

DUNE: The Deep Underground Neutrino Experiment

Mark Thomson

University of Cambridge & co-spokesperson of DUNE

Birmingham HEP Seminar: 4th May 2016

DEEP UNDERGROUND NEUTRINO EXPERIMENT

1: Context

The 2012 Revolution

* Two major discoveries in particle physics

- A SM-like Higgs boson (ATLAS, CMS)
	- The key to EWSB and a possible window to the BSM world
- $\theta_{13} \sim 10^{\circ}$ (T2K, MINOS, Daya Bay, RENO)
	- about as large as it could have been!
	- The door to CP Violation in the leptonic sector

The 2012 Revolution

* Two major discoveries in particle physics

- A SM-like Higgs boson (ATLAS, CMS)
	- The key to EWSB and a possible window to the BSM world
- $\theta_{13} \sim 10^{\circ}$ (T2K, MINOS, Daya Bay, RENO)
	- about as large as it could have been!
	- The door to CP Violation in the leptonic sector

* Now standard textbook physics*

launch the next steps

*apologies for gratuitous plug

2. Why are Neutrinos so Important?

a connection to BSM physics

- * Neutrino masses are anomalously small
	- Why is this the case ... BSM physics !

Dirac mass terms, Higgs coupling together L- and R-handed chiral fermionic fields *Y*f

$$
\frac{Y_{\rm f}}{\sqrt{2}}v\left(\overline{\rm f}_L{\rm f}_R+\overline{\rm f}_R{\rm f}_L\right)
$$

- This could be the origin of neutrino masses
	- Existence of RH neutrino $-$ a rather minimal extension to the SM?
- But a RH neutrino is a gauge singlet
	- Can now add "by hand" a new Majorana mass term to the SM Lagrangian, involving only the RH field (and conjugate)

$$
\sim M \overline{v_R^c} v_R \qquad \qquad v_R \longrightarrow
$$

This additional freedom might explain why neutrino masses are "different"

 \boldsymbol{M}

 V_I

a connection to BSM physics

* Is there a connection to the GUT scale?

If both Dirac and Majorana mass terms are present

$$
\sum_{V_R}^{W_D} \frac{M}{\sqrt{N_R}}
$$
\n
$$
\sum_{V_R}^{W_R} \frac{M}{\sqrt{N_L}} = \frac{1}{\sqrt{N_L}}
$$
\n3.11

\n1.12

\n2.2

\n
$$
\sum_{V_R} \frac{1}{V_L} \frac{M}{V_R}
$$
\n3.22

\n4.33

\n5.43

\n6.43

\n7.43

\n8.43

\n9.43

\n1.43

\n1.43

\n1.43

\n1.43

\n1.43

\n1.43

\n1.43

\n1.43

\n1.45

\n1.45

\n1.47

\n1.47

\n1.47

\n1.47

\n1.47

\n1.47

\n1.47

\n1.47

\n1.49

\n1.40

\n1.40

\n1.40

\n1.40

\n1.40

\n1.41

\n1.40

\n1.41

\n1.40

\n1.41

\n1.40

\n1.41

\n1.40

\n1.41

\n1.40

\n1.41

\n1.42

\n1.43

\n1.45

\n1.45

\n1.46

\n1.47

\n1.47

\n1.48

\n1.49

\n1.40

\n1.40

\n1.41

\n1.40

\n1.41

\n1.40

\n1.41

\n1.40

\n1.41

\n1.41

\n1.42

\n1.45

\n1.47

• The seesaw mechanism: the physical "mass eigenstates" are those in the basis where the mass matrix is diagonal

$$
\implies \text{ Light LH neutrino} \ \ m_{\rm v} \approx \frac{m_D^2}{M} \ \ + \ \text{heavy RH neutrino} \ \ m_N \approx M
$$

