherent neutrino-
and associated	Very high voltage	noise CMOS, space	nucleus scattering?
engineering	Large scale cryogenics	charge, FE range	
.n,q Water Cherenkov	Photodetector timing,	Separation of pile-	Gd-doping.
nd associated	efficiency and costs	up events (same	Radon.
ngineering	Large scale engineering	bunch), Gd-doping	Shielding.
.r DAQ & Computing	Reliability, buffering,	Reliability, data	Reliability
	dynamic range, data volume	volume	INID8
			2020 W
		<u>[</u>	Shielding. Reliability AIDA 2020 WP8 AIDA 2020 WP8 Cryogenic liquit
			orvogenie
			CIT

Far fewer areas coordinated by dedicated international R&D programmes

List of key technology challenges in the context of different facilities

	mology chancing	5031			uncrent	acin	ties -	
	3.1 Dark Matter	3.2 R	are neutrino	3.3 Oth	er rare decay	5		
3.a,b,d Tracker	Ultra-radio-purity	Radic	o-purity	Thin, fir	nin, fine granularity. 3. Non-act		elerator	
	Optical as well as	Very	low material.	Single e	tch GEM foils,			
	electrical read-out	Isoto	pe enrichment	Ū	te, fast timing,		and Low	Energy
				comple				
3.e,h,j Calorimetry	Ultra-radio-purity,		p-purity	-	te, fast timing,	Searches for		
	Ultra-low noise, (mK),		-low noise	0,	resolution at		Jearche	
	Energy resolution	-	gy resolution		ergies, radiation		_	
			p-purity		resolution		Rare Pro	cesses
			-low noise and	Backgro	ound rates			
Antipic and the second secon		-	efficiency					
			odetectors					
				Energy resolution				
		-low noise and	Background					
		-	efficiency	rates		List of key technology challenges in		
			odetectors			the context of different facilities		
3.r DAQ & Computing				Event ra				
					3.1 Dark Matter		3.2 Rare neutrino	3.3 Other rare decay
A Astro	-particle		3.a,b,d Tracker		Ultra-radio-puri	•	Radio-purity	Thin, fine granularity.
	-pai licie				Optical as well a		Very low material.	Single etch GEM foils,
Detec	tors				electrical read-o	out	Isotope enrichment	High rate, fast timing, complex field
			3.e,h,j Calorime	etry	Ultra-radio-puri	ty,	Radio-purity	High rate, fast timing,
					Ultra-low noise,	(mK),	Ultra-low noise	energy resolution at
					Energy resolution	on	Energy resolution	low energies, radiation
			3.d Liquid noble	e gas	Ultra-radio-puri	•	Radio-purity	Energy resolution
Not aware on	aither tonic of a	nv		Ultra-low noise an		and	Ultra-low noise and	Background rates
Not aware on either topic of any					high efficiency		high efficiency	
	ited by dedicate	-			nigh enreitency		nighterinciency	

