Search for a pair of BEH production with ATLAS

Large Hadron Collider

pp collider, designed for $\sqrt{s} = 14$ TeV (7 TeV in 2011, 8 TeV in 2012, 13 TeV in 2015)

- 27 km circumference, 100 m underground, 1232 superconducting dipole magnets, magnetic field nominally 8.3 T, max instantaneous luminosity 10³⁴cm⁻²s⁻¹
- 4 detectors at collision points: ATLAS, CMS, LHCb, ALICE (TOTEM and LHCf)

Run I (2009-2012) data taking

Higgs boson discovery

The Nobel Prize in Physics 2013

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2013 to

François Englert Université Libre de Bruxelles, Brussels, Belgium Peter W. Higgs

"for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

The puzzle being completed, the two experiments ATLAS and CMS enter the era of properties measurement of the newly discovered particle and the search for New Physics beyond the Standard Model.

Higgs production at the LHC

a) Gluon-gluon fusion (ggH)
b) Vector boson fusion (VBF)
c) Associated V=W,Z production (VH)
d) Associated tt production (ttH)

- H-->bb: high BR but suffers from large QCD background
- H--> ττ: sensitivity enhanced in VBF production
- H-->γγ: narrow resonance over a continuum background
- H-->ZZ: -->4l golden channel excellent mass resolution and S/B --> llqq and llvv
- H-->WW: -->lvlv and lvqq

So far, compatibility with the SM properties —> SM Higgs boson discovered

Higgs self-coupling

The Higgs potential is directly to its self-coupling:

$$V(H) = \mu^2 |H|^2 + \lambda |H|^4 + ..$$
$$H \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \upsilon + h \end{pmatrix}$$

Expressed in terms of mass, trilinear and quartic couplings:

$$V(h) = \frac{1}{2} m_h^2 h^2 + \lambda_{3h} \upsilon h^3 + \frac{\lambda_{4h}}{4} h^4 + \dots$$
$$\lambda_{3h} = \lambda_{4h} = m_h^2 / 2\upsilon^2$$

Accessible in Higgs pair production

Extremely challenging

SM Higgs pair production

SM hh production: destructive interference between the trilinear coupling diagram and the box diagram

HL-LHC prospects

Decay Channel	Branching Ratio	Total Yield (3000 fb^{-1})
$b\overline{b} + b\overline{b}$	33%	40,000
$b\overline{b} + W^+W^-$	25%	31,000
$b\overline{b} + \tau^+\tau^-$	7.3%	8,900
$ZZ + b\overline{b}$	3.1%	3,800
$W^+W^- + \tau^+\tau^-$	2.7%	3,300
$ZZ + W^+W^-$	1.1%	1,300
$\gamma \gamma + b\overline{b}$	0.26%	320
$\gamma\gamma + \gamma\gamma$	0.0010%	1.2

Considering **bbγγ** decay channel in ATLAS: **S/√B ~ 1.3 in the full 3000fb⁻¹ dataset** An exclusion of 95%CL of BSM models with values **<~ -1.3SM and >~8.7SM Expected 0.6σ for bbττ and exclusions of <-4SM and >12SM**

The CMS collaboration showed (CMS-PAS FTR-15-002) that combining the bbγγ and the bbττ decay channels, the expected significance of a Higgs pair production is **1.9σ**

New Physics

A variety of extensions of the SM would enhance Higgs boson pair production

Non resonant production

- non SM Yukawa couplings
- direct tthh vertex (composite models)
- addition of light colored scalars
- dimension-6 gluon Higgs operators ...

