Rare Decays at LHCb

Mitesh Patel (Imperial College London) The University of Birmingham, 2nd March 2016

The interest in Rare Decays

- Standard Model has no tree-level Flavour Changing Neutral Currents (FCNC)
- FCNC only occur as loop processes, proceed via penguin or box diagrams – sensitive to contributions from new (virtual) particles which can then be at same level as SM contributions

 \rightarrow Probe masses > E_{CM} of the accelerator

• e.g. $B_d^0 \rightarrow K^{*0}\gamma$ decay

A historical example – $B_d^0 \rightarrow K^2$

 \mathbf{W}^{-}

 H^{-}

 $\tilde{\chi}^0$

 V_{tb}

 $b \rightarrow s \gamma$

h

 $V_{\rm ts}$

- In SM : occurs through a dominating W-t loop •
- Possible NP diagrams : •
- Observed by CLEO in 1993, two years before ulletthe direct observation of the top quark
 - BF was expected to be (2-4)×10⁻⁴
 - \rightarrow measured BF = (4.5±1.7)×10⁻⁴

Theoretical Foundation

• The **Operator Product Expansion** is the theoretical tool that underpins rare decay measurements – rewrite SM Lagrangian as :

$$\mathcal{L} = \sum_{i} C_i O_i$$

- "Wilson Coefficients" C_i
 - Describe the short distance part, can compute perturbatively in given theory
 - Integrate out the heavy degrees of freedom that can't resolve at some scale $\boldsymbol{\mu}$
- "Operators" O_i
 - Describe the long distance, non-perturbative part involving particles below scale μ
 - Account for effects of strong interactions and are difficult to calculate reliably

\rightarrow Form a complete basis – can put in all operators from NP/SM

- Mixing between different operators : $C_i \rightarrow C_i^{\text{effective}}$
- In certain observables the uncertainties on the operators cancel out are then free from theoretical problems and measuring the C_i tells us about the heavy degrees of freedom – *independent of model*

LHCb data-taking

- In total have recorded 3fb⁻¹ at instantaneous luminosities of up to 4×10³² cm⁻²s⁻¹ (twice the design value!)
- While Run-II data-taking will add substantial luminosity (so far 0.3fb⁻¹), will not be the step-change from higher √s anticipated at the central detectors – need 2019 upgrade for that step-change

Outline

- A tour of existing LHCb rare decay measurements
 - $B^0 \rightarrow \mu\mu$ branching fraction measurements
 - $B_d^0 \rightarrow K^{*0} \mu \mu$ angular measurements
 - Other $b \rightarrow s \mu \mu$ branching fraction measurements
 - Global fits to $b \rightarrow sII$ data
 - Mention a couple of other anomalous results
- (Very) latest $B_d^0 \rightarrow K^{*0} \mu \mu$ angular results
 - Compatibility with SM
 - Updated global fits
- Some remarks about the future

Outline

- A tour of existing LHCb rare decay measurements
 - $B^0 \rightarrow \mu\mu$ branching fraction measurements
 - $B_d^0 \rightarrow K^{*0} \mu \mu$ angular measurements
 - Other $b \rightarrow s \mu \mu$ branching fraction measurements
 - Global fits to $b \rightarrow sll$ data
 - Mention a couple of other anomalous results
- (Very) latest $B_d^0 \rightarrow K^{*0} \mu \mu$ angular results
 - Compatibility with SM
 - Updated global fits
- Some remarks about the future

$B^0 \rightarrow \mu^+ \mu^- - Physics Interest$

- Both helicity suppressed and GIM suppressed ۲
 - In the SM,
 - Dominant contribution from Z-penguin diagram
 - Precise predictions for BFs :
 - $B(B_s^0 \rightarrow \mu\mu) = (3.66 \pm 0.23) \times 10^{-9}$
 - $B(B_d^0 \rightarrow \mu \mu) = (1.06 \pm 0.09) \times 10^{-10}$ [PRL 112 (2014) 101801]
 - In NP models,
 - New scalar $(O_{\rm S})$ or pseudoscalar $(O_{\rm P})$ interactions can modify BF

e.g. in MSSM, extended Higgs sector gives BF that scales with $tan^6 \beta / M_{A0}^4$

 \rightarrow Extremely sensitive probe of NP!

