Di-Higgs at the **WHC: A Window on Our Universe and New Matter**

Mike Nelson, Stockholm University & The Oskar Klein Centre for Cosmoparticle Physics michael.edward.nelson@cern.ch

Stockholm University

Michael E. Nelson 3 Birmingham Seminar

What is the nature of dark matter ?

Michael E. Nelson 4 Birmingham Seminar

What is the nature of dark matter ?

What is the nature of dark energy ?

Michael E. Nelson 5 Birmingham Seminar

What is the nature of dark matter ?

What is the nature of dark energy ?

What do we even *mean* **by dark energy ?**

Michael E. Nelson 6 Birmingham Seminar

What is the nature of dark matter ?

What is the nature of dark energy ?

What do we even *mean* **by dark energy ?**

Where is all of the anti-matter ?

Michael E. Nelson 7 Birmingham Seminar

What is the nature of dark matter ?

What is the nature of dark energy ?

What do we even *mean* **by dark energy ?**

Where is all of the anti-matter ?

Is inflation realised ?

What is the nature of dark matter ?

What is the nature of dark energy ?

What do we even *mean* **by dark energy ?**

Where is all of the anti-matter ?

Is inflation realised ?

Do we live in a stable or metastable universe ?

Michael E. Nelson 8 Birmingham Seminar

What is the nature of dark matter ?

What is the nature of dark energy ?

What do we even *mean* **by dark energy ?**

Where is all of the anti-matter ?

Is inflation realised ?

Do we live in a stable or metastable universe ?

Michael Is the nature of SM particle masses ?

What is the nature of dark matter ?

What is the nature of dark engage

What do we even *mean* by dark erapy ?? **Be Serie is all of the anti-matter ? How are these duestions connected ?**
How are these duestions connected ?
How are these de is all of the anti-me

Inflation realised ?

Do we live in a stable or metastable universe ?

Michael Is the nature of SM particle masses ?

Particle Physics ☞ **Cosmology**

• We are entering an era of **precision cosmology** and **precision particle physics experiments**.

Particle Physics ☞ **Cosmology**

- We are entering an era of **precision cosmology** and **precision particle physics experiments**.
- We need to:
	- Take advantage of that (I, for one, think we're doing at great job here).
	- **Establish** and **develop** connections. Where do we start ?

The Standard Model of Particle Physics

- Six flavours of **quark**.
- Six (**leptons + neutrinos**).

Stockholm
University

- Four **gauge bosons**.
- **The Higgs Boson** … a fundamental (?) scalar (?)

The Higgs: Why do we care ?

1) It has a mass of ~125 GeV

• Higgs boson **discovered** during Run 1 of the LHC.

2) It connects the SM to BSM

• Higgs mass explained by popular beyond Standard Model (BSM) theories like Supersymmetry … **SPECIAL !**

Stockholm
University

3) It's a scalar

• The only experimentally verified **scalar** … **SPECIAL !**

4) It connects to cosmology

- Can construct models connecting the **Higgs potential to inflation**.
- If **Higgs-like scalar = inflaton** => could drive the early expansion of the universe.

• We need to understand the **global shape of the Higgs potential**.

4) It connects to cosmology

• The **mass of the Higgs** is intimately related to the **stability of our universe**.

- We need a detailed understanding the **electroweak symmetry breaking in the early universe**.
- Again, this comes from understanding the **global shape of the Higgs potential**.

