

Search for Low-Mass Dark Matter with NEWS-G

University of Birmingham, Particle Physics Seminar, 6th November 2019

P. Knights

University of Birmingham, UK and IRFU, CEA Saclay, France

Gaseous Detectors

news-a

RUBIN, FORD, AND THONNARD

Dark Matter

- Evidence from gravitational observations
 - Rotational velocities
 - Galactic collision
 - Gravitational lensing
- Approximately 85% of mass

FIG. 6.—Superposition of all 21 Sc rotation curves. General form of rotation curves for small galaxies is similar to initial part of rotation curve for large galaxies, except that small galaxies often have shallower nuclear velocity gradient and tend to cover the low velocity range within the scatter at any *R*.

<u>Astrophys.J. 238 (1980) 471</u>

Astron.Astrophys. 498 (2009) L33

Astrophys.J. 648 (2006) L109-L113

Astrophys.J. 295 (1985) 305-313

P Knights, Particle Physics Seminar

480

Vol. 238

Local DM Halo

- Local DM density is ρ~0.3-0.4 GeV cm⁻³
 Solar system travelling through this
 'DM Wind'
- DM modeled as collisionless gas
 - •Maxwell-Boltzmann velocity distribution
 - •Local flux: $(10^7/m_{\chi})$ GeV cm⁻² s⁻²
- Motion of Earth \rightarrow velocity time dependent
 - Expect annual modulations to DM flux
- Directionality

<u>J.Phys. G41 (2014) 063101</u> <u>JCAP 1008 (2010) 004</u>

Direct Detection

Landscape

- World-leading sensitivity above ~10 GeV/c² for liquid xenon experiments
 - Multi-tonne experiments

TU - CEA Saclay

ur les lois fondamentale

Institut de recherche

Increasing interest unexplored lower masses UNIVERSITY^{OF} BIRMINGHAM

NEWS-G Collaboration

UNIVERSITYOF

💿 BIRMINGHAM 🏹

Irfu - CEA Saclay Institut de recherche sur les lois fondamentales

P Knights, Particle Physics Seminar

Pacific Northwest NATIONAL LABORATORY

UNIVERSITY OF

ALBERTA

Spherical Proportional Counter

- ~1 mm ball in ~0.1-1 m radius spherical shell
- Ideal electric field varies as 1/r²
- Primary electrons produced by ionisation in gas
- Drift under E-field towards anode
- Avalanche within ~1 mm of the anode

Advantages:

- **Low capacitance**, independent of detector size
- Lowest surface area to volume ratio
- Fiducialisation and PID
- Flexible choice of gas targets
- Simple read-out

$$ec{E}=rac{V_1}{r^2}rac{r_cr_a}{r_c-r_a}\hat{r}~~Cpprox 4\piarepsilon_0r_a$$

I.Giomataris et al, JINST, 2008, P09007

Spherical Proportional Counter

CEA Saclay

Birmingham

I. Giomataris and G. Charpak with a spherical proportional counter in CEA Saclay (sphere was previously a LEP RF cavity)

SEDINE, LSM France

SEDINE - First NEWS-G DM Detector

P Knights, Particle Physics Seminar

- Ø60 cm spherical proportional counter
- Using Aurubis NOSV Copper
- Several stages of chemical cleaning
- Ø6.3 mm anode

💿 BIRMINGHAM 📝

Located in Modane Underground Lab., France

Laboratoire Souterrain de Modane (LSM)

First results

UNIVERSITYOF

💿 BIRMINGHAM 🎽

- Ne:CH4 (99.3%:0.7%) at 3.1 bar (280 g)
- 9.6 kg*days exposure (34.1 days)

ITU - CEA Saclay

sur les lois fondamentale

Institut de recherche

Cross-sections above 4.4x10⁻³⁷ cm² at 90 % confidence level for 0.5 GeV/c²

First results

UNIVERSITYOF

💿 BIRMINGHAM 🎽

- Ne:CH4 (99.3%:0.7%) at 3.1 bar (280 g)
- 9.6 kg*days exposure (34.1 days)

TU - CEA Saclay

sur les lois fondamentale

Institut de recherche

Cross-sections above 4.4x10⁻³⁷ cm² at 90 % confidence level for 0.5 GeV/c²

SNOGLOBE

- Ø130 cm detector
- 4N (99.99% pure) Aurubis copper
- Completed first operation in LSM
- Being shipped to SNOLAB, Canada

P Knights, Particle Physics Seminar

3 cm Archeological lead

22 cm Low Activity lead

Stainless steel skin

ø140 cm Copper sphere

40 cm HDPE

SNOL

Depth [km w. e.]

