Search for a wrong-flavour contribution to $B_s ightarrow D_s \pi$ at LHCb

Matt Williams

Supervised by Tim Gershon, Michal Kreps, Sajan Easo

University of Warwick

February 5, 2014

The LHCb detector

Background

- It's assumed that in the Standard Model, $B_s o D_s \pi$ is flavour-specific
 - so $B_s o D_s^- \pi^+$ 'all' the time
 - and $B_s
 ightarrow D_s^+ \pi^-$ none of the time
 - conversely for the $\bar{B_s}$
- Many results indirectly rely on this assumption
- This has never been explicitly checked by any experiment
- There are very small higher-order SM contributions as well as possible BSM contributions
 - for example, an exotic quark with charge $-\frac{4}{3}$
- The aim of the analysis was to measure any contribution from the wrong-flavour decay
- Run as a side project to measurement of $B^0_s
 ightarrow D_s K$

Wrong-flavour decay in $B^0_s ightarrow D_s K$

Wrong-flavour decay

- Two initial states $(B^0_s, \, \overline{B}^0_s)$, two final states $(D^-_s \pi^+, \, D^+_s \pi^-)$
- Initial state is unknown due to mixing
 - need flavour tagging
- Need a full description of propagation and decay of B^0_s mesons to fit against data

Decay description

$$\begin{split} \Gamma(B_s^0(t) \to f) = & \frac{1}{2} \mathcal{N}_f |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \\ & \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + \mathcal{D}_f \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right. \\ & \left. + \mathcal{C}_f \cos\left(\Delta m_s t\right) - \frac{\mathcal{S}_f}{\mathcal{S}_f} \sin\left(\Delta m_s t\right) \right], \end{split}$$

$$\begin{split} \Gamma(\overline{B}_{s}^{0}(t) \to f) = & \frac{1}{2} \mathcal{N}_{f} |A_{f}|^{2} (1-a) (1+|\lambda_{f}|^{2}) e^{-\Gamma_{s}t} \\ & \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + D_{f} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \right. \\ & - C_{f} \cos\left(\Delta m_{s}t\right) + S_{f} \sin\left(\Delta m_{s}t\right) \right], \end{split}$$

Time fit

$$\begin{split} \Gamma(\bar{B}_{s}^{0}(t) \to \bar{f}) = & \frac{1}{2} \mathcal{N}_{f} |\bar{A}_{\bar{f}}|^{2} (1 + |\bar{\lambda}_{\bar{f}}|^{2}) e^{-\Gamma t} \\ & \left[\cosh\left(\frac{\Delta\Gamma t}{2}\right) + D_{\bar{f}} \sinh\left(\frac{\Delta\Gamma t}{2}\right) \right. \\ & \left. + C_{\bar{f}} \cos\left(\Delta mt\right) - S_{\bar{f}} \sin\left(\Delta mt\right) \right], \end{split}$$

$$\Gamma(B_s^0(t) \to \overline{f}) = \frac{1}{2} \mathcal{N}_f |\overline{A}_{\overline{f}}|^2 \frac{1}{1-a} (1+|\overline{\lambda}_{\overline{f}}|^2) e^{-\Gamma t} \\ \left[\cosh\left(\frac{\Delta\Gamma t}{2}\right) + D_{\overline{f}} \sinh\left(\frac{\Delta\Gamma t}{2}\right) - C_{\overline{f}} \cos\left(\Delta mt\right) + S_{\overline{f}} \sin\left(\Delta mt\right) \right].$$

- The wrong flavour-contribution is parameterised with D_f , $D_{\bar{f}}$, S_f and $S_{\bar{f}}$.
- Standard Model prediction is that they will be zero flavour-specific
- The are higly correlated, so reparameterise to:

$$\overline{S} = \frac{S_f + S_{\overline{f}}}{2} \quad \Delta S = \frac{S_f - S_{\overline{f}}}{2}$$
$$\overline{D} = \frac{D_f + D_{\overline{f}}}{2} \quad \Delta D = \frac{D_f - D_{\overline{f}}}{2}$$

- Which should also all be zero
- These are our parameters of interest

Event selection

- ullet The event selection was originally tuned for $B^0_s \to D_s K$
 - It doesn't know about the K so is safe to use
- Uses a BDT trained on background-subtracted data
- Optimised to maximise

Analysis plan

Mass fit

- Fully reconstructed • $B^0 \rightarrow D\pi$, $B^0 \rightarrow D_s\pi$, $\Lambda_b \rightarrow \Lambda_c\pi$ • Low-mass B_s^0 • $B_s^0 \rightarrow D_s\rho$, $B_s^0 \rightarrow D_s^*\pi$, $B_s^0 \rightarrow D_s^*\rho$ • Low-mass B^0 • $B^0 \rightarrow D\rho$, $B^0 \rightarrow D_s^*\pi$, $B^0 \rightarrow D^*\pi$
- Combinatorial