With $m_D \sim m_\ell$ to get to right range of small neutrino masses: $M \sim 10^{12} - 10^{16}$ GeV

a connection to BSM physics * Is there a connection to the GUT scale? ■ If both Dirac and Majorana mass terms are pree The seesaw pv ide a new sical "mass eigenstates" are those in $\mathbf{p}^{\prime\prime}$ is $\mathbf{p}^{\prime\prime}$ is $\mathbf{p}^{\prime\prime}$ are the mass matrix is diagonal (nothing to prevent this) $\mathcal{L} \sim -\frac{1}{2}$ $\sqrt{\frac{v}{v}}$.ndow *min* $ln V$ $\mathbf{\tilde{v}}_{R}$ ।
1 \mathbf{B} **Light** $\mathbf{M}_N \approx \frac{D}{M}$ + heavy **RH** neutrino $m_N \approx \frac{D}{M}$ m_D^2 *M* $m_N \approx M$ \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{b} \sim m_ℓ to get to right range of small neutrino masses: **Example 2 MINDON TO GUT-scale PMY**
 MINDON TO GUT-scale PMY
 MINDON TO GUT-SCALE PROBEM
 MINDOS MAY PROVIDE 2 MINDON TO PMYSICS PROBEMS
 MINDOS MAY A PYECTSION PETHEM MINDON PROVIDED
 M \approx *M*_{$\frac{m_D^2}{M}$} \mathbf{U}^{\dagger} \mathbf{V}^{\dagger} \mathbf{V}^{\dagger} \mathbf{V}^{\dagger} \mathbf{V} \math

3: Neutrinos – known unknowns

The Standard 3-Flavour Paradigm

* Neutrino flavor oscillations now a well established **physical phenomenon**

The Standard 3-Flavour Paradigm

- **★ Unitary PNMS matrix** \rightarrow **mixing described by:**
	- **•** three "Euler angles": $(\theta_{12}, \theta_{13}, \theta_{23})$
	- **•** and one complex phase: δ

$$
U_{\text{PMNS}} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ s_0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

with
$$
s_{ij} = \sin \theta_{ij}
$$
; $c_{ij} = \cos \theta_{ij}$

- ★ If $\delta \neq \{0, \pi\}$ then SM leptonic sector \Rightarrow CP violation (CPV)
	- CPV effects \propto sin θ_{13}
	- **now know that** θ_{13} **is relatively large**
		- **CPV** is observable with conventional v beams

The Known Unknowns

- * We now know a lot about the neutrino sector
- * But still many profound questions
	- Why are neutrino masses so small?
		- Is there a connection to the GUT scale?
	- **E** Are there **light** sterile neutrino states?
		- No clear theoretical guidance on mass scale, M, ...
	- What is the neutrino mass hierarchy?
		- An important question in flavor physics, e.g. CKM vs. PNMS

- **E** Is CP violated in the leptonic sector ?
	- Are vs key to understanding the matter-antimatter asymmetry?

The Known Unknowns

- * Next generation Long-Baseline experiments (such as **DUNE)** can address three of these questions:
	- Why are neutrino masses so small?
		- Is there a connection to the GUT scale?
	- **E** Are there light sterile neutrino states ? -
		- No clear theoretical guidance on mass scale, M, ...
	- **E** What is the neutrino mass hierarchy?
		- An important question in flavor physics, e.g. CKM vs. PNMS

- **E.** Is CP violated in the leptonic sector ?
	- Are vs key to understanding the matter-antimatter asymmetry?

Breaks 3-flavo

paradigm

The Key Question (my personal bias)

Is CP violated in the neutrino sector?

- ***** If $\delta \neq \{0, \pi\}$ the answer is YES
	- If yes, would provide support^{*} for the hypothesis of Leptogenesis as the mechanism for generating the matter-antimatter asymmetry in the universe
- \star Strong motivation to aim for a definitive observation for CPV in the *v* sector
	- Ideally want "precise" measurement of CP phase

*not proof, since still need to connect low-scale \bf{v} CPV physics to the high-scale N CPV physics

4: How to Detect CPV with vs

In principle, it is straightforward $P(\mathbf{v}_{\mu} \to \mathbf{v}_{e}) - P(\overline{\mathbf{v}}_{\mu} \to \overline{\mathbf{v}}_{e}) = 4s_{12}s_{13}c_{13}^{2}s_{23}c_{23}\sin\delta$ ⇥ $\overline{\mathsf{R}}$ $\overline{}$ sin $\overline{1}$ $\Big($ Δm^2_{21} 2*E* 1 $+\sin$ $\overline{1}$ $\Big($ Δm^2_{23} 2*E* 1 $+ \sin$ $\overline{1}$ $\Big($ Δm^2_{31} 2*E* 1 \int 3 \mathcal{I} \star CPV \Rightarrow different oscillation rates for Vs and Vs $\sqrt{\frac{2.22 - 2.22 - 1}{2.25}}$

Requires $\{\theta_{12}, \theta_{13}, \theta_{23}\} \neq \{0, \pi\}$

- **now know that this is true,** $\theta_{13} \approx 9^\circ$
- **•** but, despite hints, don't yet know "much" about δ
- ★ So "just" measure $P(v_{\mu} \rightarrow v_e) P(\overline{v}_{\mu} \rightarrow \overline{v}_e)$? \star Not quite, there is a complication...

