Di-Higgs at the LHC: A Window on Our Universe and New Matter

Mike Nelson, Stockholm University & The Oskar Klein Centre for Cosmoparticle Physics ichael.edward.nelson@cern.ch

Stockholm University

What is the nature of dark matter ?

What is the nature of dark matter ?

What is the nature of dark energy ?

What is the nature of dark matter ?

What is the nature of dark energy ?

What do we even *mean* by dark energy ?

What is the nature of dark matter ?

What is the nature of dark energy ?

What do we even *mean* by dark energy ?

Where is all of the anti-matter ?

What is the nature of dark matter ?

What is the nature of dark energy ?

What do we even *mean* by dark energy ?

Where is all of the anti-matter ?

Is inflation realised ?

What is the nature of dark matter ?

What is the nature of dark energy ?

What do we even *mean* by dark energy ?

Where is all of the anti-matter ?

Is inflation realised ?

Do we live in a stable or metastable universe ?

What is the nature of dark matter ?

What is the nature of dark energy ?

What do we even *mean* by dark energy ?

Where is all of the anti-matter ?

Is inflation realised ?

Do we live in a stable or metastable universe ?

What is the nature of SM particle masses ?

What is the nature of dark matter ?

What is the nature of dark er

we even mean by dark e connected ? uestions connected ? these guestions all of the anti-matter ? What do we even mean by dark er

mation realised?

Do we live in a stable or metastable universe?

What is the nature of SM particle masses?

Particle Physics I Cosmology

 We are entering an era of precision cosmology and precision particle physics experiments.

Particle Physics I Cosmology

- We are entering an era of precision cosmology and precision particle physics experiments.
- We need to:
 - Take advantage of that (I, for one, think we're doing at great job here).
 - Establish and develop connections. Where do we start ?

The Standard Model of Particle Physics

- Six flavours of quark.
- Six (leptons + neutrinos).

Stockholm University

- Four gauge bosons.
- The Higgs Boson ... a fundamental (?) scalar (?)

Michael E. Nelson

Birmingham Seminar

The Higgs: Why do we care ?

1) It has a mass of ~125 GeV

Higgs boson discovered during Run 1 of the LHC.

2) It connects the SM to BSM

 Higgs mass explained by popular beyond Standard Model (BSM) theories like Supersymmetry ... SPECIAL !

Stockholm University

3) It's a scalar

Michael E. Nelson

4) It connects to cosmology

- Stockholm University
- Can construct models connecting the Higgs potential to inflation.
- If Higgs-like scalar = inflaton => could drive the early expansion of the universe.

• We need to understand the global shape of the Higgs potential.

4) It connects to cosmology

The mass of the Higgs is intimately related to the stability of our universe.

- We need a detailed understanding the **electroweak symmetry breaking in the early universe**.
- Again, this comes from understanding the **global shape of the Higgs potential**.

Let's talk about the Higgs potential ...

• Q: How can one probe the **global** shape of the **Higgs potential** ?

$$V(\phi) = -\frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$$

Q: How can one probe the global shape of the Higgs potential ?

$$V(\phi) = -\frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$$

Perturb minimum, *v*, by amount $h V(\phi) \rightarrow V(v+h)$

$$V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + \dots$$
$$= V_0 + \left| \frac{1}{2} m_h^2 h^2 \right| + \left| \frac{m_h^2}{2v^2} v h^3 \right| + \left| \frac{1}{4} \frac{m_h^2}{2v^2} h^4 \right| + \dots$$

Q: How can one probe the global shape of the Higgs potential ?

$$V(\phi) = -\frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$$

Perturb minimum, *v*, by amount $h V(\phi) \rightarrow V(v+h)$

$$V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + \dots$$
$$= V_0 + \left| \frac{1}{2} m_h^2 h^2 \right| + \left| \frac{m_h^2}{2v^2} v h^3 \right| + \left| \frac{1}{4} \frac{m_h^2}{2v^2} h^4 \right| + \dots$$

V (ø)

Test the SM predictions:

$$v = rac{\mu}{\sqrt{\lambda}} = 246 \, {
m GeV}$$

 $\lambda = rac{m_h^2}{2v^2} pprox 0.13$

Cosmological implications !

