$H \rightarrow 4l$ Higgs properties and BSM searches

Panagiotis Bellos

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

Higgs Production and Decay

- Higgs boson is a way to introduce massive bosons retaining local gauge invariance
- It is a spinless particle coupling to all massive particles

41 Channel

- Higgs discovery (2012) in 4l and γγ channels
- $H \rightarrow ZZ^* \rightarrow 4\ell$ (ℓ : e or μ) channel has
 - High signal-to-background ratio
 - Ability to completely reconstruct the final state

- Clear signature of Higgs boson
 - "Golden channel" for studies

ATLAS Experiment

- Run II 2015-2018
- Integrated Luminosity 140 fb⁻¹
- $\langle \mu \rangle$ > 35
- > 7M Higgs bosons

41 event reconstruction

- Events with at least 4 leptons
- Loose identification criteria for both e (\sim 90%) and μ (\sim 99%) efficiencies

41 Event Selection

- ZZ bkgs
 - qq \rightarrow ZZ(EW)
 - gg \rightarrow ZZ
- <u>Reducible bkgs</u>
 - Z+jets Heavy (b,c) or Light (u,d,s) Flavor jets
 tt
 - Smaller contribution from WZ and VVV, ttV

- 4 leptons
 - Isolated
 - Small impact parameter significance
 - Originating from the same vertex
- 2 lepton pairs compatible with the ZZ* hypothesis
 - Invariant masses [50-106 GeV] and $[m_{\rm th}\,-\,115~{\rm GeV}]$
 - Same flavor
 - Opposite charge
- Best quadruplet according to the Matrix Element

Event selection heavily suppresses the reducible bkg

Final state	Signal full mass range	Signal	ZZ*	$Z + \text{jets}, t\bar{t}$ WZ, ttV, VVV	Expected	S/B	Observed
Total	217.5 ± 13.0	206.1 ± 13.0	96.7 ± 6.0	12.1 ± 0.6	314.9 ± 14.0	1.9	316

Reducible bkg estimation

- Data Driven estimation of reducible bkg
- Properties are determined by the subleading dilepton
- 2 methods for
 - $\underline{II \ \mu\mu}$: Mainly Z + HF jets and $t\overline{t}$ minor Z + LF jets
 - -<u>*ll ee*</u> : Mainly Z+LF jets and fake electrons minor Z+HF jets and $t\bar{t}$
- Changed selection criteria -> Control Regions (CRs) with high bkg purity
- CRs are fitted to the data and the yields are extrapolated to the signal region

ZZ bkg estimation

- ZZ is the largest background after event selection
- The ZZ normalization is a free parameter decided by signal region Sidebands

Mass measurement

Resolution

- Signal m₄₁ model
 - Relativistic Breit–Wigner (BW) convoluted with
 - Double-sided Crystal Ball (DCB)
- Shape is completely dominated by detector resolution
 Higgs Width 4 MeV
 - Detector energy resolution O (GeV)
- Estimation of per-event resolution, a NN is trained with Lepton p_T , η , ϕ
 - p_{T4I} , Δp_{T4I}
- Per event resolution included in DCB

Signal/bkg separation

 Boosted decision tree (BDT) for signal / ZZ separation trained on

- p_{T4I}

- η_{4Ι}
- Matrix element based kinematic discriminant
- 4 BDT bins
- 4 4lepton final states (4μ, 2μ2e, 2e2μ, 4e).
- Bkgs from MC and smoothed
- Simultaneous profile likelihood fit to the16 categories

ATLAS-CONF-2020-005

Results

 $m_{\rm H} = 124.92^{+0.19}_{-0.19} \,(\text{Stat.})^{+0.09}_{-0.06} \,(\text{Sys.})$

measurement

Inclusive cross section

- Fiducial phase space defined by selection criteria
- Fit on 4l invariant mass

$$\sigma^{fid} = \sigma \cdot A \cdot BR(H \to 4l) = \frac{N_s}{C \cdot L_{int}}$$