Resonant production

- SUSY: 2HDM the heavier H —>hh (—>1pb)
- Production and decay of exotic particles: graviton, radion or stoponium..
- Hidden sector mixing with the observed h

ATLAS Collaboration

- Searches for Higgs boson pair production in the hh→bbττ,γγWW*,γγbb,bbbb channels with the ATLAS detector *Phys. Rev. D 92, 092004 (2015)*
- Search for Higgs boson pair production in the \$b\bar{b} b\bar{b} final state from \$pp\$ collisions at \$\sqrt{s} = 8\$ TeV with the ATLAS detector *Eur. Phys. J. C (2015) 75:412*
- Search For Higgs Boson Pair Production in the γγbb Final State using pp Collision Data at √s=8 TeV from the ATLAS Detector Phys. Rev. Lett. 114, 081802 (2015)

CMS Collaboration

- Search for the resonant production of two Higgs bosons in the final state with two photons and two bottom quarks CMS PAS HIG-13-032
- Search for resonant pair production of Higgs bosons decaying to two bottom quarkantiquark pairs in proton-proton collisions at 8 TeV, CMS-HIG-14-013
- Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with h to tautau, CMS-HIG-14-034

ATLAS detector

Inner Detector

EM Calorimeter Cells in Laver 3 $\Delta \phi \times \Delta \eta = 0.0245 \times 0.05$ Trigger Tower $\Delta n = 0.1$ $\eta = 0$ 16X. Trigger Tower ∆q ≓ 0.0982 4.3Xo Δ¢≈0.0245×4 36.8mmx4 =147.3mm Square cells in Layer 2 Δφ = 0.0245 $37.5 \text{mm}/8 = 4.69 \text{mmm}^{11}$ $\neg \neg \Delta \eta = 0.0031$ $\Delta \eta \approx 0.025$ Strip cells in Layer 1 Cells in PS $\Delta \eta \times \Delta \phi = 0.025 \times 0.1$

Three subdetectors (B=2T)

- Pixel detector
- Semi-Conductor Tracker
- Transition Radiation Tracker

Reconstruct charged particles

Sampling calorimeter Pb-LAr

Three longitudinal layers:

- layer 1: very fine segmentation along η allowing γ/π^0 discrimnation
- layer 2: bulk of the EM shower deposited
- layer 3: tail of the EM shower

A presampler up to $|\eta| < 1.8$ corrects for losses upstream the calorimeter

hh—>bbγγ

hh->bbyy

Powerful final state:

- large h—>bb branching ratio
- excellent diphoton invariant mass resolution
- low backgrounds
- clean diphoton trigger

H->yy selection

- Loose diphoton trigger ~ 100% efficient
- pT>0.35 (0.25) m_{YY} for leading (subleading) photon
- lηl<2.37 excluding 1.37<lηl<1.56
- Tight identified photons
- Track isolation $(\Delta R < 0.2) < 2.6 \text{ GeV}$
- Calorimetric isolation (ΔR<0.4) <6 GeV corrected for γ energy leakage and pileup
- 105< mγγ<160 GeV

hh->bbyy

Anti-kT jets (R=0.4) satisfy:

- pT>55 (35) GeV for leading (subleading) jets
- letal<2.5

b-tagging use multivariate algorithm with an 70% efficiency for jets from b fragmentation in simulated ttbar events: rejection factor of \sim 130 (4) for light quark (charm) jets

Calibrate b-tag scale using dilepton ttbar events

ATLAS-CONF-2014-004

95< m_{ii} < 135 GeV: mass resolution ~ 13 GeV asymmetric cut since neutrinos from semileptonic b-decays are not measured

η

Non resonant search

Signal parameterisation: Crystal Ball+gaussian fit to SM dihiggs sample The combined acceptance and selection efficiency for SM hh signal = 7.4 %

Continuum background Modelling:

determined from data sidebands An exponential function is used to fit the data in the sidebands in a **control region <2b-tag**. The slope is shared with the **signal region i.e >=2b-tag** to constrain the bkg shape.

Its composition is checked using truth smeared samples bbyy, bbyj, yybj, yyjj, byjj, bbjj The contribution from ttbar where 2 electrons fake the 2 photons is roughly 10% of the total bkg.

Single Higgs background modelling: determined from simulation (dominated by ttH and ZH processes). A CB+gauss fit is used.

