

Search for Low-Mass Dark Matter with NEWS-G

University of Birmingham, Particle Physics Seminar, 6th November 2019

P. Knights

University of Birmingham, UK and IRFU, CEA Saclay, France

Birmingha Gaseous Detectors

news-g.org

RUBIN, FORD, AND THONNARD

Dark Matter

- Evidence from gravitational observations ●Rotational velocities
	- \bullet Galactic collision \sim
	- ●Gravitational lensing
	- Approximately 85% of mass

FIG. 6. Superposition of all 21 Sc rotation curves. General form of rotation curves for small galaxies is similar to initial part of rotation curve for large galaxies, except that small galaxies often have shallower nuclear velocity gradient and tend to cover the low velocity range within the scatter at any R.

[Astrophys.J. 648 \(2006\) L109-L113](http://inspirehep.net/record/724189?ln=en) [Astron.Astrophys. 498 \(2009\) L33](http://inspirehep.net/record/817030?ln=en) [Astrophys.J. 295 \(1985\) 305-313](http://inspirehep.net/record/15756?ln=en)

P Knights, Particle Physics Seminar 06/11/2019

480

Vol. 238

[Astrophys.J. 238 \(1980\) 471](http://inspirehep.net/record/163232?ln=en)

Local DM Halo

- Local DM density is $p \sim 0.3$ -0.4 GeV cm⁻³ ●Solar system travelling through this
	- ●'DM Wind'
- DM modeled as collisionless gas ●Maxwell-Boltzmann velocity distribution
	- Local flux: $(10^7/m_\chi)$ GeV cm⁻² s⁻²
- Motion of Earth \rightarrow velocity time dependent
	- Expect annual modulations to DM flux
- **Directionality**

[JCAP 1008 \(2010\) 004](http://inspirehep.net/record/824619?ln=en) [J.Phys. G41 \(2014\) 063101](http://inspirehep.net/record/1289018?ln=en)

Direct Detection

P Knights, Particle Physics Seminar 06/11/2019

Landscape

- **Norid-leading sensitivity above ~10 GeV/c² for liquid xenon experiments**
	- ●Multi-tonne experiments

Irtu - CEA Saclay nstitut de recherche

EN INCREASING INTEREST UNEXPLOTED IDWET MASSES

NEWS-G Collaboration

Pacific
Northwest

NATIONAL

 I rfu $-CEA$ Saclay Institut de recherche

sur les lois fondamentales

UNIVERSITYOF

BIRMINGHAM

LABORATORY TRIUMF

P Knights, Particle Physics Seminar 06/11/2019

Spherical Proportional Counter

- \sim 1 mm ball in \sim 0.1-1 m radius spherical shell
- Ideal electric field varies as $1/r^2$
- Primary electrons produced by ionisation in gas
- Drift under F-field towards anode
- Avalanche within \sim 1 mm of the anode

Advantages:

- **Low capacitance, independent of detector size**
- Lowest **surface area to volume ratio**
- **Fiducialisation** and **PID**
- **Flexible** choice of **gas targets**
- Simple read-out

$$
\vec{E} = \tfrac{V_1}{r^2} \tfrac{r_c r_a}{r_c - r_a} \hat{r} ~~ C \approx 4 \pi \varepsilon_0 r_a
$$

[I.Giomataris et al, JINST, 2008, P09007](http://iopscience.iop.org/article/10.1088/1748-0221/3/09/P09007/meta)

Spherical Proportional Counter

CEA Saclay

Birmingham

I. Giomataris and G. Charpak with a spherical proportional counter in CEA Saclay (sphere was previously a LEP RF cavity)

SEDINE, LSM France

P Knights, Particle Physics Seminar 29/10/2019

SEDINE - First NEWS-G DM Detector

- \varnothing 60 cm spherical proportional counter
- Using Aurubis NOSV Copper
- Several stages of chemical cleaning
- \varnothing 6.3 mm anode

BIRMINGHAM

■ Located in Modane Underground Lab., France

Laboratoire Souterrain de Modane (LSM)