Matter Effects

 \star Even in the absence of CPV

$$
P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) = 0
$$

Neutrinos travel through material that is not CP symmetric, i.e. matter not antimatter

- \star In vacuum, the mass eigenstates v_1, v_2, v_3 correspond to the eigenstates of the Hamiltonian:
	- they propagate independently (with appropriate phases)
- \star In matter, there is an effective potential due to the forward weak scattering processes:

Neutrino Oscillations in Matter

 \star Accounting for this potential term, gives a Hamiltonian that is not diagonal in the basis of the mass eigenstates

$$
\mathcal{H}\left(\begin{array}{c}|\nu_1\rangle\\|\nu_2\rangle\\|\nu_3\rangle\end{array}\right)=i\frac{\mathrm{d}}{\mathrm{d}t}\left(\begin{array}{c}|\nu_1\rangle\\|\nu_2\rangle\\|\nu_3\rangle\end{array}\right)=\left(\begin{array}{ccc}E_1&0&0\\0&E_2&0\\0&0&E_3\end{array}\right)\left(\begin{array}{c}|\nu_1\rangle\\|\nu_2\rangle\\|\nu_3\rangle\end{array}\right)+V|\nu_e\rangle\longleftarrow\text{ME}^{\top}_{\text{L}}.
$$

 \star Complicates the simple picture !!!!

$$
P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) - P(\overline{\mathbf{v}}_{\mu} \rightarrow \overline{\mathbf{v}}_{e}) =
$$
\n
$$
\mathbf{M} \mathbf{E} \begin{bmatrix} 1 & 16A & 1 & 16A \\ 1 & 16A & 1 & 16A \\ 1 & \Delta m_{31}^{2} & 1 & 16A \\ 1 & \Delta m_{31}^{2} & 1 & 16A \end{bmatrix} \begin{bmatrix} 2 & 1 & 16A \\ 1 & 1 & 16A \\ 1 & 1 & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin{bmatrix} 2 & 16A & 16A \\ 1 & 16A & 16A \end{bmatrix} \begin
$$

UNIVERSITY OF
CAMBRIDGE

Neutrino Oscillations in Matter

 \star Accounting for this potential term, gives a Hamiltonian that is not diagonal in the basis of the mass eigenstates

$$
\mathcal{H}\left(\begin{array}{c}|\mathsf{v}_1\rangle\\|\mathsf{v}_2\rangle\\|\mathsf{v}_3\rangle\end{array}\right)=i\frac{\mathrm{d}}{\mathrm{d}t}\left(\begin{array}{c}|\mathsf{v}_1\rangle\\|\mathsf{v}_2\rangle\\|\mathsf{v}_3\rangle\end{array}\right)=\left(\begin{array}{ccc}E_1&0&0\\0&E_2&0\\0&0&E_3\end{array}\right)\left(\begin{array}{c}|\mathsf{v}_1\rangle\\|\mathsf{v}_2\rangle\\|\mathsf{v}_3\rangle\end{array}\right)+V|\mathsf{v}_e\rangle\longleftarrow\boxed{\mathsf{ME}^{\mathsf{T}}}
$$

 \star Complicates the simple picture !!!!

P(⌫^µ ! ⌫e) *P*(⌫^µ ! ⌫e) = What we measure *m*² 0 1 ³¹*L* 16*A* sin2 BBBB@ CCCCA *c*2 2 2 2 **ME** 13 *s* 13 *s* 23(1 2*s* 13) Small *m*² 4*E* 31 0 *m*² 1 ³¹*L* ²*AL* BBBB@ CCCCA *c*2 2 2 2 **ME** sin 13 *s* 13 *s* 23(1 2*s* 13) Proportional to L *E* 4*E m*² 0 *m*² 1 ²¹*L* ³¹*L* What we want**CPV** sin2 BBBB@ CCCCA sin · *^s*13*c*² 8 ¹³*c*²³ *s*23*c*¹² *s*¹² 2*E* 4*E* eV2 · ⇢ g cm³ · *^E* p ²*G*F*n*e*^E* ⁼ ⁷.⁶ ⇥ ¹⁰⁵ **with** *A* = 2 GeV