Systematic uncertainties: non-resonant search

The systematic uncertainties are small compared to the statistical uncertainty: 30-35%

Systematic uncertainty		Non-Resonance Analysis		
Dye	stematic uncertainty	Single h Bkgd	hh Signal	Continuum
Trigger	[%]	0.5		_
Luminosity	[%]	2.8		_
Photon	Identification [%]	2.4		_
1 HOUOH	Isolation [%]	2		_
Mass	Resolution [%]	Resolution	n: 13	_
111485	Position	Value: $+0.5/-0.6 \text{ GeV}$		
	$m_{\gamma\gamma}$ Continuum Shape [%]	_		11
Shape	$m_{\gamma\gamma b\overline{b}}$: Statistical [%]	_		harmond
1	$m_{\gamma\gamma b\overline{b}}$: jj vs bb [%]	_		_
	$m_{\gamma\gamma b\overline{b}}$: Fit Model [%]	_		_
	b-Tagging [%]	3.3	1.8	_
Jets	Energy Scale [%]	6.5	1.4	_
	b-jet Energy Scale [%]	2.6	0.3	_
Energy Resolution $[\%]$		4.8	6.3	_
Theory	PDF+Scale [%]	8.4		_
	Single h +HF [%]	14		_

Largest uncertainty coming from bkg shape determination 11%: fit sidebands to 0-tag data, 1-tag, data with reversed photon identification and using flat function to fit

Non resonant search

Predicted number of events in SR for SM single Higgs background

Process	Fraction of total
ggH	11%
qqH	2%
WH	1%
ZH	17%
$t\bar{t}H$	69%
Total	0.17 ± 0.04 Events

Fitted number of continuum background in the SR coming from data sidebands : **1.3 events**

Total expected SM hh signal is **0.04** events

5 events are observed

Resonant hh production modeled with a gluon-initiated spin-0 resonant state in a narrow-width approximation (NWA) -> signal simulation

Same analysis as non-resonant but require m_{bb} to be 125 GeV: scaling the combined bb 4-vector multiplying it by m_H/m_{bb} —> improve 4-object invariant mass resolution $m_{\gamma\gamma bb}$ by 30-60% depending on the mass hypothesis

The impact of the mass constraint was checked not to alter significantly the shape of the background

Require m_{YYbb} to be within window selecting 95% signal efficiency in simulation Window varies from 17 GeV (mX=260 GeV) to 60 GeV (mX = 500 GeV)

Resonant search: bkg

Continuum background: take the shape from a <2b-tag control region Fit with a Landau function

Measure the efficiency of continuum to pass the cut on $m_{\gamma\gamma}$ with $Im_{\gamma\gamma}-m_hI/<2\sigma_{\mu\gamma\gamma}$ For mX low (260 GeV) and high (500 GeV), efficiency for continuum <8% For mX= 300 GeV, 18% of continuum

Resonant search: bkg

Resonant search

Not enough statistics to perform robust fit sidebands after resonance selection

Perform instead cut-and-count analysis

22

Resonant search: systematics

Suc	tomatic uncortainty	Resonance Analysis			
Bys	tematic uncertainty	SM $h + hh$ Bkgd	$H \to hh$ Signal	Continuum	
Trigger	[%]	0.5	õ	_	
Luminosity	[%]	2.8	8	_	
Photon	Identification [%]	2.4	1	_	
1 1101011	Isolation [%]	2		_	
Magg	Resolution $[\%]$	Migratio	on: 1.6	_	
111455	Position	Migration: 1.7%		_	
	$m_{\gamma\gamma}$ Continuum Shape [%]	_		11	
Shape	$m_{\gamma\gamma b\overline{b}}$: Statistical [%]	_		3-18	
Ĩ	$m_{\gamma\gamma b\overline{b}}:~jj~{ m vs}~bb~[\%]$	_		0-30	
	$m_{\gamma\gamma b\overline{b}}$: Fit Model [%]	-		16-30	
	b-Tagging [%]	3.4	2.4		
Jets	Energy Scale $[\%]$	19	3.8	_	
	b-jet Energy Scale $[%]$	6.5	2.2	_	
	Energy Resolution $[\%]$	15	9.3	_	
Theory	PDF+Scale [%]	+18/-15			
THEOLY	Single h +HF [%]	14	—	_	

Use simulation to evaluate differences in shape between yybb and yyjj

Use alternative fit functions to Landau distribution

Resonant search: results

The observed exclusion ranges from 3.5 to 0.8 pb The expected exclusion improves from 1.8 to 0.8 pb

Also shown the expectation from a sample type I 2HDM with $cos(\beta-\alpha)=-0.05$ and $tan\beta=1$.