- Most backgrounds are modelled on simulated data
- Combinatorial is an exponential fitted to sidebands in data
- Signal is a double Crystal Ball function
- Yields of some backgrounds are fixed based on relative expected yields
- The $B^0 \to D\pi$ yield is fixed based on a fit to a set of real $B^0 \to D\pi$ events

Background templates

Signal template

Mass fit

27,965 \pm 187 $B_s^0 \rightarrow D_s \pi$ events

Analysis plan

Oscillating with wrong-flavour	Flavour specific	Non-oscillating
$B^0 ightarrow D\pi$	$B^0 ightarrow D_s \pi$	$\Lambda_b \to \Lambda_c \pi$
$B^0 \! ightarrow D ho$	$B^0 \! ightarrow D^*_s \pi$	Combinatorial
$B^0\! ightarrow D^*\pi$	$B^0_s ightarrow D_s ho$	
	$B^0_s ightarrow D^*_s \pi$	
	$B^0_s ightarrow D^*_s ho$	

Time fit fixed parameters

Parameter	Value		
Γ _d	$0.656{ m ps}^{-1}$		
$\Delta \Gamma_d$	$0\mathrm{ps}^{-1}$		
Δm_d	$0.507{ m ps}^{-1}$		
Γ_s	$0.658{ m ps}^{-1}$		
$\Delta\Gamma_s$	$-0.116{ m ps}^{-1}$		
Γ_{Λ_b}	$0.719{ m ps}^{-1}$		
Γ_{comb}	$0.800{ m ps}^{-1}$		

• \overline{S} , \overline{D} , ΔS , ΔD are floated, as are the tagging efficiencies and Δm_s

Time fit

• Decay-time acceptance and decay-time resolution are modelled on simulated data

$$\left\{ egin{array}{l} 0 \ \left(1-rac{1}{1+(at)^n-b}
ight) imes (1-eta t) \end{array}
ight.$$

when
$$(at)^n - b < 0$$
 or $t < 0.2$ ps, otherwise,

Parameter	Value		
а	$1.42 \pm 0.204 ~\rm ps^{-1}$		
Ь	0.0230 ± 0.0364		
п	1.81 ± 0.066		
eta	$0.0363 \pm 0.0118 \ \mathrm{ps^{-1}}$		

Sources of systematic uncertainty

Decay-time resolution This is fitted on simulated data and its width is varied by 20%

- Decay time acceptance This is fitted on simulated data and each parameter is varied within its measured uncertainty
- Background yields These are varied within their measured uncertainties from the mass fit
- Background parametrisation The time fit is performed as an sFit which does not model the backgrounds
- Physics parameters Various fixed physics parameters (Γ_s , $\Delta\Gamma_s$ etc.) from PDG or LHCb are varied within their published uncertainties
- Flavour tagging calibration Measured on $B^+ \to J\!/\psi\,K^+$ data and varied within measured uncertainties
- Asymmetries Production, detection and flavour tagging asymmetries are varied consistent with what is observed in data

Sources of systematic uncertainty

	Parameter			
Source	\overline{S}	\overline{D}	ΔS	ΔD
Decay-time resolution	0.022	0.020	0.001	0.000
Flavour tagging calibration	0.004	0.008	0.001	0.000
Background yields	0.007	0.010	0.002	0.003
Background parametrisation	0.005	0.008	0.002	0.001
Physics parameters	0.003	0.117	0.002	0.002
Asymmetries	0.006	0.009	0.001	0.169
Decay time acceptance	0.003	0.528	0.002	0.002
Total systematic uncertainty	0.025	0.541	0.004	0.169

Results

$$\overline{S} = 0.197 \pm 0.150 \pm 0.025$$

$$\overline{D} = -0.888 \pm 0.098 \pm 0.541$$

$$\Delta S = 0.066 \pm 0.083 \pm 0.004$$

$$\Delta D = -0.062 \pm 0.050 \pm 0.169$$

- All the parameters are within 2σ of zero and ΔS and ΔD are less than 1σ
- At this level of uncertainty, no evidence of non-flavour-specific decays of $B^0_s \to D_s \pi$

Results

- ΔD is related to the difference in the effective lifetimes of $D_s^-\pi^+$ and $D_s^+\pi^-$
- ullet The above result effectively states that $|\Delta D| < 0.1$
 - it is possible to put a constraint on the difference in effective lifetimes between these two final states
- The effective lifetime is given by $\tau_{\rm eff} = \tau_{B_s^0} \left(1 + D_f \times \frac{\Delta \Gamma_s}{2\Gamma_s} \right)$, and using the measured value of ΔD we find

$$\left| rac{\Delta au_{ ext{eff}}}{ au_{B^0_s}}
ight| \lesssim 0.02.$$

- This shows that the $D_s^-\pi^+$ and the $D_s^+\pi^-$ have the same lifetime to better than 2%
- In the case that the $B_s^0 \rightarrow D_s \pi$ decay is assumed to be flavour-specific, this provides a test of *CPT* invariance which predicts that particles and anti-particles have equal lifetimes

Thank you