• Q: How can one probe the **global** shape of the **Higgs potential** ?

$$V(\phi) = -\frac{1}{2}\mu^{2}\phi^{2} + \frac{1}{4}\lambda\phi^{4}$$
Perturb minimum, v, by amount h $V(\phi) \rightarrow V(v+h)$

$$V = V_{0} + \lambda v^{2}h^{2} + \lambda vh^{3} + \frac{1}{2}\lambda h^{4}$$
couplings. We need
$$V = V_{0} + \lambda v^{2}h^{2} + \lambda vh^{3} + \frac{1}{2}\lambda h^{4}$$
Test the SM predictions:
$$V = \frac{\mu}{\sqrt{\lambda}} = 246 \text{ GeV}$$

$$\lambda = \frac{m_{h}^{2}}{2v^{2}} \approx 0.13$$
Cosmological implications !

- Can measure HH production at the LHC, hence constrain the selfcoupling.
- Start with the highest cross-section production process, gluon-gluon fusion (ggF).

(using scale factors: $\kappa_t = g_{t\bar{t}H}/g_{t\bar{t}H}^{SM}$ and $\kappa_\lambda = \lambda_{HHH}/\lambda_{HHH}^{SM}$)

- Can measure HH production at the LHC, hence constrain the selfcoupling.
- Start with the highest cross-section production process, gluon-gluon fusion (ggF).

(using scale factors: $\kappa_t = g_{t\bar{t}H}/g_{t\bar{t}H}^{SM}$ and $\kappa_\lambda = \lambda_{HHH}/\lambda_{HHH}^{SM}$)

Destructive interference => small cross-section for HH production !

Standard Model Total Production Cross Section Measurements

*From J. Alison

Michael E. Nelson

Birmingham Seminar

Stockholm University

*From J. Alison

Michael E. Nelson

Stockholm University

How might New Physics Manifest in HH Production ?

Searching for New Matter: Resonant

• One can use *HH* to search for new matter which modifies the Higgs selfcoupling and enhances the *HH* cross-section => $\sigma_{HH} / \sigma_{HH}^{SM} > 1$.

 Different models and different X-masses allow for different sizes of enhancement to the cross-section.

Searching for New Matter: Non-Resonant

- Generic non-resonant enhancement is possibly in many BSM models, such as composite Higgs and Little Higgs scenarios.
- · Can get significant enhancements to the self-coupling.

- Look for enhanced κ_{λ} or activation of new vertices.
- Also motivates an **EFT approach** to Higgs physics.

Which channels ?

- We need to consider the **most sensitive channels** when searching for $H(\rightarrow ab)H(\rightarrow cd)$ production. Driven by two important factors:
 - Branching fraction
 - Complexity of final states

Michael E. Nelson

Birmingham Seminar

Which channels ?

- We need to consider the **most sensitive channels** when searching for $H(\rightarrow ab)H(\rightarrow cd)$ production. Driven by two important factors:
 - Branching fraction
 - Complexity of final states

Michael E. Nelson

Birmingham Seminar

Looking for HH at ATLAS

The ATLAS Experiment @ CERN

A Slice of ATLAS

Michael E. Nelson

Birmingham Seminar
B-jet Identification

- Large branching fraction of $H \rightarrow bb$ makes *b*-tagging essential in di-Higgs searches.
- Exploit the relatively long lifetime of Bhadrons => b-decay displaced from the interaction point.
- Displacement identified using tracking and secondary vertices.
- Build multivariate discriminants from this low-level information to "tag" *b*-jets.

Trigger Challenges

Interesting physics is incredibly rare and we cannot save all events from LHC collisions to disk. Two-part trigger system:

Trigger Challenges

Interesting physics is incredibly rare and we cannot save all events from LHC collisions to disk. Two-part trigger system:

Stockholm University

Trigger Challenges

Interesting physics is incredibly rare and we cannot save all events from LHC collisions to disk. Two-part trigger system:

- We rely on tracking at the HLT for *b*-tagging, which is very CPU intensive. This will get worse with more luminosity. We need to be smarter with tracking in future.
- The dream: tracking and tagging at L1.

Stockholm

$HH \rightarrow bb\gamma\gamma @ 36 \text{ fb}^{-1}$

• Small branching fraction, but very clean background and clean trigger on the γ .

- Require 2 *b*-tagged jets and two γ :
 - Non-resonant: m_{bb} and $m_{\gamma\gamma}$ reconstructed around the Higgs mass.
 - **Resonant**: reconstruct the full $m_{bb_{\gamma\gamma}}$ system and scan for resonances.

bb_{*YY*} Regions

Stockholm

*bb*γγ channel

- Stockholm University
- Establish 0-tag regions (with loose and tight jet p_T requirements) where the γ+jet background is estimated from data and data/MC corrections to m_{γγ} are extracted and applied to the 1- and 2-tag signal regions.

*bb*γγ channel

Example search regions in both the resonant and non-resonant channels.