First results

UNIVERSITYOF

BIRMINGHAM

- Ne:CH4 (99.3%:0.7%) at 3.1 bar (280 g)
- 9.6 kg*days exposure (34.1 days)

Irtu - CEA Saclay Institut de recherche

■ Cross-sections above 4.4×10^{-37} cm² at 90 % confidence level for 0.5 GeV/c²

First results

UNIVERSITYOF

BIRMINGHAM

- Ne:CH4 (99.3%:0.7%) at 3.1 bar (280 g)
- 9.6 kg*days exposure (34.1 days)

Irtu - CEA Saclay Institut de recherche

■ Cross-sections above 4.4×10^{-37} cm² at 90 % confidence level for 0.5 GeV/c²

SNOGLOBE

- \varnothing 130 cm detector
- 4N (99.99% pure) Aurubis copper
- Completed first operation in LSM
- Being shipped to SNOLAB, Canada

 10°

P Knights, Particle Physics Seminar 06/11/2019

3 cm Archeological lead

22 cm Low Activity lead

Stainless steel skin

ø140 cm Copper sphere

40 cm HDPE

SNOI

Depth [km w. e.]

Pushing the Boundaries

- To increase low-mass sensitivity:
Narget mass
	- ●Target mass ○Larger detector ○Higher Pressure ●Background suppression ○PID and Fiducialisation ○Purity of Materials ●Low mass target nuclei \circ e.g. H from CH

Pushing the Boundaries

- To increase low-mass sensitivity:
Narget mass
	- ●Target mass ○Larger detector ○Higher Pressure ●Background suppression **○PID and Fiducialisation** ○Purity of Materials ●Low mass target nuclei \circ e.g. H from CH

Instrumentation Development

Fiducialisation and Particle Identification

- \blacksquare **Ideal case:** $1/r^2$ electric field in detector ●Electrons from larger radii diffuse more
	- ●**Larger spread in electron arrival** at the anode → Larger **pulse rise time**/width
	- ●Spatially **extended primary ionisation** results in higher pulse rise times/widths
- **Particle ID** by pulse-shape analysis

● e.g. cosmic muons and X-rays

TU - CEA Saclav

BIRMINGHAM

Fiducialisation and Particle Identification

- **If Cldeal case:** $\frac{1}{2}$ /r² electric field in detector ●Electrons from larger radii diffuse more
	- ●**Larger spread in electron arrival** at the anode → Larger **pulse rise time**/width
	- ●Spatially **extended primary ionisation** results in higher pulse rise times/widths
- **Particle ID** by pulse-shape analysis

● e.g. cosmic muons and X-rays

TU - CEA Saclav

BIRMINGHAM

Distortion of Electric Field

[I.Katsioulas et al, JINST, 13, 2018, no.11, P11006](https://iopscience.iop.org/article/10.1088/1748-0221/13/11/P11006)

- Support rod and wire to anode distort the electric field
- Deteriorated energy resolution and particle discrimination capability
- Reduced fiducial volume of the detector

Irtu - CEA Saclav Institut de recherche

UNIVERSITY^{of}

BIRMINGHAM

Correction Electrode

- Idea: incorporate correction electrode at top of support rod
- Voltage on correction electrode used to adjust electric field around the anode to improve uniformity
- Geometry and voltages for second electrode studied using ANSYS Finite Element Method (FEM) software

ANSYS®

Study of Correction Electrode Design

- Several parameters were explored:
	- ●Anode size
	- ●Anode-correction electrode distance
	- Correction electrode length
	- ●Correction electrode voltage
- Figure of merit: electric field homogeneity near the anode

 I = 20 mm, V_{1} = 2000 V

20

Comparison to Rod-Only Design

■ Distortion to electric field near the anode greatly reduced

Comparison to Rod-Only Design

- Electric field magnitude near anode
- Correction electrode increases field magnitude and homogeneity

 \bullet Note: In ideal case, E = 503 V/mm

Resistive Material and Implementation

- In practice, correction electrode material must be chosen to reduce spark probability and increase detector stability
	- \bullet Can't use metal \rightarrow Sparking
	- •Materials with resistivities of $O(10^{10} \Omega \Box \text{cm})$ ○ e.g: Soda-lime glass
- Prototypes tested in detector in CEA Saclay