The max local significance is 3σ at mX=300 GeV

The global probability of such an excess occurring at any mass in the range studied is **2.1σ**

hh->bbbb

Despite the fully hadronic final state being subject to large multijet background, searches for hh—>bbbb have good sensitivity for both the resonant and non-resonant searches -> high BR for h—>bb

It is a much more sensitive analysis at high mX where the bkg can be controlled to a manageable rate

Start the search at mX = 500 GeV

Combination of 5 unprescaled triggers -> 99.5% efficiency

Two Higgs boson reconstruction techniques which are complementary in their acceptance are performed.

hh->bbbb

Resolved analysis

Boosted analysis

hh—>bbbb

Form X_{hh} from pairs of jets $X_{hh} = \sqrt{\left(\frac{m_{2j}^{\text{lead}} - 124 \text{ GeV}}{0.1 m_{2j}^{\text{lead}}}\right)^2 + \left(\frac{m_{2j}^{\text{subl}} - 115 \text{ GeV}}{0.1 m_{2j}^{\text{subl}}}\right)^2}$

124 and 115 are the expected peak values from simulation for the leading and subleading dijet pair as well as 10% the estimated dijet mass resolutions

Require $X_{HH} < 1.6$ to define the signal region, then constrain dijet systems mass to 125 GeV for the resonant analysis (improvement of ~30% in the m_{4j} resolution)

Dominant background: multijet events estimated using a 2-tag region (one dijet system b-tagged):

hh->bbbb

Resolved analysis

Sample	Signal Region Yield
Multijet	81.4 ± 4.9
tī	5.2 ± 2.6
Z+jets	0.4 ± 0.2
Total	87.0 ± 5.6
Data	87
SM hh	0.34 ± 0.05
$G_{\rm KK}^*$ (500 GeV), $k/\bar{M}_{\rm Pl} = 1$	27 ± 5.9

~ .	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
Sample	Signal Region Yield		
Multijet	23.5 ± 4.1		
tī	2.2 ± 0.9		
Z+jets	0.14 ± 0.06		
Total	25.7 ± 4.2		
Data	34		
$G_{\rm KK}^*$ (1000 GeV), $k/\bar{M}_{\rm Pl} = 1$	2.1 ± 0.6		

hh->bbbb

000

eV1

Boosted analysis offers large gain at resonance high mass 500-720 GeV is excluded at 95%CL

Non resonant search performed using resolved analysis, upper limit of 202 fb is set (compared to 3.6+/-0.5 fb)

30

hh->bbττ

hh—>bbττ

 $bb\tau_{I}\tau_{had}$ final state considered

Trigger requires at least one lepton pT>24 GeV —>~ 100% efficient

Requiring one lepton pT>26 GeV, one hadronically decaying tau lepton with pT>20 GeV and meeting medium criteria and two or more jets with pT>30 GeV. Between 1 and 3 of the selected jets must be b-tagged. $90 < m_{bb} < 160 \text{ GeV}$

Four categories are considered in the analysis: $p_T^{\tau\tau} < 100$ GeV, $pT^{\tau\tau} > 100$ GeV, number of b-tagged jets ($n_b=1$ or >=2)