$B^0 \rightarrow \mu^+ \mu^-$ analysis

LHCb's $B^0 \rightarrow \mu^+ \mu^-$ analysis has now been combined with that from CMS :

 $- B(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$ $- B(B_{d}^{0} \rightarrow \mu^{+} \mu^{-}) = (3.9^{+1.6}_{-1.4}) \times 10^{-9}$

in good agreement with SM predictions

 \rightarrow No evidence of NP contributions to C_{S} and C_{P}

$B_d^0 \rightarrow K^{*0} \mu \mu - Physics Interest$

- Flavour changing neutral current → loop process (→ sensitive to NP)
- Decay described by three angles $(\theta_{I}, \phi, \theta_{K})$ and di- μ invariant mass q²
- Try to use observables where theoretical uncertainties cancel
 e.g. Forward-backward asymmetry
 A_{FB} of θ_I distribution
- Zero-crossing point: ±6% uncertainty

$B_d^{\ 0} \rightarrow K^{*0} \mu \mu \ C_i$ and form factors

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay amplitudes

• Amplitudes that describe the
$$B_{d}^{0} \rightarrow K^{*}$$

- The (effective) Wilson Coefficients
 C_{10}^{eff} (axial-vector) and their right
- Seven (!) form factors – these are
theoretical uncertainties

$$A_{\perp}^{L(R)} = N\sqrt{2\lambda} \left\{ \left[(C_{9}^{\text{eff}} + C_{9}^{\text{eff}}) \mp (C_{10}^{\text{eff}} + C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{B}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{B}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{B}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{B}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{B}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{B}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} - \frac{N}{m_{A}^{2}} \left[(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{V(q^$$

- BFs have relatively large theoretical uncertainties from form factors
- Angular observables much smaller theory uncertainties

1st generation measurements

- With 2011 data found 900±34 signal events (BaBar + Belle + CDF ~ 600)
- B/S≈0.25
- World's most precise measurements of angular observables
- The world's 1st measurement of zerocrossing point at 4.9^{+1.1}-1.3 GeV²/c⁴

 \rightarrow "a textbook confirmation of the SM"

 Seems theorists have good control of form factor uncertainties

1st generation measurements

- With 2011 data found 900±34 signal events (BaBar + Belle + CDF ~ 600)
- B/S≈0.25
- World's most precise measurements of angular observables
- The world's 1st measurement of zerocrossing point at 4.9^{+1.1}-1.3 GeV²/c⁴

 \rightarrow "a textbook confirmation of the SM"

 Seems theorists have good control of form factor uncertainties

Form-factor independent obs.

- At low and high q², there are relations between the various form factors (at leading order) that allow a number of form-factor independent observables to be constructed
- E.g. in the region 1<q²<6 GeV², relations reduce the seven formfactors to just two – allows to form quantities like

$$P_{5}' \sim \frac{Re(A_{0}^{L}A_{\perp}^{L*} - A_{0}^{R}A_{\perp}^{R*})}{\sqrt{(|A_{0}^{L}|^{2} + |A_{0}^{R}|^{2})(|A_{\perp}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{L}|^{2} + |A_{\parallel}^{R}|^{2})}}$$

which are form-factor independent at leading order

- In fact can form a complete basis (P^(') series) in which there are six form-factor independent and two form-factor dependent observables (F_L and A_{FB})
- Updated analysis measuring P(') series of observables gave a surprise...

$B_d^{0} \rightarrow K^{*0} \mu^+ \mu^- - P(')$ series

[Phys. Rev. Lett. 111 (2013) 191801]

• Good agreement with predictions for P_4' , P_6' , P_8' observables

same short-distance physics

'n

5

10

15

20

15

 q^{2} [GeV²/ c^{4}]

$B_d^{\ 0} \rightarrow K^{*0} \mu \mu - theoretical view$

- Need a new vector contribution \rightarrow adjusts C₉ Wilson Coefficient
- Very difficult to generate in SUSY models [arXiv:1308.1501] : "[C₉ remains] SM-like throughout the viable MSSM parameter space, even if we allow for completely generic flavour mixing in the squark section"

- Models with composite Higgs/extra dimensions have same problem
- Could generate observed deviation with a Z'