P Knights, Particle Physics Seminar 06/11/2019

23

Response of Correction Electrode

- ⁵⁵Fe source placed inside detector • Mainly 5.9 keV X-rays
- Detector filled with 1 bar of He:Ar:CH4 (87%:10%:3%)
- Amplitude stable
	- ●At 8000 s, correction electrode voltage changed: 100 V to 200 V
	- See response in amplitude

Homogeneity of Response

- Detector filled with 1 bar of He:Ar:CH₄ (92%:5%:3%)
- 55Fe Source placed in two locations
- Similar response \rightarrow High uniformity

Detector Stability

- Detector filled with 2 bar of He:Ar:CH₄ (87%:10%:3%)
- Over \sim 12 days, gain stable, no sparks ●Small decrease in gain over time due to contaminant gases (e.g. O_2) leaking into the detector

Electric Field at Large Radii

- Correction electrode ensures uniform gain
- At large radii, electric field distorted by the grounded rod

Electric Field Contour Map [V/mm]

Voltage Degrader with Segmented Rod

- Voltage gradient along rod, as in ideal geometry, would restore ideal solution
- Approximation: segmented rod; voltage at each compartment corresponding to ideal case
- First implementation: Three segments
- Segment lengths/voltages studied using ANSYS

 $V_i = V_0 \frac{r_i - r_a}{r_s - r_a} \frac{r_c}{r_i}$

Correction Electrode: 106.2 V Top segment: 30 mm at 27.7 V Middle segment: 90 mm at 6.2 V Bottom segment: grounded

- Electric field near anode remains unaffected
	- Defined by correction electrode

Irtu - CEA Saclay Institut de recherche

UNIVERSITY^{of}

BIRMINGHAM

Improvement in electric field magnitude at larger radii

Prototype of Voltage Degrader

- Electric field studies using ANSYS and simulation of the detector response using Geant4 and Garfield++ ongoing
- Prototype under test here in Birmingham

P Knights, Particle Physics Seminar 06/11/2019

Multi-Anode Structure: ACHINOS

- Multiple anodes, placed at equal distances
	- Gain defined by individual anode sizes
	- ●Electric field at large radii determined by collective field of all anodes
- Drift and gain are decoupled

UNIVERSITY^{of}

ERRICHAM

Irtu - CEA Saclay Institut de recherche

●Allows high pressure operation and/or larger volume detectors

Bakelite spherical central electrode (HV.)

High voltage kapton insulated wires

31

P Knights, Particle Physics Seminar 06/11/2019

Multi-Anode Structure: ACHINOS

- Produced using 3D printed materials • Coated with high-resistivity layer ○Cu-Epoxy Mixtures ○Diamond-Like Carbon
- Potential for individual anode read-out

• Possibility of knowing interaction θ and ϕ

Pushing the Boundaries

- To increase low-mass sensitivity:
Terest mass
	- ●Target mass ○Larger detector ○Higher Pressure ●Background suppression ○PID and Fiducialisation **○Purity of Materials** ●Low mass target nuclei \circ e.g. H from CH

Copper Purity

Copper as a Construction Material

Copper is a common construction material for rare event experiments:

- Strong enough to build gas vessels
- Commercially available at high purity
- Low cost
- No long-lived radio-isotopes
	- •Longest ${}^{67}Cu$ t_{1/2} = 62 hours
- Possibility to electrochemically purify
	- **●'electrowinning'**

Background Contributions in Copper

- 63 Cu(n, $\alpha)^{60}$ Co by fast neutrons from cosmic muon spallation
- 238 U and 232 Th decay chain – naturally found and **deposited by 222Rn**
- **■** 238 U and 232 Th measured directly by mass spectroscopy
	- ●Infer daughter quantities