- Results are statistically limited at 36 fb⁻¹. Full run 2 analysis in progress.
- Use non-resonant search to set an upper limit on HH production from ggF, and the resonant to set an upper limit on the cross-section for e.g heavy scalar production.

Stockholm

Constraining κ_{λ}

- Set limits on both the **Higgs self-coupling and** the ggF production cross. section for non-resonant HH.
- $bb\gamma\gamma$ sets stringent constraints on κ_{λ} .
- Upper limits on the mass of $X \rightarrow HH(bb\gamma\gamma)$ set using the resonant channel.

 $\sigma_{gg \to HH} \ [\text{pb}]$

Stockholm

Constraining New Matter

- Set limits on both the Higgs self-coupling and the ggF production cross-section for non-resonant HH.
- $bb\gamma\gamma$ sets stringent constraints on κ_{λ} .
- Upper limits on the mass of $X \rightarrow HH(bb\gamma\gamma)$ set using the resonant channel.

 $\sigma_{gg \to HH} [\text{pb}]$

As a multiple of $\sigma_{\rm SM}$

20

Michael E. Nelson

22

 $\mathbf{28}$

Birmingham Seminar

40

 $HH \rightarrow bbbb and$ $HH \rightarrow bb\tau\tau @ 36 fb^{-1}$

bbbb channel

 bbbb uses a combination of small and large-radius jets to target highly-boosted resonant production.

Resolved Analysis:

- 4 btagged anti-kt 0.4 jets
- "h-candidates" pairs

$X \rightarrow hh \ low \ mass \leq 1 \ TeV$ non-resonant search

Boosted Analysis:

- 2 anti-kt R=1.0 jets
- 4 anti-kt R=0.2 trk-jets
- btagging on trk-jets

$X \rightarrow hh high mass \ge 1 TeV$

*From J. Alison

bbbb channel

 bbbb uses a combination of small and large-radius jets to target highly-boosted resonant production.

 $X \rightarrow hh low mass \leq 1 TeV$ non-resonant search

 $X \rightarrow hh high mass \ge 1 TeV$

*From J. Alison

$bb\tau\tau$ channel

 Single lepton triggering on events, with exactly two *b*-tagged jets and a "missing mass" > 60 GeV.
 From arXiv:1808.00336

$bb\tau\tau$ channel

SHALL SHOOL
Stockholm University

bb τlep τhad	b	bb τhadτha	d	b	b
		Observed	-1σ	Expected	$+1\sigma$
<i>т т</i>	$\sigma(HH \to bb\tau\tau)$ [fb]	57	49.9	69	96
⁷ lep ⁷ had	$\sigma/\sigma_{ m SM}$	23.5	20.5	28.4	39.5
	$\sigma(HH \to bb\tau\tau)$ [fb]	40.0	30.6	42.4	59
7 had7 had	$\sigma/\sigma_{ m SM}$	16.4	12.5	17.4	24.2
Combination	$\sigma(HH \to bb\tau\tau)$ [fb]	30.9	26.0	36.1	50
Compiliation	$\sigma/\sigma_{ m SM}$	12.7	10.7	14.8	20.6
			VH	7 had	

 Single lepton triggering on events, with exactly two b-tagged jets and a "missing mass" > 60 GeV.
 From arXiv:1808.00336

Michael E. Nelson

HH Combinations

- $bb\tau\tau$, $bb\gamma\gamma$, bbbb provide the most sensitive limits on the cross-section of non-resonant *HH* production.
- **Combine** *bb* $\tau\tau$, *bb* $\gamma\gamma$, *bbbb* in a 2015+2016 limit of —**5.0 <** κ_{λ} **< 12.0**.

HH Combinations

Michael E. Nelson

Birmingham Seminar

HH Combinations

Michael E. Nelson

Birmingham Seminar

Stockholm

Future Prospects

An optimistic illustration ? ...

Michael E. Nelson

Birmingham Seminar

Stockholm

An optimistic illustration ? ...

Michael E. Nelson

Stockholm University

An optimistic illustration ? ...

Michael E. Nelson

Stockholm University

A closing example

 Tracking information at the trigger level will be crucial to discovering HH at the LHC.

Michael E. Nelson

Stockholm

A closing example

Tracking information at the trigger level will be crucial to discovering HH at the LHC.

Stockholm

Breakthroughs in fundamental physics rely on establishing connections => particle physics and cosmology of EWSB.

•

- Breakthroughs in fundamental physics rely on establishing connections => particle physics and cosmology of EWSB.
- HH production allows us to probe the global shape of the Higgs potential for the first time. Powerful implications for EWSB and inflation.