Background: W+jets, $Z \rightarrow \tau\tau$, diboson, top and fake τ

	$n_b \ge 2$		
Process	$p_{\rm T}^{\tau\tau} < 100 { m ~GeV}$	$p_{\rm T}^{\tau\tau} > 100 { m ~GeV}$	
SM Higgs	0.1 ± 0.1	0.2 ± 0.1	
Top quark	30.9 ± 3.0	23.6 ± 2.5	
$Z \rightarrow \tau \tau$	6.8 ± 1.8	2.6 ± 1.0	
Fake $ au_{ m had}$	13.7 ± 1.9	5.4 ± 1.0	
Others	0.7 ± 1.6	0.2 ± 0.7	
Total background	52.2 ± 8.2	32.1 ± 5.4	
Data	35	35	
Signal $m_H = 300 \text{ GeV}$	1.5 ± 0.3	0.9 ± 0.2	
	ProcessSM HiggsTop quark $Z \rightarrow \tau \tau$ Fake τ_{had} OthersTotal backgroundDataSignal $m_H = 300 \text{ GeV}$	n_b Process $p_T^{\tau\tau} < 100 \text{ GeV}$ SM Higgs 0.1 ± 0.1 Top quark 30.9 ± 3.0 $Z \rightarrow \tau \tau$ 6.8 ± 1.8 Fake τ_{had} 13.7 ± 1.9 Others 0.7 ± 1.6 Total background 52.2 ± 8.2 Data 35 Signal $m_H = 300 \text{ GeV}$ 1.5 ± 0.3	

Numbers of events predicted from background and observed in the data

hh—>bbττ

Non resonant

70 Events / 25 GeV **ATLAS** $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ 60 $\mu \tau_{had} + e \tau_{had}$ 50 🗕 Data Top quark **40** Z→ττ+jets Others **30** Fake τ Systematics 20 H(300) hh(10 pb) **10**⊢ 200 300 400 500 600 800 700 900 m_{bbrr} [GeV] σ(gg→H)× BR(H→hh) [pb] **ATLAS** √s= 8 TeV, 20.3 fb⁻¹ hh \rightarrow bb $\tau\tau$ (bb $\mu\tau_{had}$ +bbe τ_{had} Observed 10 ····· Expected \pm 1 σ expected $\pm 2\sigma$ expected

Resonant

For the non resonant search, $m_{\tau\tau}$ is used as a final discriminant For the resonant search, $m_{bb\tau\tau}$ is used as a discriminant and 100< $m_{\tau\tau}$ <150 GeV

Non resonant observed limit = 1.6 pb (expected 1.3pb)

Small deficit ~2sigma at 300 GeV in the resonant analysis

 10^{-1}

300

400

500

600

700

800

1000

900

m_н [GeV]

WW*—>lvqq' final state considered to reduce mulitjet bkg

Events are recorded with diphoton triggers, efficiency close to 100%

Same diphoton selection as for hh—> $\gamma\gamma$ bb, in addition to require >=2 jets and exactly 1 lepton, any b-tagged jet is vetoed to reduce bkg from top, and large E_T^{miss}

Require $m_{\gamma\gamma}$ to be within 2σ from the Higgs mass.

Background: - single SM h (dominated by Wh, tth and Zh) = 0.25+/-0.07

- continuum bkg ($W\gamma\gamma$ +jets) estimated from $m_{\gamma\gamma}$ sidebands in data A control region selected as the signal sample without the lepton and E_T^{miss} requirements, fit with an exponential function excluding 5 GeV around m_h hh->yyWW*

Small nb of events—>cut-and-count method

Selection efficiency for signal of SM non-resonant = 2.9% and for resonant is =1.7% for mX=260 GeV and 3.3% at 500 GeV.

Number of background events =1.40+/-0.47 4 events are observed in the signal window, **significance = 1.8\sigma**

Combination

Combined channels

Resonant production:

Non resonant production:

Analysis	vybb	$\gamma \gamma W W^*$	$hh\tau\tau$	bbbb	Combined
Anarysis	yyuu	<i>y y v v v</i>	0011		Comonica
		Upper limit o	n the cross s	section [pb]	
Expected	1.0	6.7	1.3	0.62	0.47
Observed	2.2	11	1.6	0.62	0.69
	Upper limi	t on the cross s	ection relati	ve to the S	M prediction
Expected	100	680	130	63	48
Observed	220	1150	160	63	70
			- 38		

combined significance = 1.7σ

Comparison with CMS results

Results look quite consistent, no combination is yet performed for CMS. The expected limit in the case of bbγγ is slightly better in CMS due to looser jet pT cuts and to an addition of 1b-tag category

Interpretation in hMSSM

hMSSM: the mass of the light CP-even h = 125 GeV. SUSY-breaking scale allowed to be very large —> model dependent on 2 parameters: mA and tan β

Further on hMSSM

Expectations for 2σ sensitivity in the hMSSM for the forthcoming 300 fb⁻¹ data The entire parameter space can be probed, any value of tanβ can be probed up to m_A~400 GeV

*hh in this plot considers only results of $bb\gamma\gamma$, better limits expected using the combined channels.