*Pacific Northwest National Laboratory, USA

Background Contributions in Copper

- 63 Cu(n, $\alpha)^{60}$ Co by fast neutrons from cosmic muon spallation
- 238 U and 232 Th decay chain – naturally found and **deposited by 222Rn**
- **■** 238 U and 232 Th measured directly by mass spectroscopy
	- ●Infer daughter quantities

*Pacific Northwest National Laboratory, USA

210Pb in Copper

Recent development: **measure** ⍺**-particle from 210Po** decay •²¹⁰Pb activity inferred from ²¹⁰Po Confirmed $210Pb$ contamination by ²²²Rn during production

Irfu - CEA Saclay Institut de recherche

EXAMPLE DESCRIPTION AND RESPONDED

Ultra-Pure Copper Electroplating

- Electrolysis: **oxidation** and **reduction** reactions
- **Ions reduced at cathode** building up material
	- ●**Current** supplied to drive reactions

●**Mass deposited** proportional to current supplied:

$$
M(t)=\tfrac{m_r \int I(t) dt}{zF}
$$

■ Copper benefits from **'electrowinning'** - higher reduction potential than Uranium, Thorium, Lead... **Copper refined during electroplating**

 $M - mass$

BIRMINGHAM

 m_r - molar mass

 $I(t)$ - current as function of time

z- number of electrons transferred in reduction reaction

TU - CEA Saclav

 \mathbf{F} – Faraday Constant (= e N_A)

[Adv.High Energy Phys. 2014 \(2014\) 365432](http://inspirehep.net/record/1246934?ln=en)

Preparation of Surface

- Operation performed in **LSM**
- Surface sanded and cleaned
- **Chemically etched** using 3% H₂O₂, 2% H_2 SO₄ in deionised water
	- ●Same treatments for **copper anode**
- Installed in clean area
- **Electrolyte of H₂SO₄**, H₂O and $CuSO₄$

More on surface preparation: <https://doi.org/10.1016/j.nima.2007.04.101>

Electropolishing and Electroplating

■ **Electropolishing**:

UNIVERSITYOF

BIRMINGHAM

Irfu - CEA Saclay

Institut de recherche

- ●Preferentially removes raised areas on surface
- **•Increases** CuSO₄ concentration
- Plating continued for $~15$ days
- In total estimate \sim 500 μ m plated

Result

- Layer of Cu deposited on surface
	- ●Awaiting results of analysis of copper and electrolyte to verify purity
- Geant4 simulation shows decrease in background from 4.58 count/keV/kg/day $(dru) < 1$ keV to 1.96 dru
- Promising plating rate for electroformed sphere in the future

Pushing the Boundaries

- To increase low-mass sensitivity:
Terest mass
	- ●Target mass ○Larger detector ○Higher Pressure

●Background suppression

○PID and Fiducialisation ○Purity of Materials ●Low mass target nuclei \circ e.g. H from CH

Neutron Measurements

Neutron Detection

- Neutrons are background in DM experiments
- Feasibility spherical proportional counter as neutron detector, using nitrogen gas
- Tests ongoing in Birmingham

 $14N + n \rightarrow 14C + p + 625$ keV, σ_{th} = 1.83 b $14N + n \rightarrow 11B + \alpha - 159$ keV

Institut de recherche

BIRMINGHAM

Previous Limiting factors:

- ➔ **Wall effect**
- ➔ **Sparking Instability**
- ➔ **Low pressure**
- ➔ **Impurities**
- **Charge collection efficien**

[JINST 12 \(2017\) no.12, P12031](http://inspirehep.net/record/1613557?ln=en)

Simulation of neutron transport

time

Neutron $F = 0.025$ eV $\frac{14}{(n, p)^{14}C}$

Activities at Boulby

- **Aluminium S30** ■ Aim to measure neutron flux in Boulby Underground Laboratory
	- Space allocated in lab
	- ●Installation of detector beginning Dec. 2019
- Possibility for further collaboration

Birmingham Gaseous Detector Laboratory I. Katsioulas, P. Knights, T. Neep,

K. Nikolopoulos, R. Owen, R. Ward + MSci and Summer Students

P Knights, Particle Physics Seminar 06/11/2019

Additional Material