- Breakthroughs in fundamental physics rely on establishing connections => particle physics and cosmology of EWSB.
- HH production allows us to probe the global shape of the Higgs potential for the first time. Powerful implications for EWSB and inflation.
- At ATLAS we are pushing the boundaries of innovation and making large gains in HH sensitivity, even without the full run 2 dataset.

- Breakthroughs in fundamental physics rely on establishing connections => particle physics and cosmology of EWSB.
- HH production allows us to probe the global shape of the Higgs potential for the first time. Powerful implications for EWSB and inflation.
- At ATLAS we are pushing the boundaries of innovation and making large gains in HH sensitivity, even without the full run 2 dataset.
- Prospects for discovery at (or even before ?) the HL-LHC are promising, but we need bright ideas and innovation.
- I think we live in very exciting times for *HH* prospects. **Come join the fun !**

Thank you !

Backup

Varying κ_λ

 $|A(\kappa_t,\kappa_\lambda)|^2 = a(\kappa_t,\kappa_\lambda)|A(1,0)|^2 + b(\kappa_t,\kappa_\lambda)|A(1,1)|^2 + c(\kappa_t,\kappa_\lambda)|A(1,2)|^2$

Any $(\kappa_t, \kappa_\lambda)$ combination at LO can be obtained from a linear combination of some 3 $(\kappa_t \neq 0, \kappa_\lambda)$ samples! Stockholm

m_{HH} for Different κ_{λ}

- Get different interference effects across m_{HH} , particularly for $\kappa_{\lambda} = 2$.
- m_{HH} and p_T^{HH} can be dramatically modified.

Stockholm

NLO EW enhancements on κ_{λ}

Birmingham Seminar

Stockholm University

Non-resonant and Resonant Regions

	Non-resonant			
	1-t	2-tag		
	Loose	Tight	Loose	Tight
$m_{\gamma\gamma}$ range [GeV]	105 - 160	105 - 160	105 - 160	105 - 160
Jet b -tagging WPs used	60% + BDT	60% + BDT	70%	70%
Leading jet $p_{\rm T}$ [GeV]	>40	>100	>40	>100
Subleading jet $p_{\rm T}$ [GeV]	$>\!25$	> 105	$>\!25$	>30
m_{jj} range [GeV]	80 - 140	90 - 140	80–140	90–140

	Resonant				
	1-t	ag	2-tag		
	Loose	Tight	Loose	Tight	
$m_{\gamma\gamma}$ range [GeV]	120.39 - 129.79	120.79 - 129.39	120.39 - 129.79	120.79 - 129.39	
Jet <i>b</i> -tagging WPs used	60% + BDT	60% + BDT	70%	70%	
Leading jet $p_{\rm T}$ [GeV]	>40	>100	>40	>100	
Subleading jet $p_{\rm T}$ [GeV]	$>\!25$	>30	$>\!25$	>30	
m_{jj} range [GeV]	80 - 140	90 - 140	80 - 140	90 - 140	

Non-resonant and Resonant Regions

	Non-resonant				
	1-t	ag	$2\text{-} ext{tag}$		
	Loose	Tight	Loose	Tight	
$m_{\gamma\gamma}$ range [GeV]	105 - 160	105 - 160	105 - 160	105 - 160	
Jet b -tagging WPs used	60% + BDT	60% + BDT	70%	70%	
Leading jet $p_{\rm T}$ [GeV]	>40	>100	>40	>100	
Subleading jet $p_{\rm T}~[{\rm GeV}]$	$>\!25$	> 105	> 25	> 30	
m_{jj} range [GeV]	80 - 140	90 - 140	80 - 140	90 - 140	

	Resonant			
	1-t	ag	2-t	ag
	Loose	Tight	Loose	Tight
$m_{\gamma\gamma}$ range [GeV]	120.39 - 129.79	120.79 - 129.39	120.39 - 129.79	120.79 - 129.39
Jet b-tagging WPs used	60% + BDT	60% + BDT	70%	70%
Leading jet $p_{\rm T}$ [GeV]	>40	>100	>40	>100
Subleading jet $p_{\rm T}$ [GeV]	$>\!25$	>30	$>\!25$	>30
m_{jj} range [GeV]	80 - 140	90 - 140	80 - 140	90 - 140
bbyy Systematic Uncertainties

