Search for a wrong-flavour contribution to $B_s \to D_s \pi$ at LHCb

Matt Williams

Supervised by Tim Gershon, Michal Kreps, Sajan Easo

University of Warwick

February 5, 2014

The LHCb detector

Matt Williams (University of Warwick) [Wrong-flavour](#page-0-0) $B_s \to D_s \pi$ February 5, 2014 2 / 25

Background

- It's assumed that in the Standard Model, $B_s \to D_s \pi$ is flavour-specific
	- so $B_s \to D_s^- \pi^+$ 'all' the time
	- and $B_s\to D_s^+\pi^-$ none of the time
	- conversely for the $\bar{B_{\mathsf{s}}}$
- Many results indirectly rely on this assumption
- This has never been explicitly checked by any experiment
- There are very small higher-order SM contributions as well as possible BSM contributions
	- for example, an exotic quark with charge $-\frac{4}{3}$
- The aim of the analysis was to measure any contribution from the wrong-flavour decay
- Run as a side project to measurement of $\mathcal{B}^0_\mathsf{S}\to D_\mathsf{S}\mathcal{K}$

Wrong-flavour decay in $\mathcal{B}^0_s \rightarrow D_s \mathcal{K}$

Wrong-flavour decay

- Two initial states $(B_s^0,\ \bar{B}_s^0),$ two final states $(D_s^-\pi^+,\ D_s^+\pi^-)$
- Initial state is unknown due to mixing
	- need flavour tagging
- Need a full description of propagation and decay of B_s^0 mesons to fit against data

Decay description

$$
\Gamma(B_s^0(t) \to f) = \frac{1}{2} \mathcal{N}_f |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t}
$$

$$
\left[\cosh \left(\frac{\Delta \Gamma_s t}{2} \right) + D_f \sinh \left(\frac{\Delta \Gamma_s t}{2} \right) + C_f \cos \left(\Delta m_s t \right) - S_f \sin \left(\Delta m_s t \right) \right],
$$

$$
\Gamma(\overline{B}_s^0(t) \to f) = \frac{1}{2} \mathcal{N}_f |A_f|^2 (1 - a)(1 + |\lambda_f|^2) e^{-\Gamma_s t}
$$

$$
\left[\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) + D_f \sinh\left(\frac{\Delta \Gamma_s t}{2}\right) - C_f \cos(\Delta m_s t) + S_f \sin(\Delta m_s t) \right],
$$

Time fit

$$
\Gamma(\overline{B}_{s}^{0}(t) \rightarrow \overline{f}) = \frac{1}{2} \mathcal{N}_{f} |\overline{A}_{\overline{f}}|^{2} (1 + |\overline{\lambda}_{\overline{f}}|^{2}) e^{-\Gamma t}
$$

$$
\left[\cosh\left(\frac{\Delta\Gamma t}{2}\right) + D_{\overline{f}} \sinh\left(\frac{\Delta\Gamma t}{2}\right) + C_{\overline{f}} \cos(\Delta mt) - S_{\overline{f}} \sin(\Delta mt) \right],
$$

$$
\Gamma(B_s^0(t) \to \overline{f}) = \frac{1}{2} \mathcal{N}_f |\overline{A}_{\overline{f}}|^2 \frac{1}{1-a} (1 + |\overline{\lambda}_{\overline{f}}|^2) e^{-\Gamma t}
$$

$$
\left[\cosh \left(\frac{\Delta \Gamma t}{2} \right) + D_{\overline{f}} \sinh \left(\frac{\Delta \Gamma t}{2} \right) - C_{\overline{f}} \cos \left(\Delta m t \right) + S_{\overline{f}} \sin \left(\Delta m t \right) \right].
$$

- The wrong flavour-contribution is parameterised with $D_{f},\ D_{\overline{f}},\ S_{f}$ and $S_{\bar{f}}$.
- \bullet Standard Model prediction is that they will be zero $-$ flavour-specific
- The are higly correlated, so reparameterise to:

$$
\overline{S} = \frac{S_f + S_{\overline{f}}}{2} \quad \Delta S = \frac{S_f - S_{\overline{f}}}{2}
$$

$$
\overline{D} = \frac{D_f + D_{\overline{f}}}{2} \quad \Delta D = \frac{D_f - D_{\overline{f}}}{2}
$$

- Which should also all be zero
- These are our parameters of interest

Event selection

- The event selection was originally tuned for $B_s^0 \rightarrow D_s K$
	- \bullet It doesn't know about the K so is safe to use
- Uses a BDT trained on background-subtracted data
- Optimised to maximise