 $B_d^0 \rightarrow K^{*0} \mu \mu - theoretical view$

- Theoretical analyses conclude deviation observed does *not* create any tension with other flavour observables
- e.g. [arXiv:1307.5683] consistent with negative NP contribution to C₉: ΔC₉ ~ -1
- Preferred value of C₉ can be translated into NP scale in a model independent way but the answer depends on what else is considered in the fit e.g.

$$M_{Z'} \in [5.7, 6.9] \text{ TeV} \qquad [arXiv:1310.1082]$$

$$\Lambda_{9^{(\prime)}} \simeq (35 \text{ TeV}) \left(\frac{1.0}{|C_9^{(\prime)}|}\right)^{1/2} \qquad [arXiv:1308.1501]$$

$$\Lambda_{9^{(\prime)}}^{\text{loop}} \simeq (2.8 \text{ TeV}) \left(\frac{1.0}{|C_9^{(\prime)}|}\right)^{1/2} \qquad [arXiv:1308.1501]$$

$B_d^0 \rightarrow K^{*0} \mu \mu - theoretical view$

• While some theorists are very excited, some are less keen...

Ugly face of B->K/n+/n-

Adding the branching fractions...

 If we did have such a vector contribution we'd expect low branching fractions for other b→sµµ decays with different spectator quark

Lattice - Data

++

10

 $B^+ \rightarrow K^+ \mu^+ \mu^-$

15

LHCb

20

 $q^{2} \, [\text{GeV}^{2}/c^{4}]$

[JHEP 06 (2014) 133]

LCSR

⁻⁺++++

5

 $dB/dq^2 [10^8 \times c^4/GeV^2]$

5

 $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$

- Measurements of B⁰_s→ φµ⁺µ⁻ show a similar trend in the low q² region

 - This measurement alone is 3.3σ from SM prediction in 1.0<q²<6.0 GeV² [JHEP09 (2015) 179]

20

$\Lambda_b \rightarrow \Lambda^0 \mu^+ \mu^-$

Global fit to angular and BF data

• Fit the angular and branching fraction data :

→ BF data also favours same NP solution : $\Delta C_9 \sim -1$; Can't tell if a two C_i solution preferred (e.g. V-A, impact B⁰→ $\mu^+\mu^-$)

- Correct for bremstrahlung using calorimeter photons (with $E_{\rm T} > 75 \,{\rm MeV}$).
- Migration of events into/out-of the $1 < q^2 < 6 \,\mathrm{GeV}^2/c^4$ window is corrected using MC.
- Take double ratio with $B^+ \rightarrow J/\psi K^+$ decays to cancel possible systematic biases.
 - In 3 fb⁻¹ LHCb determines $R_{\rm K} = 0.745^{+0.090}_{-0.074} (\text{stat})^{+0.036}_{-0.036} (\text{syst})$ which is consistent with SMI at 2.6 σ .

Belle [PRL 103 (2009) 171801],

BaBar [PRD 86 (2012) 032012]

• Consistent with $\Delta C_9^{ee}=0$, $\Delta C_9^{\mu\mu}=-1$ (latter consistent with $B_d^0 \rightarrow K^{*0}\mu\mu$)

A short aside : R^{*}

- Note we also see an anomalous effect in the • ratio of tree-level branching fractions $R_D^* = B(B_d^0 \rightarrow D^{*+} \tau \nu) / B(B_d^0 \rightarrow D^{*+} \mu \nu)$
- Reconstruct the tauonic decay through ۲ $\tau \rightarrow \mu \nu \nu$, final state has three neutrinos!
- Confirms effect seen in R_D, R_{D^*} at BaBar/ • Belle, combined significance 3.9σ

[Phys.Rev.Lett. 115(2015)112001]

24

Outline

- A tour of existing LHCb rare decay measurements
 - $B^0 \rightarrow \mu\mu$ branching fraction measurements
 - $B_d^0 \rightarrow K^{*0} \mu \mu$ angular measurements
 - Other $b \rightarrow s \mu \mu$ branching fraction measurements
 - Global fits to $b \rightarrow sll$ data
 - Mention a couple of other anomalous results
- (Very) latest $B_d^0 \rightarrow K^{*0} \mu \mu$ angular results
 - compatibility with SM
 - Updated global fits
- Some remarks about the future

Full Run-I $B_d^0 \rightarrow K^{*0} \mu \mu$ update

- Our full run-I B_d⁰→K^{*0}µµ update recently published [JHEP 02 (2016) 104], dataset 3× larger than previous analysis
- For first time made full angular fit involving all angular terms → complete set observables (and correlations)
- Finer q² binning → more shape information(*), crosscheck with a second (less precise) method
- First measurement of CP asymmetries, measurements of zero-crossing points by determining amplitudes as fn q²
- Will try and give a feeling for how the measurement is made...