Experimental Strategy EITHER:

 \star Keep L small (~200 km): so that matter effects are insignificant

■ First oscillation maximum:

$$
\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\rm v} < 1 \text{ GeV}
$$

Want high flux at oscillation maximum

Soff-axis beam: narrow range of neutrino energies

OR:

 \star Make L large (>1000 km): measure the matter effects (i.e. MH)

First oscillation maximum:

$$
\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\rm v} > 2 \,\text{GeV}
$$

Unfold CPV from Matter Effects through E dependence On-axis beam: wide range of neutrino energies

Experimental Strategy EITHER:

 \star Keep L small (~200 km): so that matter effective are insignificant

- First oscillation maximum: Want h_{max} is Ω and Ω and Ω maximum $\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2}$ 2 **Off I Lam:** narrow range of neutrino energies **OR:** EMION
- \star Make L large (>1000 km): measure the natter effects (i.e. MH) First oscillation maximum
	- Unfold CPV from M**atter Constantinent Constantinent** CPV from Matter $\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2}$ $\overline{2}$ **On-axis beam:** wide range of neutrino energies **E**

DUNE in a Nutshell

- ★ Intense beam of v_{μ} or \overline{v}_{μ} fired 1300 km at a large detector ★ Compare $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillations
- \star Probe fundamental differences between matter & antimatter

DUNE in a Larger Nutshell

«LBNF/DUNE

- Muon neutrinos/anti-antineutrinos from high-power proton beam
	- **1.2 MW** from day one
	- upgradable to 2.4 MW
- Large underground LAr detector at Sanford Underground Research Facility (SURF) in South Dakota
	- 4 Cavern(s) for \geq 40 kt total fiducial far detector mass
	- **10 20 kt** fiducial LAr Far Detector (from day one)
	- **40 kt** as early as possible
- Highly-capable Near Detector system
	- Using one or more technologies

LBNF/DUNE – Fermilab in 2025

LBNF/DUNE – Fermilab in 2025

Origins of DUNE

P5 strategic review of US HEP

- **Called for the formation of "LBNF":**
	- as a international collaboration bringing together the international neutrino community
	- ambitious scientific goals with discovery potential for:
		- **Leptonic CP violation**
		- Proton decay
		- Supernova burst neutrinos

Resulted in the formation of the DUNE collaboration with strong representation from:

- LBNE (mostly US)
- LBNO (mostly Europe)
- Other interested institutes

DUNE: rapid progress

Things are moving very fast…

- First formal collaboration meeting April 16th-18th 2015
	- Over 200 people attended in person
- Conceptual Design Report in June (foundations from LBNE/LBNO)
- Passed DOE CD-1 Review in July
- Second collaboration meeting September 2nd-5th 2015
- Successful CD-3a Review in December 2015
	- paves the way to approval of excavation in FY17

DUNE

has strong support from:

- **Fermilab and US DOE:**
	- This is *the* future flagship project for Fermilab "no plan B"
- **CERN**
	- Very significant agreements on CERN US collaboration
- **Strong international interest: Brazil, India, Italy, Switzerland, UK, ...**

The DUNE Collaboration

As of today:

856 Collaborators

from

USA \blacksquare UK **Lalv La**India **Other Switzerland Spain E**France **Brazil Americas Poland** Czech Republic **LUSA** India **Cother** \blacksquare UK \blacksquare Italy **Brazil** $France$ **Americas Poland Switzerland Spain** Czech Republic

149 Institutes

DUNE has broad international support

5.1 DUNE Science Strategy

Unprecedented precision utilizing a massive Liquid Argon TPC

DUNE Primary Science Program

Focus on fundamental open questions in particle physics and astroparticle physics:

• **1) Neutrino Oscillation Physics**

- **Precision Oscillation Physics:**
	- e.g. parameter measurement, θ_{23} octant, testing the 3-flavor paradigm
- **2) Nucleon Decay**
	- $\;$ e.g. targeting SUSY-favored modes, $\rm p \rightarrow K^{+} \overline{\nu}$
- **3) Supernova burst physics & astrophysics**
	- Galactic core collapse supernova, sensitivity to v_{e}