Perspectives

Run II already started $\sim 3.5 \text{ fb}^{-1}$ to be used for physics analyses

Higher instantaneous luminosities (25 vs 50 ns bunch spacing)

13 vs 8 TeV allows to explore new phase space for BSM physics

An increase in cross section going from 13 to 8 TeV

Very naive estimation:

To reach the same sensitivity for bbyy (assuming a real 3σ excess) we therefore need 2.5 less luminosity with 13 TeV. To have 5σ —> 21fb⁻¹ at 13 TeV (assuming bkg and signal behave the same with \sqrt{s})

Perspectives

BSM Physics is one of the most important searches to perform in the coming Run II and Run III of LHC data taking as well as beyond that.

Stay tuned for further results !

Thanks for your attention!

Backup Slides

Nonresonant search		Resonant search				
		$m_H = 300 \text{ GeV}$		$m_H = 600 \mathrm{G}$	JeV	
Source	$\Delta \mu / \mu$ [%]	Source	$\Delta\mu/\mu$ [%]	Source	$\Delta\mu/\mu$ [%]	
Background model	11	Background model	15	<i>b</i> -tagging	10	
<i>b</i> -tagging	7.9	Jet and $E_{\rm T}^{\rm miss}$	9.9	h BR	6.3	
h BR	5.8	Lepton and $ au_{had}$	6.9	Jet and $E_{\rm T}^{\rm miss}$	5.5	
Jet and $E_{\rm T}^{\rm miss}$	5.5	h BR	5.9	Luminosity	2.7	
Luminosity	3.0	Luminosity	4.0	Background model	2.4	
Total	16	Total	21	Total	14	

Table 5: The impact of the leading systematic uncertainties on the signal-strength parameter μ of a hypothesized signal for both the nonresonant and resonant ($m_H = 300, 600 \text{ GeV}$) searches. For the signal hypothesis, a Higgs boson pair production cross section ($\sigma(gg \rightarrow hh)$ or $\sigma(gg \rightarrow H) \times BR(H \rightarrow hh)$) of 1 pb is assumed.

hh	Nonresonant search		Resonant search		
final state	Categories	Discriminant	Categories	Discriminant	<i>m_H</i> [GeV]
$\gamma\gamma bar{b}$	1	$m_{\gamma\gamma}$	1	event yields	260-500
$\gamma\gamma WW^*$	1	event yields	1	event yields	260-500
$bar{b} au au$	4	$m_{ au au}$	4	$m_{bb au au}$	260-1000
$b\bar{b}b\bar{b}$	1	event yields	1	m_{bbbb}	500-1500

LHC / HL-LHC Plan

pp Higgs factories

LHC is the 1st Higgs factory! E_{CM} =8-14 TeV, $\hat{L} \sim 10^{34}$ cm⁻²s⁻¹ 1 M Higgs produced so far – more to come! 15 H bosons / min – and more to come

HL-LHC (~2022-2030): E_{CM} =14 TeV, L~5x10³⁴cm⁻²s⁻¹ (leveled)

10x more Higgs

HE-LHC: in LHC tunnel (2035-?) E_{CM} =33 TeV, $L = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ 6x higher cross section
for H self coupling

VHE-LHC in new 80-100 km tunnel (2040?) E_{CM} =84-104 TeV, $L = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ 42x higher cross section
for H self coupling

pp Higgs coupling cross sections vs c.m. energy

M. Mang	gano	HE-LHC				VHE-LHC
	σ(14 TeV)	R(33)	R(40)	R(60)	R(80)	R(100)
ggH	50.4 pb	3.5	4.6	7.8	11.2	14.7
VBF	4.40 pb	3.8	5.2	9.3	13.6	18.6
WН	1.63 pb	2.9	3.6	5.7	7.7	9.7
ZH	0.90 pb	3.3	4.2	6.8	9.6	12.5
ttH	0.62 pb	7.3	11	24	41	61
нн	33.8 fb	6.1	8.8	18	29	42