Let's talk about the **Higgs potential …**

• Q: How can one probe the **global** shape of the **Higgs potential** ?

$$
V(\phi) = -\frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4
$$

• Q: How can one probe the **global** shape of the **Higgs potential** ?

$$
V(\phi)=-\frac{1}{2}\mu^2\phi^2+\frac{1}{4}\lambda\phi^4
$$

Perturb minimum, *v*, by amount $h \ V(\phi) \to V(v+h)$

$$
V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + \dots
$$

= $V_0 + \frac{1}{2} m_h^2 h^2 + \frac{m_h^2}{2v^2} v h^3 + \frac{1}{4} \frac{m_h^2}{2v^2} h^4 + \dots$

 $Im(\phi)$

• Q: How can one probe the **global** shape of the **Higgs potential** ?

$$
V(\phi)=-\frac{1}{2}\mu^2\phi^2+\frac{1}{4}\lambda\phi^4
$$

Perturb minimum, *v*, by amount $h \ V(\phi) \to V(v+h)$

$$
V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + ...
$$

= $V_0 + \frac{1}{2} m_h^2 h^2 + \frac{m_h^2}{2v^2} v h^3 + \frac{1}{4} \frac{m_h^2}{2v^2} h^4 + ...$

$$
v=\frac{\mu}{\sqrt{\lambda}}=246\,\text{GeV}
$$

$$
\lambda=\frac{m_h^2}{2v^2}\approx 0.13
$$

 $V(\phi)$

Cosmological implications !

Michael E. Nelson 23 Birmingham Seminar

• Q: How can one probe the **global** shape of the **Higgs potential** ?

Higgs mass *HH* production *HHH* production Perturb minimum, *v*, by amount *h* Test the SM predictions: **Cosmological implications ! A: Investigating multi-Higgs couplings. We need to measure di-Higgs production.**

- • Can measure *HH* production at the LHC, hence **constrain the selfcoupling**.
- Start with the highest cross-section production process, **gluon-gluon fusion (***gg***F)**.

(using scale factors: $\kappa_t = g_{t\bar{t}H}/g^{SM}_{t\bar{t}H}$ and $\kappa_{\lambda} = \lambda_{HHH}/\lambda_{HHH}^{SM}$)

- • Can measure *HH* production at the LHC, hence **constrain the selfcoupling**.
- Start with the highest cross-section production process, **gluon-gluon fusion (***gg***F)**.

(using scale factors: $\kappa_t = g_{t\bar{t}H}/g^{SM}_{t\bar{t}H}$ and $\kappa_{\lambda} = \lambda_{HHH}/\lambda_{HHH}^{SM}$)

Destructive interference => **small cross-section for** *HH* **production !**

*From J. Alison

Stockholm

University

*From J. Alison

Stockholm
University

How might New Physics Manifest in *HH* **Production ?**

Searching for New Matter: Resonant

 • One can use *HH* to search for new matter which modifies the Higgs selfcoupling and **enhances the** *HH* **cross-section =>** *σHH* **/***σHH***SM > 1**.

• Different models and different *X*-masses allow for **different sizes of enhancement** to the cross-section.

Searching for New Matter: Non-Resonant

- Generic **non-resonant enhancement** is possibly in many BSM models, such as composite Higgs and Little Higgs scenarios.
- Can get significant enhancements to the self-coupling.

- Look for **enhanced** *κ***λ** or **activation of new vertices**.
- Also motivates an **EFT approach** to Higgs physics.

Which channels ?

- We need to consider the **most sensitive channels** when searching for *H*(→*ab*)*H*(→*cd*) production. Driven by two important factors:
	- **• Branching fraction**
	- **• Complexity of final states**

Michael E. Nelson 32 Birmingham Seminar

Which channels ?

- We need to consider the **most sensitive channels** when searching for *H*(→*ab*)*H*(→*cd*) production. Driven by two important factors:
	- **• Branching fraction**
	- **• Complexity of final states**

Looking for *HH* **at ATLAS**

The ATLAS Experiment @ CERN

A Slice of ATLAS

Michael E. Nelson 36 Birmingham Seminar
*B***-jet Identification**

- **Large branching fraction of** *H* **→** *bb* makes *b*-tagging essential in di-Higgs searches.
- **Exploit the relatively long lifetime of** *B***hadrons** => *b*-decay displaced from the interaction point.
- Displacement identified using **tracking** and **secondary vertices**.
- Build multivariate discriminants from this low-level information to "tag" *b*-jets.