DUNE Primary Science Program

Focus on fundamental open questions in partizando physics and astroparticle physics:

- **1) Neutrino Oscillation Physics**
	- **Discover CP Violation** in the
		- leptonic sector
	- **Mass Hierarchy**
	- Precision Oscillation Physics:
		- e.g. parameter measurement, θ_{23} octant, testing the 3-flavor paradigm
	- $10\degree$ Cav $\begin{equation*} \left\{ \begin{array}{c} \mathbf{N}^+ \mathbf{N}^- \end{array} \right\} \end{equation*}$ eting SUSY-favored modes, $\mathbf{p} \to \mathbf{K}^+ \mathbf{\overline{v}}$
- **3) Supernova burst physics & astrophysics**
	- Galactic core collapse supernova, sensitivity to $v_{\rm e}$

 $\triangle m_{12}^2$

 $|\Delta m^2_{32}|$

Long Baseline (LBL) Oscillations

Measure neutrino spectra at 1300 km in a wide-band beam

- **Near Detector at Fermilab: measurements of** $ν_μ$ **unoscillated beam**
- **Far Detector at SURF: measure oscillated** ν^µ **&** ν^e **neutrino spectra**

Long Baseline (LBL) Oscillations

… then repeat for antineutrinos

- **Compare oscillations of neutrinos and antineutrinos**
- **Direct probe of CPV in the neutrino sector**

- **Near Detector at Fermilab: measurements of** \bar{v}_u **unoscillated beam**
- **Far Detector at SURF: measure oscillated** $\mathbf{\bar{v}}_u \& \mathbf{\bar{v}}_e$ **neutrino spectra**

3.2 Proton Decay

Proton decay is expected in most new physics models

- **But lifetime is very long, experimentally** τ **> 1033 years**
- **Watch many protons with the capability to see a single decay**
- **Can do this in a liquid argon TPC**
	- For example, look for kaons from SUSY-inspired GUT p-decay

modes such as $\, {\rm p} \rightarrow {\rm K}^{+} \overline{\rm v}$

Proton Decay

Proton decay is expected in most new physics models

- **But lifetime is very long, experimentally** τ **> 1033 years**
- **Watch many protons with the capability to see a single decay**
- **Can do this in a liquid argon TPC**
	- For example, look for kaons from SUSY-inspired GUT p-decay

modes such as $p \to K^+\overline{\nu}$

§ **Clean signature**

Supernova ν**s**

A core collapse supernova produces an incredibly intense burst of neutrinos

- Measure energies and times of neutrinos from galactic supernova bursts
	- In argon (uniquely) the largest sensitivity is to v_e

$$
v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*
$$

Physics Highlights include:

- § Possibility to "see" neutron star formation stage
- Even the potential to see black hole formation !

6: DUNE Neutrino Physics

DUNE Oscillation Strategy

Measure neutrino spectra at 1300 km in a wide-band beam

- **Determine MH and** θ**23 octant, probe CPV, test 3-flavor paradigm** and search for BSM effects (e.g. NSI) in a single experiment
	- Long baseline:
		- Matter effects are large \sim 40%
	- Wide-band beam:

- Measure v_e appearance and v_u disappearance over range of energies
- **MH & CPV effects are separable**

MH Sensitivity

- \star Sensitivities depend on multiple factors:
	- Other parameters, e.g. δ
	- Beam spectrum, ...

MH Sensitivity

- \star Sensitivities depend on multiple factors:
	- Other parameters, e.g. δ
	- Beam spectrum, ...

MH and CPV Sensitivities

- \star Sensitivities depend on multiple factors:
	- Other parameters, e.g. δ
	- Beam spectrum, ...

MH and CPV Sensitivities

- \star Sensitivities depend on multiple factors:
	- Other parameters, e.g. δ
	- Beam spectrum, ...