Analysis plan

Mass fit

- **•** Fully reconstructed $B^0 \to D\pi$, $B^0 \to D_s\pi$, $\Lambda_b \to \Lambda_c\pi$ Low-mass B_s^0 $B_s^0 \rightarrow D_s \rho$, $B_s^0 \rightarrow D_s^* \pi$, $B_s^0 \rightarrow D_s^* \rho$ Low-mass B^{0} $B^0 \to D\rho$, $B^0 \to D^*_s \pi$, $B^0 \to D^* \pi$
- **•** Combinatorial
- Most backgrounds are modelled on simulated data
- Combinatorial is an exponential fitted to sidebands in data
- Signal is a double Crystal Ball function
- Yields of some backgrounds are fixed based on relative expected yields
- The $B^0\!\rightarrow D\pi^-$ yield is fixed based on a fit to a set of real $B^0\!\rightarrow D\pi^$ events

Background templates

Matt Williams (University of Warwick) [Wrong-flavour](#page-0-0) $B_s \to D_s \pi$ February 5, 2014 15 / 25

Signal template

Mass fit

27,965
$$
\pm
$$
 187 $B_s^0 \rightarrow D_s \pi$ events

Matt Williams (University of Warwick) [Wrong-flavour](#page-0-0) $B_s \to D_s \pi$ February 5, 2014 17 / 25

Analysis plan

Time fit fixed parameters

 \overline{S} , \overline{D} , ΔS , ΔD are floated, as are the tagging efficiencies and Δm_s

Time fit

Decay-time acceptance and decay-time resolution are modelled on simulated data

$$
\begin{cases}\n0 & \text{when } (at) \\
(1 - \frac{1}{1 + (at)^n - b}) \times (1 - \beta t) & \text{otherwise,} \n\end{cases}
$$

when
$$
(at)^n - b < 0
$$
 or $t < 0.2$ ps, otherwise,

Sources of systematic uncertainty

Decay-time resolution This is fitted on simulated data and its width is varied by 20%

- Decay time acceptance This is fitted on simulated data and each parameter is varied within its measured uncertainty
- Background yields These are varied within their measured uncertainties from the mass fit
- Background parametrisation The time fit is performed as an sFit which does not model the backgrounds
- Physics parameters Various fixed physics parameters (Γ $_{s}$, $\Delta\Gamma_{s}$ etc.) from PDG or LHCb are varied within their published uncertainties
- Flavour tagging calibration Measured on $B^+ \!\to J\!/\psi \,K^+$ data and varied within measured uncertainties
- Asymmetries Production, detection and flavour tagging asymmetries are varied consistent with what is observed in data

Matt Williams (University of Warwick) [Wrong-flavour](#page-0-0) $B_s \to D_s \pi$ February 5, 2014 22 / 25

Sources of systematic uncertainty

Results

$$
\overline{S} = 0.197 \pm 0.150 \pm 0.025
$$

$$
\overline{D} = -0.888 \pm 0.098 \pm 0.541
$$

$$
\Delta S = 0.066 \pm 0.083 \pm 0.004
$$

$$
\Delta D = -0.062 \pm 0.050 \pm 0.169
$$

- All the parameters are within 2 σ of zero and ΔS and ΔD are less than 1σ
- At this level of uncertainty, no evidence of non-flavour-specific decays of $B_s^0 \to D_s \pi$

Results

- ΔD is related to the difference in the effective lifetimes of $D^-_{\mathsf s} \pi^+$ and $D_s^+\pi^-$
- The above result effectively states that $|\Delta D| < 0.1$
	- it is possible to put a constraint on the difference in effective lifetimes between these two final states
- The effective lifetime is given by $\tau_\mathrm{eff} = \tau_{\mathcal{B}_S^0} \left(1 + D_f \times \frac{\Delta \Gamma_s}{2 \Gamma_s} \right)$ $\frac{\Delta\Gamma_s}{2\Gamma_s}\Big)$, and using the measured value of ΔD we find

$$
\left|\frac{\Delta\tau_{\rm eff}}{\tau_{\mathcal{B}^0_s}}\right|\lesssim 0.02.
$$

- This shows that the $D_s^- \pi^+$ and the $D_s^+ \pi^-$ have the same lifetime to better than 2%
- In the case that the $B_s^0\!\rightarrow D_s\pi$ decay is assumed to be flavour-specific, this provides a test of CPT invariance which predicts that particles and anti-particles have equal lifetimes

Matt Williams (University of Warwick) [Wrong-flavour](#page-0-0) $B_s \to D_s \pi$ February 5, 2014 25 / 25

Thank you