Pushing the Boundaries

- To increase low-mass sensitivity:
 - Target mass

 Larger detector
 Higher Pressure

 Background suppression

 PID and Fiducialisation
 Purity of Materials

 Low mass target nuclei
 - oe.g. H from CH₄

Pushing the Boundaries

- To increase low-mass sensitivity:
 - Target mass

 Larger detector
 Higher Pressure

 Background suppression

 PID and Fiducialisation
 Purity of Materials

 Low mass target nuclei
 - \circ e.g. H from CH₄

Instrumentation Development

Fiducialisation and Particle Identification

- Ideal case: 1/r² electric field in detector
 Electrons from larger radii diffuse more
 - Larger spread in electron arrival at the anode → Larger pulse rise time/width
 - Spatially **extended primary ionisation** results in higher pulse rise times/widths
- Particle ID by pulse-shape analysis

• e.g. cosmic muons and X-rays

TU - CEA Saclay

BIRMINGHAM

Fiducialisation and Particle Identification

- Ideal case: //r² electric field in detector
 Electrons from larger radii diffuse more
 - Larger spread in electron arrival at the anode → Larger pulse rise time/width
 - Spatially **extended primary ionisation** results in higher pulse rise times/widths
- Particle ID by pulse-shape analysis

• e.g. cosmic muons and X-rays

L CEA Saclay

BIRMINGHAM

17

Distortion of Electric Field

- Support rod and wire to anode distort the electric field
- Deteriorated energy resolution and particle discrimination capability
- Reduced fiducial volume of the detector

TU - CEA Saclav

Institut de recherche

UNIVERSITY^{of}

💿 BIRMINGHAM 🍃

Correction Electrode

- Idea: incorporate correction electrode at top of support rod
- Voltage on correction electrode used to adjust electric field around the anode to improve uniformity
- Geometry and voltages for second electrode studied using ANSYS Finite Element Method (FEM) software

NNSYS[®]

Study of Correction Electrode Design

- Several parameters were explored:
 - Anode size
 - Anode-correction electrode distance
 - Correction electrode length
 - Correction electrode voltage
- Figure of merit: electric field homogeneity near the anode

For
$$r_c = 15$$
 cm, $r_a = 1$ mm, $d = 3$ mm,
 $l = 20$ mm, $V_1 = 2000$ V

20

Comparison to Rod-Only Design

Distortion to electric field near the anode greatly reduced

Comparison to Rod-Only Design

- Electric field magnitude near anode
- Correction electrode increases field magnitude and homogeneity

•Note: In ideal case, E = 503 V/mm

Resistive Material and Implementation

- In practice, correction electrode material must be chosen to reduce spark probability and increase detector stability
 - •Can't use metal \rightarrow Sparking
 - Materials with resistivities of O(10¹⁰ Ω□cm)
 o e.g: Soda-lime glass
- Prototypes tested in detector in CEA Saclay

P Knights, Particle Physics Seminar

23

Response of Correction Electrode

- ⁵⁵Fe source placed inside detector
 Mainly 5.9 keV X-rays
- Detector filled with 1 bar of He:Ar:CH4 (87%:10%:3%)
- Amplitude stable
 - •At 8000 s, correction electrode voltage changed: 100 V to 200 V
 - •See response in amplitude

Homogeneity of Response

- Detector filled with 1 bar of He:Ar:CH₄ (92%:5%:3%)
- ⁵⁵Fe Source placed in two locations
- Similar response \rightarrow High uniformity

Detector Stability

- Detector filled with 2 bar of He:Ar:CH₄ (87%:10%:3%)
- Over ~12 days, gain stable, no sparks
 Small decrease in gain over time due to contaminant gases (e.g. O₂) leaking into the detector

Electric Field at Large Radii

- Correction electrode ensures uniform gain
- At large radii, electric field distorted by the grounded rod

Electric Field Contour Map [V/mm]

Voltage Degrader with Segmented Rod

- Voltage gradient along rod, as in ideal geometry, would restore ideal solution
- Approximation: segmented rod; voltage at each compartment corresponding to ideal case
- First implementation: Three segments
- Segment lengths/voltages studied using ANSYS

 $V_i = V_0 rac{r_i - r_a}{r_c - r_a} rac{r_c}{r_i}$

Correction Electrode: 106.2 V Top segment: 30 mm at 27.7 V Middle segment: 90 mm at 6.2 V Bottom segment: grounded

- Electric field near anode remains unaffected
 - Defined by correction electrode

TTU - CEA Saclay

Institut de recherche

UNIVERSITY^{of}

回 BIRMINGHAM 🗾

Improvement in electric field magnitude at larger radii

Prototype of Voltage Degrader

- Electric field studies using ANSYS and simulation of the detector response using Geant4 and Garfield++ ongoing
- Prototype under test here in Birmingham

P Knights, Particle Physics Seminar

Multi-Anode Structure: ACHINOS

- Multiple anodes, placed at equal distances
 - Gain defined by individual anode sizes
 - Electric field at large radii determined by collective field of all anodes
- Drift and gain are decoupled

UNIVERSITY^{of}

BIRMINGHAM

TU - CEA Saclay

Institut de recherche

Allows high pressure operation and/or larger volume detectors

P Knights, Particle Physics Seminar

Bakelite spherical central

electrode (HV.)