(*) As well as low branching fractions, $\Delta C_9 \sim -1$ would give a shift in A_{FB} 26

Differential decay rate

- Decay described by di- μ invariant mass q² and three decay angles $\vec{\Omega} = (\cos \theta_l, \cos \theta_K, \phi)$
- Differential decay rate given

$$\frac{\mathrm{d}^4\Gamma[\overline{B}{}^0 \to \overline{K}{}^{*0}\mu^+\mu^-]}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \sum_j I_j(q^2) f_j(\vec{\Omega})$$
$$\frac{\mathrm{d}^4\bar{\Gamma}[B^0 \to K{}^{*0}\mu^+\mu^-]}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \sum_j \bar{I}_j(q^2) f_j(\vec{\Omega})$$

- I_j terms eleven q² dependent angular observables Can be expressed as bi-linear combinations of six complex decay amplitudes $\mathcal{A}_{0,\parallel,\perp}^{\mathrm{L,R}}$
- $f_j(\vec{\Omega})$ terms combinations of spherical harmonics

Angular observables

Can define CP-averaged and CP-asymmetric observables

 $S_{j} = \left(I_{j} + \bar{I}_{j}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right)\right.$ $A_{j} = \left(I_{j} - \bar{I}_{j}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right)\right.$

- Additional suffix s/c sometimes added to indicate sin² θ_K or cos² θ_K dependence; S_{1c} = F_L; ³/₄S_{6s} = A_{FB}
- For large q², μ's effectively massless relations between different S_i terms, 11 → 8 CP-averaged observables
- Further observables, optimised to reduce FF uncertainties, can be built from F_L , S_3 - S_9 e.g. P_5 '= $S_5/\sqrt{F_L(1-F_L)}$

CP-averaged angular distn

• CP-averaged angular distribution then given

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\vec{\Omega}}\Big|_{\mathrm{P}} = \frac{9}{32\pi} \Big[\frac{3}{4}(1-F_{\mathrm{L}})\sin^2\theta_K + F_{\mathrm{L}}\cos^2\theta_K + F_{\mathrm{L}}\cos^2\theta_K + \frac{1}{4}(1-F_{\mathrm{L}})\sin^2\theta_K\cos 2\theta_l + \frac{1}{4}(1-F_{\mathrm{L}})\sin^2\theta_K\cos 2\theta_l + S_3\sin^2\theta_K\sin^2\theta_l\cos 2\phi + S_4\sin 2\theta_K\sin 2\theta_l\cos \phi + S_5\sin 2\theta_K\sin \theta_l\cos \phi + \frac{4}{3}A_{\mathrm{FB}}\sin^2\theta_K\cos \theta_l + S_7\sin 2\theta_K\sin \theta_l\sin \phi + S_8\sin 2\theta_k\sin 2\theta_l\sin \phi + S_9\sin^2\theta_K\sin^2\theta_l\sin 2\phi]$$

• For the 1st time, account for the effect of the $K\pi$ system being in an S-wave configuration rather than K^{*0} P-wave

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\vec{\Omega}}\Big|_{S+P} = (1 - F_S) \frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\vec{\Omega}}\Big|_P \qquad Determine A_i by flipping the sign in front of the corresponding angular terms for B^0 decays while eaving unchanged for B^0 decays decays while eaving unchanged for B^0 decays deca$$

→ two new amplitudes and six additional angular terms (explicitly included as nuisance parameters)

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ signal selection

- Selection uses range of PID, kinematic and isolation quantities in a Boosted Decision Tree
- Veto B⁰→K^{*0}J/ψ and B⁰→K^{*0}ψ(2S) decays, as well as a number of peaking backgrounds :
 - evidence for $\phi(1020)$ at low q² → exclude 0.98,<q²<1.1 GeV²
 - Consider e.g. $\Lambda_b \rightarrow pK^-\mu^+\mu^-$; $B_s \rightarrow \phi\mu^+\mu^-$; $B^{0,+} \rightarrow K^{*0,+}\mu^+\mu^-$...