 N_s : number of signal events

$$A = \frac{N_{fid}}{N_{truth}}$$
 : Acceptance

$$C = \frac{N_{rec}}{N_{fid}}$$
 : Detector Efficiency

- BR : Branching Ratio
- L_{int}: Integrated Luminosity

- Differential cross sections are affected by migrations
- Unfolding extracts the information at truth level using the detector response matrix
- Fit on m₄₁ in each bin

Differential cross sections

- Measured cross sections are related to
 - Higgs Boson kinematics
 - Jets produced along with the Higgs boson
 - Higgs boson and jets

Interpretations

- Yukawa couplings can be constrained by $p_{\rm TH}$ spectrum
- 3 scenarios under different assumptions are investigated for κ_b and κ_c

- In pseudo-observables framework contact terms between Higgs, Z and the L- or R-handed leptons are predicted
- The m₁₂ vs. m₃₄ double differential cross section can be used to probe several scenarios

Measuring production

mechanisms

Production mode categories

 Events are classified into 12 categories sensitive to different production mechanisms

- The categories are chosen to
 - Maximize measurement precision
 - Probe possible Beyond Standard Model contributions

Expected Composition

957

80 (2020)

Ü

Phys. J.

Eur.

Neural Networks

- 8 Neural Networks increase sensitivity
- Discriminate among production mechanism and against bkg
- NN discriminants are fitted

Category	Processes	MLP	Lep rNN	Jet rNN
0 <i>j</i>	ggF,ZZ	$p_{\rm T}^{4\ell}, D_{ZZ^*}, m_{12}, m_{34}, \cos \theta^*, \cos \theta_1, \phi_{ZZ}$	$p_{\mathrm{T},\ell},\eta_\ell$	n/a
$1j$ - $p_T^{4\ell}$ -Low	ggF,VBF,ZZ	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T},j}, \eta_j, \\ \Delta R_{4\ell j}, D_{ZZ^*}$	$p_{\mathrm{T},\ell},\eta_\ell$	n/a
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -Med	ggF, VBF, ZZ	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T},j}, \eta_j, E_{\mathrm{T}}^{\mathrm{miss}}$ $\Delta R_{4\ell j}, D_{ZZ^*}, \eta_{4\ell}$	-	n/a
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -High	ggF, VBF	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T},j}, \eta_j, \\ \Delta R_{4\ell j}, \eta_{4\ell}, E_{\mathrm{T}}^{\mathrm{miss}}$	₽т,ℓ	n/a
2 <i>j</i>	ggF, VBF, VH	$m_{ m jj},\Delta\eta_{ m jj},p_{ m T,4\ell jj}$	$p_{\mathrm{T},\ell},\eta_\ell$	$p_{\mathrm{T},j},\eta_j$
2j-BSM-like	ggF, VBF	$\Delta \eta_{jj}, \Delta \eta_{4\ell jj}, p_{\mathrm{T},4\ell jj}$	$p_{\mathrm{T},\ell},\eta_\ell$	$p_{\mathrm{T},j},\eta_j$
VH-Lep-enriched	ttH, VH	$ \begin{array}{c} N_{\text{jets}}, N_{b-\text{jets}}, E_{\text{T}}^{\text{miss}}, \\ \text{HT, } \ln(\mathcal{M}_{sig} ^2) \end{array} $	₽т,ℓ	n/a
<i>ttH</i> -Had-enriched	ttH, tXX, ggF	$p_{\rm T}^{4\ell}, m_{\rm jj}, \Delta \eta_{\rm jj}, \\ p_{{\rm T},jj}, \min(\Delta R_{Zj}), \Delta \eta_{4\ell jj}, N_{\rm jets}, N_{b-\rm jets}, \\ E_{\rm T}^{\rm miss}, \min(\Delta R_{4\ell j}), {\rm HT}, \ln(\mathcal{M}_{sig} ^2)$	$p_{\mathrm{T},\ell},\eta_\ell$	$p_{\mathrm{T},j},\eta_j$

Production modes cross sections

Interpretations

- The universal coupling-strength modifiers κ_F for fermions and κ_V for vector bosons are defined as
 - $\kappa_V = \kappa_W = \kappa_Z$
 - $\kappa_F = \kappa_t = \kappa_b = \kappa_c = \kappa_\tau = \kappa_\mu$