Ultra-radio-purity

high efficiency

photodetectors

Ultra-low noise and

Radio-purity

high efficiency

photodetectors

Ultra-low noise and

Energy resolution

Background

Event rates

rates

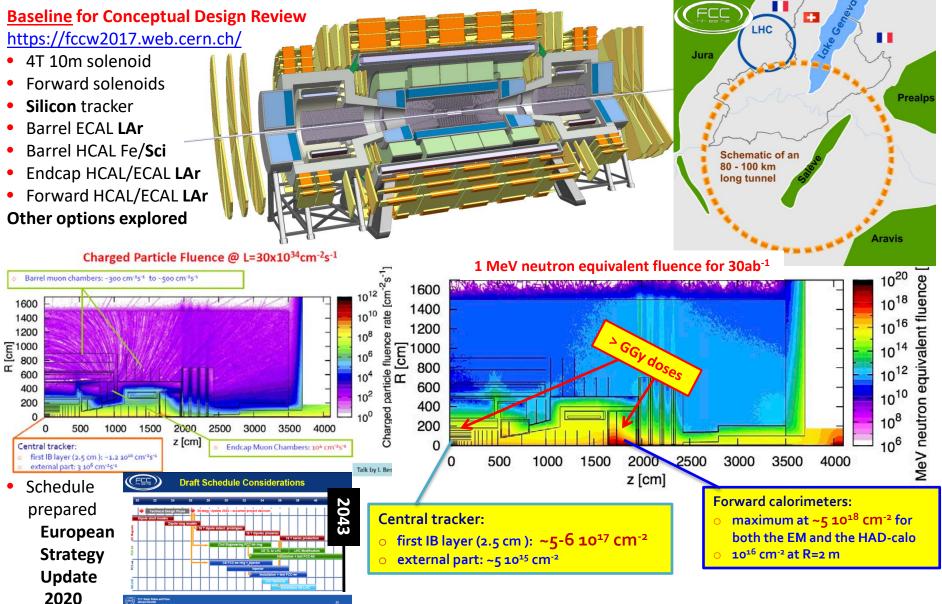
3.e Liquid scintillator

3.r DAQ & Computing

areas coordinated by dedicated international R&D programmes

Conclusions

- Vast range of techniques and detection scales... *from microns to the Moon* (or arguably Earth/Sun/galactic centre for neutrinos/WIMPS/axions, ...)
 - One exciting area of recent development is in 4D detectors (precision spatial resolution coupled with accurate timing) with many applications (such as mitigating the effects of pile-up in hadron colliders by associating tracks to vertices in both space and time)
 - Monolithic Active Pixel Sensors offer the potential of exploiting the huge commercial market in CMOS Imaging Sensors and now there are process variants which are also radiation hard
 - Large format micro-pattern gas detectors now being manufactured on industrial scales and also being produced as cylindrical structures
 - Liquid noble gas based detectors are opening up many new opportunities for precision tracking and calorimetry within huge volume detectors
 - Many experiments benefit from the steady improvements in scintillator and photodetector technologies often driven by collaboration with major industrial suppliers
 - Huge progress also in online data handling (trigger and data acquisition), computing and offline tools (not covered here due to limitations of time)
- Note that typical R&D timescales are a decade from proof-of-principle to first demonstrator or small-scale implementation and a further decade to large-scale detector realisation
- In many areas, cross-experiment R&D collaborations exist which both foster cooperation and diminish duplication and help share developments costs (which can be challenging)
 - Still some gaps in R&D areas which may benefit from further such organisations
 - Great potential to link more closely with other sciences and application areas