 After selection, signal clearly visible as vertical band Clean enough to allow finer q² binning than for 1 fb⁻¹

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ signal selection

- Signal Kπµµ mass model
 - sum of two Gaussians with power law tail on low mass-side
 - defined using $B^0 \rightarrow K^{*0}J/\psi$ control channel (correct for q^2 dependence using simulation)
 - Combinatorial background modelled with falling exponential
- Events / 5.3 MeV/c^2 LHCb $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ 600 $\begin{array}{l} \Lambda_{b} \longrightarrow p K^{-} \mu^{+} \mu^{-} ; B_{s} \longrightarrow \phi \mu^{+} \mu^{-} ; \\ B^{0,\pm} \longrightarrow K^{*0,\pm} \mu^{+} \mu^{-} etc. \end{array}$ $K\pi$ mass model : ۲ - Rel. Breit Wigner for P-wave reduced to <2% of signal 400 LASS for S-wave [treated as syst] 200 Linear model for bkgrd 5200 5400 5600 $m(K^{+}\pi^{-}\mu^{+}\mu^{-})$ [MeV/c²]
- Find 2398±57 signal events in 0.1<q²<19.0 GeV²/c⁴ (624±30 events in 1.1<q²<6.0 GeV²/c⁴)

Correcting for the efficiency

- Detector and selection distort the angular and q² distribution
 - Momentum/IP requirements
- Compute 4D efficiency function, ε, using simulated events
 ε(cos θ_I, cos θ_K, φ, q²)
- Function of all underlying variables → can determine with a phase-space simulation

Correcting for the efficiency

Efficiency

0.5

LHCb simulation

-0.5

- Acceptance is **not** assumed to factorise in the decay angles
- Parameterised,

$$\varepsilon(\cos\theta_l,\cos\theta_K,\phi,q^2) = \sum_{klmn} c_{klmn} P_k(\cos\theta_l) P_l(\cos\theta_K) P_m(\phi) P_n(q^2)$$

- − P_i(x) are Legendre polynomials of order i (x rescaled -1→1)
- For cos θ_l, cos θ_K, φ, q² use up-to and including 4th,5th,6th, 5th order polynomials
- Coeff c_{klmn} determined using a principal moments analysis

[0.1, 1.0] GeV²/c⁴

[18.0, 19.0] GeV²/c⁴

0

0.5

 $\cos \theta$

$B^0 \rightarrow K^{*0} J/\psi$ angular fit

 Reproduce angular observables measured elsewhere [PRD 88 (2013) 052002]

Likelihood fit

- In each q² bin, unbinned maximum likelihood fit to $m_{K\pi\mu\mu}$ and three decay angles, plus a simultaneous fit to $m_{K\pi}$
- Angular distribution
 - Signal large expression showed before
 - Bkgrd second order polynomials in $\cos \theta_{I}$, $\cos \theta_{K}$, ϕ
- Application of acceptance, ϵ
 - Narrow q² bins, multiply angular pdf by acceptance at bin centre [syst.]
 - Wide $1.1 < q^2 < 6.0 \text{ GeV}^2$ and $15.0 < q^2 < 19.0 \text{ GeV}^2$ bins ϵ varies significantly across bin, weight candidates by ϵ^{-1} , correct for coverage
- Feldman-Cousins used to determine parameter uncertainties
 - Nuisance parameters (e.g. other angular parameters, signal fraction, background parameters...) treated with plug-in method

Systematics

- Evaluated using high statistics pseudoexpts where vary approach and look at difference in angular observables
- Signal main effects from angular acceptance :
 - Statistical uncert. from simulation [re-evaluate using cov.]
 - Residual data-simulation differences [reweight for diffs,re-eval.]
 - Uncert. associated with parameterisation [increase order polyn.]
 - Uncertainty from evaluating acceptance at fixed q² point

[alter point used]

- Background
 - Angular model

[increase order polyn.]