Beyond discovery: measurement of δ

★ CPV "coverage" is just one way of looking at sensitivity... \star Can also express in terms of the uncertainty on δ

E UNIVERSITY OF

Timescales: year zero = 2025

Rapidly reach scientifically interesting sensitivities:

- e.g. in best-case scenario for Mass Hierarchy :
	- **Reach 5**σ **MH sensitivity with 20 – 30 kt.MW.year**

~2 years

- e.g. in best-case scenario for CPV (δ_{CP} = +π/2) :
	- **Reach 3**σ **CPV sensitivity with 60 – 70 kt.MW.year**

Strong evidence

- e.g. in best-case scenario for CPV (δ_{CP} = +π/2) :
	- **Reach 5**σ **CPV sensitivity with 210 – 280 kt.MW.year**

Discovery

 \sim 6-7 years

EN UNIVERSITY OF

«**Genuine potential for early physics discovery**

DUNE Science Summary

DUNE physics:

- **Game-changing program in Neutrino Physics**
	- Definitive 5σ determination of MH
	- Probe leptonic CPV
	- Precisely test 3-flavor oscillation paradigm
- **Potential for major discoveries in astroparticle physics**
	- Extend sensitivity to nucleon decay
	- Unique measurements of supernova neutrinos (if one should occur in lifetime of experiment)

7. LBNF – a MW-scale facility 8. The DUNE Far Detector 9. The DUNE Near Detector

7. LBNF – a MW-scale facility

LBNF and PIP-II

* In beam-based long-baseline neutrino physics:

beam power drives the sensitivity

★ LBNF: the world's most intense high-energy v beam

- § **1.2 MW from day one**
	- NuMI (MINOS) <400 kW
	- NuMI (NOVA) 600 - 700 kW
- **upgradable to 2.4 MW**
- *** Requires PIP-II** (proton-improvement plan)
	- § **\$0.5B** upgrade of FNAL accelerator infrastructure
	- Replace existing 400 MeV LINAC with 800 MeV SC LINAC

The LBNF Neutrino Beam

- i) Start with an intense (MW) proton beam from PIP-II
- **•** ii) Point towards South Dakota
- iii) Smash high-energy (~80 GeV) protons into a target **hadrons**
- **•** iv) Focus positive pions/kaons
- v) Allow them to decay $\pi^+ \to \mu^+ \nu_\mu$
- vi) Absorb remaining charged particles in rock
- vii) Left with a "collimated" V_{μ} beam

The LBNF Neutrino Beam

- i) Start with an intense (MW) proton beam from PIP-II
- **•** ii) Point towards South Dakota
- iii) Smash high-energy (~80 GeV) protons into a target
- **iv)** Focus positive pions/kaons
- v) Allow them to decay $\pi^+ \to \mu^+ \nu_\mu$
- vi) Absorb remaining charged particles in rock
- vii) Left with a "collimated" v_{μ} beam

8. The DUNE Far Detector

Staged Approach to 40 kt

Cavern Layout at the Sanford Underground Research Facility based on four independent caverns

- **Four identical caverns hosting four independent 10-kt FD modules**
	- Allows for staged construction of FD
	- Gives flexibility for evolution of LArTPC technology design
		- Assume four identical cryostats
		- But, assume that the four 10-kt modules will be similar but **not necessarily identical**

Going underground…

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850 level (~ 1 mile underground)

Far Detector Basics

A modular implementation of Single-Phase TPC

• **Record ionization using three wire planes 3D image**

Far Detector Basics

A modular implementation of Single-Phase TPC

• **Record ionization using three wire planes 3D image**

First 17-kt detector

Modular implementation of Single-Phase TPC

- Active volume: **12m x 14m x 58m**
- 150 Anode Plane Assemblies
	- 6m high x 2.3m wide
- 200 Cathode Plane Assemblies
	- Cathode @ -180 kV for 3.5m drift

Second & subsequent far detector modules

- Not assumed to be exactly the same, could be:
	- Evolution of single-phase design
	- Dual-phase readout potential benefits

Far Detector Development e.g. single-phase APA/CPA LAr-TPC:

- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
	- 35-t prototype (run ended 03/2016) tests of basic design

Far Detector Development e.g. single-phase APA/CPA LAr-TPC:

- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
	- 35-t prototype (run ended 03/2016) tests of basic design
	- MicroBooNE (operational since 2015)-
	- SBND (aiming for operation in 2018)

Far Detector Development

e.g. single-phase APA/CPA LAr-TPC:

- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
	- 35-t prototype (run ended 03/2016) tests of basic design
	- MicroBooNE (operational since 2015)
	- SBND (aiming for operation in 2018)
- 2 "Full-scale" prototype**s** (protoDUNE) at the CERN Neutrino Platform
	- **Single-Phase & Dual-Phase**
	- Engineering prototypes, e.g. SP:
		- 6 full-sized drift cells c.f. 150 in the far det.
	- Aiming for operation in 2018