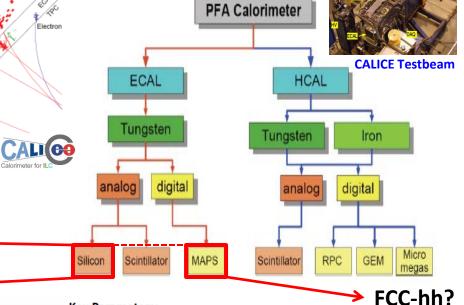

References and Conferences

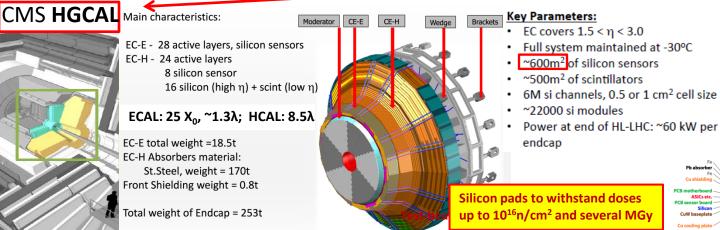
- 1. FCC Week (<u>https://fccw2017.web.cern.ch/</u>) 29/5/17
- Technology and Instrumentation in Particle Physics, TIPP (<u>http://tipp2017.ihep.ac.cn/</u>) 22/5/17
- LHCC Open Session (<u>https://indico.cern.ch/event/632309/</u>) 11/5/17 (Links to RD42, RD50, RD51, RD52 and RD53 along with other international R&D collaborations on slide 7)
- 4. AIDA 2020 Annual Meeting (<u>https://indico.cern.ch/event/590645/</u>) 4/4/17
- 5. CALICE 2017 (<u>https://agenda.linearcollider.org/event/7454/</u>) 22/3/17
- 6. Neutrino Telescopes (<u>https://agenda.infn.it/confLogin.py?confId=11857</u>) 13/3/17
- 7. IEEE NSS MIC (http://2016.nss-mic.org/) 29/10/16
- 8. ECFA HL-LHC Workshop (<u>https://indico.cern.ch/event/524795/</u>) 3/10/16
- 9. Vertex 2016 (https://indico.cern.ch/event/452781/overview) 25/9/16
- 10. Neutrino 2016 (http://neutrino2016.iopconfs.org/home) 4/7/16
- 11. ECFA Linear Collider Workshop (<u>https://agenda.linearcollider.org/event/7014/</u>) 30/5/16
- 12. CALOR 2016 (https://indico.cern.ch/event/472938/page/6018-calor-2016) 15/5/16
- 13. FCC Week (<u>http://fccw2016.web.cern.ch/fccw2016/</u>) 11/4/16
- 14. Common ATLAS CMS Electronics, ACES (<u>https://indico.cern.ch/event/468486/</u>) 7/3/16
- 15. ILC (https://www.linearcollider.org/P-D/ILC-detector-concepts)
- 16. CLIC (http://clicdp.web.cern.ch/)
- 17. LBNF (<u>http://lbnf.fnal.gov/</u>)
- 18. EPS (https://indico.cern.ch/event/466934/)

Even More Challenging: FCC-hh

(And many other specific challenges for FCC-ee and FCC-eh)

Calorimetry and Particle Flow

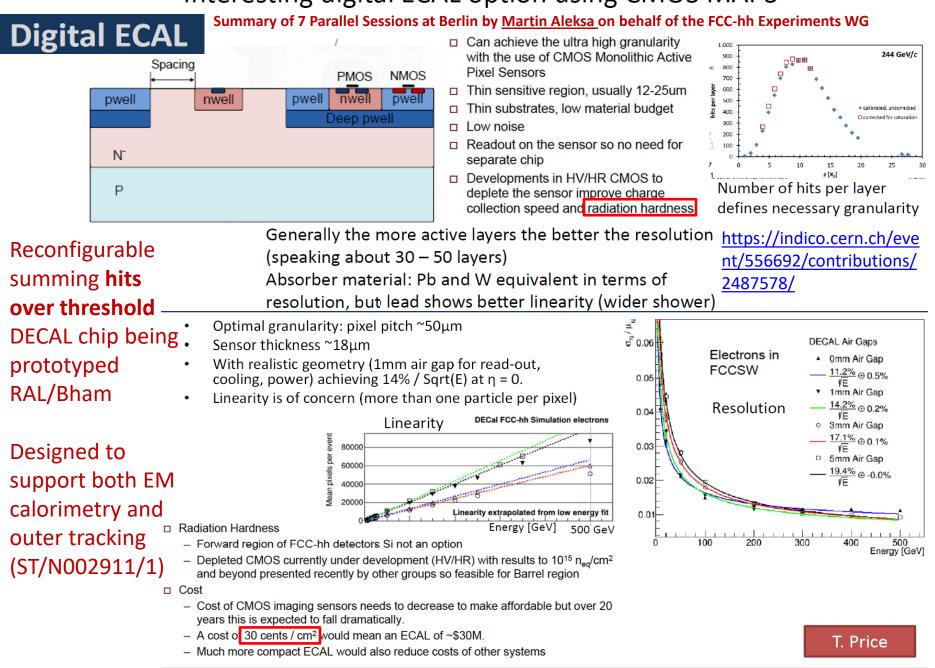

- RD52 Dual REAd-out Method
 - FCC-ee?


Simultaneous measurement, during shower development, of:

- Scintillation light (dE/dx charged particles)
- Cherenkov light (EM part of the shower)
- CALICE (Calorimeter for ILC)
 - Fundamental concept:
 - Particle flow
 - Associate energy deposits with charged particles
 - → Drives granularity requirements
 - Allows "tracking" of neutrals

• ALICE FoCAL <

Tungsten-Silicon sampling EM Calorimeter



Neutral Hadron

Detector R&D for Collider and Underground Experiments

Interesting digital ECAL option using CMOS MAPS