• Bias from higher K* states negligible

Systematics

- Include angular distribution of residual peaking bkgrds
- Mass modelling
 - $m_{K\pi\mu\mu}$ drop power law tails
 - $m_{K\!\pi}$ radius used in Breit Wigner for P-wave; LASS \rightarrow isobar
- [For amplitude fit] S-wave amplitudes constant with $q^2 \rightarrow$ assume same q^2 dependence as long. P-wave amplitude
- Production/detection asymmetries give negligible contribution to A_i's
- In general, syst. significantly smaller than stat.
 - e.g. $F_L(A_{FB})$ syst 30 (20)% of stat. [largest p_{π} mismatch]

Fit projection 1.1<q²<6.0 GeV²/c⁴

• Tension seen in P₅' in 1fb⁻¹ data confirmed with 3 fb⁻¹:

 4.0<q²<6.0 and 6.0<q²<8.0 GeV²/c⁴ bins each show deviations of 2.8σ and 3.0σ respectively

• Tension seen in P₅' in 1fb⁻¹ data confirmed with 3 fb⁻¹:

 4.0<q²<6.0 and 6.0<q²<8.0 GeV²/c⁴ bins each show deviations of 2.8σ and 3.0σ respectively

Results: Likelihood, CP-asymm

Results: Likelihood, CP-asymm

Zero-crossing points

Compatibility with the SM

- Use EOS software to check compatibility of CP-averaged angular measurements with SM
- Make χ^2 fit to F_L, A_{FB} and S₃-S₉ in q² range <8.0 GeV² and in wide bin 15.0<q²<19.0 GeV²
- Consider only modification to Re(C₉^{eff})
- Find LHCb CP-averaged angular data alone 3.4 of from SM predictions

A global fit to all the $b \rightarrow s \mu \mu$ data

Global fit to all the (preliminary, Moriond) b→sµµ data gives a solution 4.5σ from SM ... !

Could the SM errors be wrong?

- Try and test for this :
 - If anomalies are due to NP then would expect best-fit values for C₉ to be q² independent
 - If instead effect grows towards resonance, could be a $c\overline{c}$ effect

• If is to be explained by cc, effect needs to "unexpectedly large"

Outline

- A tour of existing LHCb rare decay measurements
 - $B^0 \rightarrow \mu\mu$ branching fraction measurements
 - $B_d^0 \rightarrow K^{*0} \mu \mu$ angular measurements
 - Other $b \rightarrow s \mu \mu$ branching fraction measurements
 - Global fits to $b \rightarrow sll$ data
 - Mention a couple of other anomalous results
- (Very) latest $B_d^0 \rightarrow K^{*0} \mu \mu$ angular results
 - compatibility with SM
 - Updated global fits
- Some remarks about the future

The future

- Will improve the precision of all existing measurements with the Run-II data!
- Can also add new LHCb measurements
 - Add R_{K^*} , R_{ϕ} , R_{Λ} (for b \rightarrow c equivalent R_D , R_{Λ} , ...), and also the (K^{*}, ϕ , Λ) ee angular analyses
 - Can we measure the interference with the J/ψ ?
 - Introduce relevant resonances and try and fit the $m_{\mu\mu}$ distribution requires very good control of resolution
- Elsewhere:
 - Cleaner EW penguin B⁰→K^{*0}vv will be measured at Belle2 – would expect a substantial enhancement from a Z'
 - $K^+ \rightarrow \pi^+ \nu \nu$ will be measured to 10% at NA62

B(K⁺ $\rightarrow \pi^+ \nu \nu$) SM pred. = (9.11±0.72)×10⁻¹¹ B(K⁺ $\rightarrow \pi^+ \nu \nu$) measured. E787/E949 = (17.30±11.0) ×10⁻¹¹

Conclusions

The LHCb Experiment: First Results and Prospects

Mitesh Patel (Imperial College London) The University of Birmingham, 4th May 2011

Outline

- New CP violating phases in B_s mixing? (ϕ_s from B_s $\rightarrow J/\psi \phi$)
- New particles, couplings? (angular observables in $B_d \rightarrow K^* \mu \mu$)
- A whistlestop tour...
- Will try and give you a feel for the prospects in each of these areas
 Results from 2010 data ~36 pb⁻¹
 - As of yesterday, ~80 pb⁻¹ on tape, expectation is ~200 pb⁻¹ for summer conferences, ~1 fb⁻¹ by the end of the year

- The LHCb data has shown up some intriguing anomalies that warrant further experimental and theoretical exploration
- We are eagerly awaiting the Run-II data