Paleo-detectors for Galactic Supernovae and Atmospheric Neutrinos

Patrick Stengel

SISSA

SISSA

February 3, 2021

1906.05800 [galactic SN v's] with S. Baum, T.D.P. Edwards,
B.J. Kavanagh, A.K. Drukier, K. Freese, M. Górski and C. Weniger
2004.08394 [atmospheric v's] with J.R. Jordan, S. Baum,
A. Ferrari, M.C. Marone, P. Sala and J. Spitz

D Supernovae, cosmic rays, neutrinos and their interactions

2 Tracks in ancient minerals

- Solid state track detectors
- Problematic backgrounds

Projected sensitivity of paleo-detectors

- Galactic CC SN ν's
- Atmospheric ν 's

Summary and outlook

Supernovae, cosmic rays, neutrinos and their interactions

Galactic CC SN ν 's can induce recoils in paleo-detectors

Figure: Supernova simulation after CC

CC SNe primarily in stellar disk

$$ho_{SN} \propto e^{-R/R_d} e^{-|z|/H_d}$$

Figure: Distribution of galactic SNe at distance from Earth $f(R_E)$, 1306.0559

Patrick Stengel (SISSA)

February 3, 2021 3 / 24

Galactic contribution to ν flux over geological timescales

$$\frac{\mathrm{d}\phi}{\mathrm{d}E_{\nu}} = \dot{N}_{\mathrm{CC}}^{\mathrm{gal}} \frac{\mathrm{d}n}{\mathrm{d}E_{\nu}} \int_{0}^{\infty} \mathrm{d}R_{E} \frac{f(R_{E})}{4\pi R_{E}^{2}}$$

Only ~ 2 SN 1987A events/century

- Measure galactic CC SN rate
- Traces star formation history

Figure: Cosmic CC SNR, 1403.0007

CRs brought to you by TRAGALDABAS, 1701.07277

February 3, 2021 5 / 24

Flux of atmospheric ν 's originating from CR interactions

Figure: E_{CR} to leptons, 1806.04140

Figure: FLUKA simulation of ν_{μ} flux at SuperK for solar max, hep-ph/0207035

Patrick Stengel (SISSA)

February 3, 2021 6 / 24

Nuclear recoil spectrum depends on neutrino energy

$$\frac{dR}{dE_R} = \frac{1}{m_T} \int dE_\nu \, \frac{d\sigma}{dE_R} \frac{d\phi}{dE_\nu}$$

Figure: COHERENT, 1803.09183

- Quasi-elastic for $E_{
 u}\gtrsim 100\,{
 m MeV}$
- Resonant π production at $E_{\nu} \sim \text{GeV}$
- Deep inelastic for $E_{
 u}\gtrsim 10\,{
 m GeV}$

Figure: Inclusive CC $\sigma_{\nu N}$, 1305.7513

Fission fragments can be seen by TEM/optical microscopes

Figure: Price+Walker '63

Patrick Stengel (SISSA)

Tracks in ancient minerals Solid state track detectors

Modern TEM allows for accurate characterization of tracks

February 3, 2021

9 / 24

Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different x_T

- HIBM+pulsed laser could read out 10 mg with nm resolution
- SAXs at a synchrotron could resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ '12, SAXs nanoporous glass Holler+ '14

Patrick Stengel (SISSA)

U. Birmingham Particle Physics Seminar

February 3, 2021 10 / 24

Paleo-detectors look for damage from recoiling nuclei

Patrick Stengel (SISSA)

Cosmogenic backgrounds suppressed in deep boreholes

Figure: $\sim 2 \text{Gyr}$ old Halite cores from $\sim 3 \text{km},$ as discussed in Blättler+ '18

Depth	Neutron Flux
2 km	10 ⁶ /cm ² /Gyr
5 km	$10^2/cm^2/Gyr$
6 km	$10/cm^2/Gyr$
50 m	70/cm²/yr
100 m	30/cm ² /yr
500 m	2/cm²/yr

Need minerals with low ²³⁸U

- Marine evaporites with $C^{238}\gtrsim 0.01\,{\rm ppb}$
- Ultra-basic rocks from mantle, $C^{238}\gtrsim 0.1\,{\rm ppb}$

Radiogenic backgrounds from ²³⁸U contamination

$ \overset{238}{\longrightarrow} \overset{234}{\longrightarrow} \mathrm{Th} \xrightarrow{\beta^{-}} ^{234}\mathrm{Pa} \xrightarrow{\beta^{-}} ^{234}\mathrm{U} \xrightarrow{\alpha} ^{230}\mathrm{Th} $ $ \overset{\alpha}{\longrightarrow} \overset{226}{\longrightarrow} \mathrm{Ra} \xrightarrow{\alpha} ^{222}\mathrm{Rn} \xrightarrow{\alpha} \ldots \longrightarrow \overset{206}{\longrightarrow} \mathrm{Pb} $ $ \overset{238U}{\longrightarrow} 23$			
Nucleus	Decay mode	T _{1/2}	•
23811	α	$4.468\times10^9\text{yr}$	
0	SF	$8.2 imes10^{15}$ yr	"1 α " events difficult to reject
²³⁴ Th	β^{-}	24.10 d	without additional docays
234m Do	eta^- (99.84 %)	1 150 min	without additional decays
I a	IT (0.16%)	1.13911111	• Reject \sim 10 μ m $lpha$ tracks
²³⁴ Pa	β^{-}	6.70 d	• Without α tracks, filter
²³⁴ U	α	$2.455 imes 10^5 \mathrm{yr}$	out monoenergetic ²³⁴ Th