High voltage kaptor insulated wires

^{06/11/2019}

Multi-Anode Structure: ACHINOS

- Produced using 3D printed materials
 Coated with high-resistivity layer
 Cu-Epoxy Mixtures
 Diamond-Like Carbon
- Potential for individual anode read-out
 - •Possibility of knowing interaction θ and ϕ

32

Pushing the Boundaries

- To increase low-mass sensitivity:
 - Target mass

 Larger detector
 Higher Pressure

 Background suppression

 PID and Fiducialisation
 Purity of Materials

 Low mass target nuclei
 - \circ e.g. H from CH₄

Copper Purity

Copper as a Construction Material

Copper is a common construction material for rare event experiments:

- Strong enough to build gas vessels
- Commercially available at high purity
- Low cost
- No long-lived radio-isotopes
 - •Longest 67 Cu t_{1/2} = 62 hours
- Possibility to electrochemically purify
 - 'electrowinning'

35

Background Contributions in Copper

- ⁶³Cu(n,α)⁶⁰Co by fast neutrons
 from cosmic muon spallation
- ²³⁸U and ²³²Th decay chain naturally found and deposited by ²²²Rn
- ²³⁸U and ²³²Th measured directly by mass spectroscopy
 - Infer daughter quantities

*Pacific Northwest National Laboratory, USA

36

Background Contributions in Copper

- ⁶³Cu(n,α)⁶⁰Co by fast neutrons
 from cosmic muon spallation
- ²³⁸U and ²³²Th decay chain naturally found and deposited by ²²²Rn
- ²³⁸U and ²³²Th measured directly by mass spectroscopy
 - Infer daughter quantities

*Pacific Northwest National Laboratory, USA

²¹⁰Pb in Copper

 Recent development: measure α-particle from ²¹⁰Po decay
 ²¹⁰Pb activity inferred from ²¹⁰Po
 Confirmed ²¹⁰Pb contamination by ²²²Rn during production

Nucl.Instrum.Meth. A884 (2018) 157-161

Institut de recherche sur les lois fondamentales

UNIVERSITY^{OF}

Ultra-Pure Copper Electroplating

- Electrolysis: oxidation and reduction reactions
- Ions reduced at cathode building up material
 - •Current supplied to drive reactions

• Mass deposited proportional to current supplied:

$$M(t)=rac{m_r\int I(t)dt}{zF}$$

Copper benefits from 'electrowinning' - higher reduction potential than Uranium, Thorium, Lead...
 Copper refined during electroplating

M – mass

 m_r – molar mass

BIRMINGHAM

I(t)- current as function of time

 $z\!\!-\!$ number of electrons transferred in reduction reaction

L CEA Saclay

t de recherche

F – Faraday Constant (= $e N_A$)

Adv.High Energy Phys. 2014 (2014) 365432

39

Preparation of Surface

- Operation performed in LSM
- Surface sanded and cleaned
- Chemically etched using 3% H₂O₂, 2% H₂SO₄ in deionised water
 - •Same treatments for copper anode
- Installed in clean area
- Electrolyte of H₂SO₄, H₂O and CuSO₄

More on surface preparation: https://doi.org/10.1016/j.nima.2007.04.101

Electropolishing and Electroplating

Electropolishing:

UNIVERSITYOF

💿 BIRMINGHAM 🏅

rtu - CEA Saclav

sur les lois fondamentales

Institut de recherche

- Preferentially removes raised areas on surface
- Increases CuSO₄ concentration
- Plating continued for ~15 days
- In total estimate ~ 500 μm plated

Result

- Layer of Cu deposited on surface
 - Awaiting results of analysis of copper and electrolyte to verify purity
- Geant4 simulation shows decrease in background from 4.58 count/keV/kg/day (dru) < 1 keV to 1.96 dru
- Promising plating rate for electroformed sphere in the future

Pushing the Boundaries

- To increase low-mass sensitivity:
 - Target mass

 Larger detector
 Higher Pressure

Background suppression

- PID and FiducialisationPurity of Materials
- Low mass target nuclei
 e.g. H from CH₄

Neutron Measurements

Neutron Detection

- Neutrons are background in DM experiments
- Feasibility spherical proportional counter as neutron detector, using nitrogen gas
- Tests ongoing in Birmingham

 14 N + n \rightarrow 14 C + p + 625 keV, $\sigma_{th}^{}$ = 1.83 b 14 N + n \rightarrow 11 B + α - 159 keV

Institut de recherche

BIRMINGHAM 屋

Previous Limiting factors:

- → Wall effect
- Sparking Instability
- → Low pressure
- Impurities
- Charge collection efficien

JINST 12 (2017) no.12, P12031

P Knights, Particle Physics Seminar

Simulation of neutron transport

time

Neutron E = 0.025 eV $--- {}^{14}N(n, p){}^{14}C$

Activities at Boulby

- Aluminium S30
 Aim to measure neutron flux in Boulby Underground Laboratory
 - •Space allocated in lab
 - Installation of detector beginning Dec. 2019
- Possibility for further collaboration

Birmingham Gaseous Detector Laboratory I. Katsioulas, P. Knights, T. Neep,

K. Nikolopoulos, R. Owen, R. Ward + MSci and Summer Students

P Knights, Particle Physics Seminar

Additional Material