Far Detector Development

e.g. single-phase APA/CPA LAr-TPC:

- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
	- 35-t prototype (run ended 03/2016) tests of basic design
	- MicroBooNE (operational since 2015)
	- SBND (aiming for operation in 2018)
- 2 "Full-scale" prototype**s** (protoDUNE) at the CERN Neutrino Platform
	- **Single-Phase & Dual-Phase**
	- Engineering prototypes, e.g. **SP**:
		- 6 full-sized drift cells c.f. 150 in the far det.
	- Aiming for operation in 2018

9. The DUNE Near Detector

DUNE ND (in brief)

CDR design is the the NOMAD-inspired FGT

- **It consists of:**
	- Central straw-tube tracking system
	- Lead-scintillator sampling ECAL
	- RPC-based muon tracking systems
- **Other options being studied**
- **The Near Detector provides:**

- Constraints on cross sections and the neutrino flux
- A rich self-contained non-oscillation neutrino physics program

Will result in unprecedented samples of ν **interactions**

- **>100 million** interactions over a wide range of energies:
	- strong constraints on systematics
		- the ND samples will represent a huge scientific opportunity

10. Political Context

« **LBNF/DUNE will be:**

- **The first international "mega-science" project hosted by the US**
	- "do for the Neutrinos, what the LHC did for the Higgs"
- The first U.S. project run as an international collaboration
	- Organization follows the LHC model

« **LBNF/DUNE will be:**

- The first international "mega-science" project hosted by the US
	- "do for the Neutrinos, what the LHC did for the Higgs"
- The first U.S. project run as an international collaboration
	- Organization follows the LHC model

« **The U.S. is serious:**

- LBNF/DUNE is Fermilab's future flagship project
- § Very strong support from Fermilab & the U.S. DOE
- CD3a in December funding request for excavation in FY17 currently with DOE

« **LBNF/DUNE will be:**

- The first international "mega-science" project hosted by the US
	- "do for the Neutrinos, what the LHC did for the Higgs"
- The first U.S. project run as an international collaboration
	- Organization follows the LHC model

« **The U.S. is serious:**

- LBNF/DUNE is Fermilab's future flagship project
- § Very strong support from Fermilab & the U.S. DOE
- CD3a in December funding request for excavation in FY17 currently with DOE

★ A game-changer for CERN and the U.S.

- § Historic agreement between U.S. and CERN
- US contributes to LHC upgrade (high-field magnets)
- CERN contributes to Far site infrastructure

« **LBNF/DUNE will be:**

- **The first international "mega-science" project hosted by the US**
	- "do for the Neutrinos, what the LHC did for the Higgs"
- The first U.S. project run as an international collaboration
	- Organization follows the LHC model

« **The U.S. is serious:**

- LBNF/DUNE is Fermilab's future flagship project
- § Very strong support from Fermilab & the U.S. DOE
- CD3a in December funding request for excavation in FY17 currently with DOE

« **A game-changer for CERN and the U.S.**

- **EXTERN** Historic agreement between U.S. and CERN
- US contributes to LHC upgrade (high-field magnets)
- CERN contributes to Far site infrastructure
- *** First truly global neutrino experiment**

« **LBNF/DUNE will be:**

- The first international "mega-science" project hosted by the US
	- "do for the Neutrinos, what the LHC did for the \mathbf{H}
- **•** The first U.S. project run as an international collaboration Ω
	- Organization follows the LHC mode

« **The U.S. is serious:**

- **Example 19 LBNF/DUNE is Fermilage file to a project**
- Solve Very strong support from α in α the U.S. DOE
- CD3a in December ϵ^{0} , ϵ^{h} of equest for excavation in FY17 $currept$ χ ^O

 \star A $g_{2,0}$ a^{50} , a^{8} for CERN and the U.S.