Trigger Challenges

 • Interesting physics is incredibly rare and we cannot save all events from LHC collisions to disk. **Two-part trigger system**:

Trigger Challenges

 • Interesting physics is incredibly rare and we cannot save all events from LHC collisions to disk. **Two-part trigger system**:

Stockholm
University

Trigger Challenges

 • Interesting physics is incredibly rare and we cannot save all events from LHC collisions to disk. **Two-part trigger system**:

- We rely on tracking at the HLT for *b*-tagging, which is **very CPU intensive**. **This will get worse with more luminosity**. We need to be smarter with tracking in future.
-

Stockholm

$HH \rightarrow bby \gamma$ @ 36 fb-1

• Small branching fraction, but **very clean background and clean trigger on the** *.*

- Require 2 *b*-tagged jets and two γ :
	- **Non-resonant**: m_{bb} and $m_{\gamma\gamma}$ reconstructed around the Higgs mass.
	- **Resonant**: reconstruct the full $m_{bb\gamma\gamma}$ system and scan for resonances.

bbyy **Regions**

Stockholm

bbyy channel

Establish **0-tag regions** (with loose and tight jet p_T requirements) where the γ +jet background is estimated from data and data/MC corrections to $m_{\gamma\gamma}$ are extracted and applied to the **1- and 2-tag signal regions**.

Stockholm

bbyy channel

Example search regions in both the resonant and non-resonant channels.

- **Results are statistically limited at 36 fb-1**. Full run 2 analysis in progress.
- Use **non-resonant search** to set an upper limit on *HH* production from *gg*F, and the **resonant** to set an upper limit on the cross-section for e.g heavy scalar production.

Stockholm

Constraining K λ

- **• Set limits on both the Higgs self-coupling and the** *gg***F production crosssection for non-resonant** *HH***.**
- *bbyy* sets stringent constraints on *κλ*.
- Upper limits on the mass of $X \rightarrow HH(bby\gamma)$ set using the resonant channel.

 $\sigma_{gg\to HH}$ [pb]

Stockholm

Constraining New Matter

- Set limits on both the Higgs self-coupling and the *gg*F production cross-section for non-resonant *HH*.
- *bbyy* sets stringent constraints on *κλ*.
- **Upper limits on the mass** $of X \rightarrow HH(bb\gamma\gamma)$ set using **the resonant channel.**

 $\sigma_{gg\to HH}$ [pb]

HH **→***bbbb* **and** $HH \rightarrow bb \tau \tau$ @ 36 fb-1

bbbb **channel**

• *bbbb* uses a **combination of small and large-radius jets** to target highly-boosted resonant production.

Resolved Analysis:

- 4 btagged anti-kt 0.4 jets
- "h-candidates" pairs

$X \rightarrow hh$ low mass ≤ 1 TeV non-resonant search

*From J. Alison

Boosted Analysis:

- -2 anti-kt R=1.0 jets
- $-$ 4 anti-kt R=0.2 trk-jets
- btagging on trk-jets

$X \rightarrow hh$ high mass ≥ 1 TeV

bbbb **channel**

• *bbbb* uses a **combination of small and large-radius jets** to target highly-boosted resonant production.

 $X\rightarrow hh$ low mass ≤ 1 TeV non-resonant search

 $X \rightarrow hh$ high mass ≥ 1 TeV

*From J. Alison

bb $\tau\tau$ channel

• Single lepton triggering on events, with exactly two *b*-tagged jets and a "missing mass" > 60 GeV.
From arXiv:1808.00336

bb $\tau\tau$ channel

• Single lepton triggering on events, with exactly two *b*-tagged jets and a "missing mass" > 60 GeV.
From arXiv:1808.00336

Stockholm
University

HH **Combinations**

- bb τ , bb γ , bbbb provide the most sensitive limits on the cross-section of non-resonant *HH* production.
- **Combine** *bb* τ **,** *bb* $\gamma\gamma$ **,** *bbbb* **in a 2015+2016 limit of -5.0 <** κ **_A < 12.0.**

HH **Combinations**

Michael E. Nelson 54 Birmingham Seminar

HH **Combinations**

Stockholm

Future Prospects

An optimistic illustration ? …

Stockholm
University

An optimistic illustration ? …

Stockholm University

An optimistic illustration ? …

Stockholm
University

A closing example

• **Tracking information at the trigger level** will be crucial to discovering *HH* at the LHC.