→ high statistics studies of ttH ... and, at long last, HHH couplings

VHE-LHC is ultimate machine to measure Higgs self coupling! (~2-5% level)

Higgs selfcouplings: pp→HH

- gg→HH (most promising?), qq→HHqq (via VBF)
- Reference benchmark process: HH→bb YY
- Goal: 5% (or better) precision for SM selfcoupling

	НН → bЪүү	Barr,Dolan,Englert,Lima, Spannowsky JHEP 1502 (2015) 016	Contino, Azatov, Panico, Son arXiv:1502.00539	He, Ren, Yao (follow-up of Snowmass study)	
	FCC _{@100TeV} 3/ab	30~40%	30%	15%	
$\left(\right)$	FCC _{@100TeV} 30/ab	10%	10%	5%	
	S/\sqrt{B}	8.4	15.2	16.5	
	Details	✓ λ_{HHH} modification only ✓ $c \rightarrow b \& j \rightarrow \gamma$ included ✓ Background systematics ○ $b\bar{b}\gamma\gamma$ not matched ✓ $m_{\gamma\gamma} = 125 \pm 1$ GeV	✓ Full EFT approach ○ No $c \rightarrow b \& j \rightarrow \gamma$ ✓ Marginalized ✓ $b\bar{b}\gamma\gamma$ matched ✓ $m_{\gamma\gamma} = 125 \pm 5 \text{ GeV}$ ✓ Jet /W _{had} veto	✓ λ_{HHH} modification only ✓ $c \rightarrow b \& j \rightarrow \gamma$ included ○ No marginalization ✓ $b\bar{b}\gamma\gamma$ matched ✓ $m_{\gamma\gamma} = 125 \pm 3$ GeV	

Work in progress to compare studies, harmonize performance assumptions, optimize, etc ⇒ ideal benchmarking framework M.Son, HH summary at FCC week

Coupling √s (TeV)→	LHC 14	CepC 0.24	FCC-ee 0.24 +0.35 0	ILC 25+0.5 C	CLIC).38+1.4+3	FCC-hh 100		Units are %
$L(fb^{-1}) \rightarrow 1$	3000(1 expt)	5000	13000	6000	4000	Eaw proliminer		
Kw	2-5	1.2	0.19	0.4	0.9	estimates avai SppC : similar	ilable reach	
N _Z	2-4	1.20	0.15	0.5	0.0			
Kg	3-5	1.5	0.8	1.0	1.2		from K_{γ}	$/K_{z}$, using
K _v	2-5	4.7	1.5	3.4	3.2	< 1	K _Z from	rcc-ee
K _μ	~8	8.6	6.2	9.2	5.6	rare decays	→ pp	
K _c		1.7	0.7	1.2	1.1	competitive	/better	
K _τ	2-5	1.4	0.5	0.9	1.5			-
K _b	4-7	1.3	0.4	0.7	0.9		L	
K _{7v}	10-12	n.a.	n.a.	n.a.	n.a.		from th	tH/ttZ,
Γ _h	n.a.	2.8	1%	1.8	3.4	←	BR from	TL and H
BRinvis	<10	0.28	<0.19%	0.29	<1%			
K _t	7-10	1	3% ind. tt scan	6.3	<4	~1?		
K _{HH}	? 3	35% from K _Z 2	0% from K_Z 2	?7	11	5-10		
model-dep model-dep								

- □ LHC: ~20% today \rightarrow ~ 10% by 2023 (14 TeV, 300 fb⁻¹) \rightarrow ~ 5% HL-LHC
- □ HL-LHC: -- first direct observation of couplings to 2^{nd} generation (H \rightarrow µµ)
 - -- model-independent ratios of couplings to 2-5%
- □ Best precision (few 0.1%) at FCC-ee (luminosity !), except for heavy states (ttH and HH) where high energy needed → linear colliders, high-E pp colliders
- Complementarity/synergies between ee and pp