Source of systematic uncertainty		% effect relative to nominal in the 2-tag (1-tag) category							
		Non-resonant analysis			Resonant analysis: BSM HH				
		SM HH signal		Single- H bkg		Loose selection		Tight selection	
Luminosity		± 2.1	(± 2.1)	± 2.1	$(\pm \ 2.1)$	± 2.1	(± 2.1)	± 2.1	(± 2.1)
Trigger		± 0.4	(± 0.4)	± 0.4	$(\pm \ 0.4)$	± 0.4	(± 0.4)	± 0.4	(± 0.4)
Pile-up modelling		± 3.2	(± 1.3)	± 2.0	(± 0.8)	± 4.0	(± 4.2)	± 4.0	(± 3.8)
Photon	identification	± 2.5	(± 2.4)	± 1.7	(± 1.8)	± 2.6	(± 2.6)	± 2.5	(± 2.5)
	isolation	± 0.8	(± 0.8)	± 0.8	(± 0.8)	± 0.8	(± 0.8)	± 0.9	(± 0.9)
	energy resolution		-		-	± 1.0	(± 1.3)	± 1.8	(± 1.2)
	energy scale		-		-	± 0.9	(± 3.0)	± 0.9	(± 2.4)
Jet	energy resolution	± 1.5	(± 2.2)	± 2.9	(± 6.4)	± 7.5	(± 8.5)	± 6.4	(± 6.4)
	energy scale	± 2.9	(± 2.7)	± 7.8	(± 5.6)	± 3.0	(± 3.3)	± 2.3	(± 3.4)
Flavour tagging	b-jets	± 2.4	(± 2.5)	± 2.3	(± 1.4)	± 3.4	(± 2.6)	± 2.5	(± 2.6)
	<i>c</i> -jets	± 0.1	(± 1.0)	± 1.8	(± 11.6)			-	
	light-jets	< 0.1	(± 5.0)	± 1.6	(± 2.2)	-			-
Theory	$PDF + \alpha_S$	± 2.3	(± 2.3)	± 3.1	$(\pm \ 3.3)$	n/a		n/a	
	Scale	+4.3	(+4.3)	+4.9	(+ 5.3)	n/a n/a		n/a	
	Drait	-6.0	(-6.0)	+7.0	(+ 8.0)]	n/a	1	n/a
	m EFT	± 5.0	(± 5.0)	n/a		n/a		1	n/a

bb_{*YY*} Yields

	1-t	ag	2-tag		
	Loose selection	Tight selection	Loose selection	Tight selection	
Continuum background SM single-Higgs-boson background	117.5 ± 4.7 5.51 ±0.10	15.7 ± 1.6 2.20 ± 0.05	21.0 ± 2.0 1.63 ± 0.04	3.74 ± 0.78 0.56 ± 0.02	
Total background	123.0 ±4.7	17.9 ± 1.6	22.6 ± 2.0	4.30 ± 0.79	
SM Higgs boson pair signal	0.219 ± 0.006	0.120 ± 0.004	0.305 ± 0.007	0.175 ± 0.005	
Data	125	19	21	3	

bbbb channel

Michael E. Nelson

Boosted

$HH \rightarrow bb\tau\tau$

Michael E. Nelson

Birmingham Seminar

AINERS/A

S

Stockholm

$bb\tau\tau$ channel

Michael E. Nelson

77

Acceptance x Efficiency

- Different κ_{λ} obtained using a reweighing of the ggF cross-section.
- Cross-section varies based on the interference between the dominant triangle and box diagrams.

Stockholm

University

HH Combinations

Michael E. Nelson

HH Combinations

Michael E. Nelson

Birmingham Seminar

Inputs to the H+HH Global Fit

Analysis	Integrated luminosity (fb ⁻¹)
$H \rightarrow \gamma \gamma$ (excluding $t\bar{t}H, H \rightarrow \gamma \gamma$)	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell \text{)}$	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
$H o au^+ au^-$	36.1
$VH, H \rightarrow b\bar{b}$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$	36.1
$t\bar{t}H, H \rightarrow$ multilepton	36.1
$HH \rightarrow b\bar{b}b\bar{b}$	27.5
$HH \rightarrow b \bar{b} \tau^+ \tau^-$	36.1
$HH \rightarrow b\bar{b}\gamma\gamma$	36.1

HL-LHC Prospects

- Extrapolated limits with the HL-LHC could lead to the 5σ discovery of *HH* production, and a definitive test of the self-coupling in the SM. Further prospects in ATL-PHYS-PUB-2018-053.
- Success of discovery dependent on innovation and systematics.

HL-LHC Prospects

- Stockholm University
- Extrapolated limits with the HL-LHC could lead to the 5σ discovery of *HH* production, and a definitive test of the self-coupling in the SM. Further prospects in ATL-PHYS-PUB-2018-053.
- Success of discovery dependent on innovation and

HL-LHC Prospects: *bb*yy

Michael E. Nelson

Birmingham Seminar