Stockholm

A closing example

Tracking information at the trigger level will be crucial to discovering HH at the LHC.

Stockholm

• **Breakthroughs in fundamental physics rely on establishing connections** => particle physics and cosmology of EWSB.

- **Breakthroughs in fundamental physics rely on establishing connections** => particle physics and cosmology of EWSB.
- *HH* production allows us to probe the **global shape of the Higgs potential** for the first time. Powerful implications for EWSB and inflation.

- **Breakthroughs in fundamental physics rely on establishing connections** => particle physics and cosmology of EWSB.
- *HH* production allows us to probe the **global shape of the Higgs potential** for the first time. Powerful implications for EWSB and inflation.
- At ATLAS we are pushing the boundaries of innovation and making **large gains in** *HH* **sensitivity**, even without the full run 2 dataset.

- **Breakthroughs in fundamental physics rely on establishing connections** => particle physics and cosmology of EWSB.
- *HH* production allows us to probe the **global shape of the Higgs potential** for the first time. Powerful implications for EWSB and inflation.
- At ATLAS we are pushing the boundaries of innovation and making **large gains in** *HH* **sensitivity**, even without the full run 2 dataset.
- Prospects for discovery at (or even before ?) the HL-LHC are promising, but we **need bright ideas and innovation**.
- I think we live in very exciting times for *HH* prospects. **Come join the fun !**

Thank you !

Backup

Varying κλ

 $|A(\kappa_t,\kappa_\lambda)|^2 = a(\kappa_t,\kappa_\lambda)|A(1,0)|^2 + b(\kappa_t,\kappa_\lambda)|A(1,1)|^2 + c(\kappa_t,\kappa_\lambda)|A(1,2)|^2$

Any $(\kappa_t, \kappa_\lambda)$ combination at LO can be obtained from a **linear combination** of some 3 ($\kappa_t \neq 0, \kappa_\lambda$) samples!

Stockholm

mHH **for Different κλ**

- Get different interference effects across m_{HH} , particularly for κ_A = 2.
- m_{HH} and p_T ^{HH} can be dramatically modified.

Stockholm

NLO EW enhancements on κλ

JERSITE

Stockholm
University

Non-resonant and Resonant Regions

Non-resonant and Resonant Regions

bbyy **Systematic Uncertainties**

bbyy Yields

bbbb **channel**

Resolved Boosted

$HH \rightarrow bbt\tau$

Michael E. Nelson 76 Birmingham Seminar

CONTROLLER STREET

Stockholm

bb $\tau\tau$ channel

Acceptance x Efficiency

- Different *κλ* obtained using a reweighing of the ggF cross-section.
- Cross-section varies based on the **interference between the dominant triangle and box diagrams**.

Stockholm

University

HH **Combinations**

HH **Combinations**

Michael E. Nelson 80 Birmingham Seminar

Inputs to the *H***+***HH* **Global Fit**

HL-LHC Prospects

- Extrapolated limits with the HL-LHC could lead to the **5***σ* **discovery of** *HH* **production**, and a definitive test of the self-coupling in the SM. Further prospects in **ATL-PHYS-PUB-2018-053**.
- Success of discovery dependent on **innovation** and **systematics**.

HL-LHC Prospects

- Stockholm University
- Extrapolated limits with the HL-LHC could lead to the **5***σ* **discovery of** *HH* **production**, and a definitive test of the self-coupling in the SM. Further prospects in **ATL-PHYS-PUB-2018-053**.
- Success of discovery dependent on **innovation** and **systematic contracts**.

HL-LHC Prospects: *bb*