Tracks in ancient minerals Problematic backgrounds

Neutrons and fragments from SF and (α, n) interactions

\sim MeV <i>n</i> 's, \sim 10 MeV fragments	$(lpha, {\it n})$ rate low, many decay $lpha$'s
Neutrons scatter $\mathcal{O}(100)$ times, filter monoenergetic fragments	Heavy targets better for (α, n) and bad for neutron moderation, need H

Patrick Stengel (SISSA)

U. Birmingham Particle Physics Seminar

Tracks in ancient minerals

Problematic backgrounds

Solar and atmospheric ν 's bracket galactic CC SN signal

Track length spectra for detecting galactic CC SN ν 's

Large exposure probes rare events

- NOT background free, but can calibrate radiogenics in the lab
- Spectral information allows for reduction of bkg systematics

- Assume relative uncertainty 1% for normalization of n-bkg
- Solar and atmospheric ν -bkg assume 100% to account for time variation of fluxes

Recoil spectra from atmospheric ν 's incident on NaCl(P)

Recoils of many different nuclei	Background free regions for $\gtrsim 1\mu{ m m}$
 Low energy peak from QE	 Radiogenic n-bkg confined to
neutrons scattering ²³ Na, ³¹ P	low x, regardless of target
 High energy tail of lighter	 Subdominant systematics from
nuclei produced by DIS	atmosphere, heliomagnetic field

Patrick Stengel (SISSA)

Outline

Supernovae, cosmic rays, neutrinos and their interactions

- 2 Tracks in ancient minerals
 - Solid state track detectors
 - Problematic backgrounds

Projected sensitivity of paleo-detectors

- Galactic CC SN ν's
- Atmospheric ν 's

Summary and outlook

Galactic CC SN ν 's

Sensitivity to galactic CC SN rate depends on C^{238}

Epsomite $[Mg(SO_4) \cdot 7(H_2O)]$ Halite [NaCl]

Nchwaningite $[Mn_2^{2+}SiO_3(OH)_2 \cdot (H_2O)]$ Olivine $[Mg_{1,6}Fe_{0,4}^{2+}(SiO_4)]$

Galactic CC SN ν 's

Difficult to pick out time evolution of galactic CC SN rate

Coarse grained cumulative time bins	Determine σ rejecting constant rate
• 10 Epsomite paleo-detectors	Could only make discrimination at
• 100 g each, $\Delta t_{ m age} \simeq 100{ m Myr}$	3σ for $\mathcal{O}(1)$ increase in star formation rate with $\mathcal{C}^{238} \lesssim 5 ext{ppt}$

Patrick Stengel (SISSA)

February 3, 2021 20 / 24

Probe time- and space-localized enhancements to CC SNR

Starburst increases SFR by $\sim 10^3$	Discriminate against constant rate
• Short duration $\Delta t \lesssim 10{ m Myr}$	• Sensitive to starburst near GC
 Parameterized by N_* CC SNe, D_* to burst region, t_* ago 	• Could detect $N_* = 1$ CC SN within last \sim Gyr if $D_* \lesssim 10$ pc

Patrick Stengel (SISSA)

21 / 24

Geomagnetic field deflects lower energy CR primaries

Rigidity $p_{CR}/Z_{CR} \simeq E_{CR}$ for CR protons

- Rigidity cutoff $\propto M_{dip}$ truncates atmospheric ν spectrum at low E_{ν}
- Maximum cutoff today $\sim 50\,{
 m GV}$
- Recall CR primary $E_{CR}\gtrsim 10~E_{
 u}$

Patrick Stengel (SISSA)

February 3, 2021 22 / 24

Projected sensitivity of paleo-detectors

Atmospheric ν 's

Could use large exposure to differentiate between scenarios

$N\sim 6 imes 10^4$ tracks in $100{ m g} imes 1{ m Gyr}$	Series of halite targets with (M_i, t_i)
• $2\mu{ m m}\lesssim x\lesssim 20\mu{ m m}$ potentially	• Averaged recoil rate N_i/t_iM_i
sensitive to geomagnetic effects	 Sensitivity limited by geological
• 50 $\mu{ m m}\lesssim x\lesssim 1{ m mm}$ from DIS	history, read-out systematics
associated with $E_{CR}\gtrsim 100{ m GeV}$	• Assume $\Delta_t = 5\%$, $\Delta_M = 1\%$

Patrick Stengel (SISSA)

U. Birmingham Particle Physics Seminar

Summary and outlook

Paleo-detectors use ν 's to probe the evolution of our galaxy

Feasability of paleo-detectors

- Need model of geological history
- Preliminary mass spec indicates MEs with $C^{238} \lesssim 0.1 \, {\rm ppb}$
- Determine efficiency of effective 3D recoil track reconstruction

Searches for WIMPs and other $\nu\mbox{'s}$

- Sensitivity to DM potentially competitive with next generation DD experiments
- Could probe DM substructure
- Solar ν flux over last \sim Gyr

Semi-analytic range calculations and SRIM agree with data

Figure: Wilson, Haggmark+ '76

Patrick Stengel (SISSA)

Simulation chain for calculation of atmospheric ν 's

Patrick Stengel (SISSA)