- In EFT BSM interactions are introduced via additional operators in the Lagrangian
- Parameters $C_i^{(d)}$ specify the strength of new interactions
- A minimal flavor-violating scenario consisted of five CP-even and five CP-odd operators is tested

measurement

Methodology

- Higgs Decay Width 4 MeV
- The ATLAS detector energy resolution O (GeV)
- Direct measurement is not possible
- Higgs boson off-shell production -> higher mass
- On-shell/off-shell XS ratio is depended on the width

$$\mu_{\text{off-shell}}(\hat{s}) \equiv \frac{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}(\hat{s})}{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}(\hat{s})} = \kappa_{g,\text{off-shell}}^2(\hat{s}) \cdot \kappa_{V,\text{off-shell}}^2(\hat{s})$$
$$\mu_{\text{on-shell}} \equiv \frac{\sigma_{\text{on-shell}}^{gg \to H \to ZZ}}{\sigma_{\text{on-shell}}^{gg \to H \to ZZ}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{V,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}}$$

Phys. Lett. B 786 (2018) 223

Matrix Element Discriminant

• Matrix elements

$$\begin{array}{l} - \mbox{ qq} \rightarrow \mbox{ ZZ} \rightarrow \mbox{ 4I} \ \ (\mbox{ P}_{\mbox{ qq}}) \\ - \mbox{ gg->(H^* \rightarrow)\mbox{ ZZ} \rightarrow \mbox{ 4I} \ \ (\mbox{ P}_{\mbox{ gg}}) \\ - \mbox{ gg} \rightarrow \mbox{ H^*} \rightarrow \mbox{ ZZ} \rightarrow \mbox{ 4I} \ \ \ (\mbox{ P}_{\mbox{ H}}) \end{array}$$

• The discriminant is defined by

$$D_{\rm ME} = \log_{10} \left(\frac{P_H}{P_{gg} + c \cdot P_{q\bar{q}}} \right)$$

• The D_{ME} distribution is fitted

Results

- 4I Ilvv combination
- Off-shell on-shell combination to extract the decay width
- Data from the first period (2015-2016) of Run II - 36.1 fb⁻¹
- Upper limit of Higgs boson decay width is 3.8·SM @ 95% CL

Neural Networks

- High mass Higgs-like bosons predicted by several BSM models
- 2 NNs probe the ggF/VBF produced signal against ZZ bkg
- Trained on event kinematic variables for 11 mass points

5 Categories
 - ggF-like (4μ, 2μ2e, 4e)
 -VBF-like
 -Rest

Signal and background modelling

- NWA signal model
 - Gaussian + Crystal Ball
- LWA & graviton signal model - Relativistic Breit-Wigner convoluted with

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $H \rightarrow ZZ \rightarrow e^+e^-e^+e^-$

aaF-MVA-hiah

Data

- Gaussian + Crystal Ball
- ZZ bkg model - **Empirical functions**

Data

Z+jets, tt

NWA.m.,=600 Ge

1800

*m*₄ [GeV]

50 x obs. limit

ATLAS

(s = 13 TeV, 139 fb

→ ZZ →e⁺e⁻u⁺u

Exclusion limits

- 4l combined with 2l2v to increase sensitivity
- Narrow width Higgs-like Large width Higgs-like Graviton

Interpretations

- A CP-conserving 2HDM predicts 5 Higgs bosons
- Some of the model free parameters can be constrained
 - The ratio of the vacuum expectation values of the 2 Higgs doublets (tan β)
 - The mixing angle between the CP-even Higgs bosons (α)
- 2 different Types (I, II) exist depending on Higgs doublets coupling to leptons and quarks

- Statistical uncertainties still dominant
- After run III (300\fb) and run IV (3000/fb) are going to be reduced by a factor of V2 and V20 wrt run I (150 /fb)
- Reducing the systematic uncertainties needs better modeling of physics processes (theoretical) and particlesdetector interaction (experimental)

Summary

- H4l is a major Higgs channel performing a lot of studies
- All measurements agree with the SM predictions
- More analyses are ongoing
- Our ability for making even more precise measurements is going to improve by
 - Reducing uncertainties
 - Improving analysis techniques
- Run 3 is expected to begin next year and it will lead to more exciting results