ERN : \mathbb{R}^n ement between U.S. and CERN \mathcal{L} \mathcal{L} Tributes to LHC upgrade (high-field magnets) Every reason to be optimistic that we are on the first we are on the first

* First truly global neutrino experiment

11. Opportunities on DUNE

Opportunities in DUNE DUNE is moving rapidly

- Excavation starts in 2017
- ProtoDUNE @ CERN in 2018
- Far Detector construction in 2019
- Far Detector installation in 2021

DUNE: the next large global Particle Physics project

- Actively seeking new collaborators
	- many synergies with collider experiments
- Immediate Focus in Europe will be ProtoDUNE @ CERN
- Many Opportunities:
	- Hardware: e.g. photon detection system (scintillator + SiPMs)
	- $-DAQ/Computing: continuous readout = high-data rates$
	- Software: LAr-TPC reconstruction

Opportunities in DUNE DUNE is moving rapidly

- Excavation starts in 2017
- ProtoDUNE @ CERN in 2018
- Far Detector construction in 2019
- **Far Detector installation in 20**

DUNE: the next large global Particle Physics project

- **Actively seeking**
	- many syn \sim \sim \sim experiments
	- Immediate Research Focus in Europe will be ProtoDUNE @ CERN
		- e.g. photon detection system (scintillator + SiPMs)
		- Computing: continuous readout $=$ high-data rates
	- Software: LAr-TPC reconstruction

des:

12. Summary

Summary

Summary

Summary

«**DUNE will** § Probe leptonic CPV with unprecedented position **• Definitively determine the MH to greater than 5** σ Test the three-flavor hypothesis Significantly advance the discovery potential for proton decay ■ (With luck) provide a wealth of information on Supernova bursts neutrino physics and astrophysics ***** This is an exciting time ■ DUNE is now ballistic The timescales are not long: DUNE/LBNF aims to start excavation in 2017 • The large-scale DUNE prototype will operate at CERN in 2018 **★An international community is forming – including CERN** LBNF/DUNE represents a **major** new scientific opportunity for particle physics

Thank you for your attention

Backup Slides

Parameter Resolutions δ**CP &** θ **²³**

• As a function of exposure

PDK p → K ν

• DUNE for various staging assumptions

Beam Optimization

Beam Optimization

Following LBNO approach, genetic algorithm used to optimize horn design– increase neutrino flux at lower energies

Reconstruction

LAr-TPC Reconstruction

Real progress in last year – driven by 35-t & MicroBooNE

• Full DUNE simulation/reconstruction now in reach

Schedule

Indicative schedule

Indicative schedule

Calculating Sensitivies

Determining Physics Sensitivities

For Conceptual Design Report

- **Full detector simulation/reconstruction not available**
	- See later in talk for plans
- **For Far Detector response**
	- Use parameterized single-particle response based on achieved/expected performance (with ICARUS and elsewhere)
- **Systematic constraints from Near Detector + …**
	- Based on current understanding of cross section/hadro-production uncertainties
	- + Expected constraints from near detector
		- in part, evaluated using fast Monte Carlo

Evaluating DUNE Sensitivities I

Many inputs calculation (implemented in GLoBeS):

- **Reference Beam Flux**
	- 80 GeV protons
	- 204m x 4m He-filled decay pipe
	- 1.07 MW
	- NuMI-style two horn system
- **Optimized Beam Flux**
	- Horn system optimized for lower energies
- **Expected Detector Performance**
	- Based on previous experience (ICARUS, ArgoNEUT, …)
- **Cross sections**
	- GENIE 2.8.4
	- CC & NC
	- all (anti)neutrino flavors

Evaluating DUNE Sensitivities II

- **Assumed* Particle response/thresholds**
	- Parameterized detector response for individual final-state particles

*current assumptions to be addressed by FD Task Force

Evaluating DUNE Sensitivities III

• **Efficiencies & Energy Reconstruction**

- Generate neutrino interactions using GENIE
- **Fast MC** smears response at generated final-state particle level
	- "Reconstructed" neutrino energy
	- kNN-based MV technique used for v_e "event selection", parameterized as efficiencies
- Used as inputs to GLoBES

Evaluating DUNE Sensitivities IV

• **Systematic Uncertainties**

- Anticipated uncertainties based on MINOS/T2K experience
- Supported by preliminary fast simulation studies of ND

- **DUNE goal for** ν**^e appearance < 4 %**
	- For sensitivities used: 5% \oplus 2 %
		- where 5 % is correlated with v_μ & 2 % is uncorrelated v_e only

5: Hyper-Kamiokande

Far Detector

Hyper-K is the proposed third generation large water Cherenkov detector in the Kamioka mine

- \blacksquare Inner detector volume = 0.74 Mton
- \blacksquare Fiducial volume = 0.56 Mton
- Photomultiplier tubes: 99,000 20" inner detector & 25,000 8" outer detector

JPARC Beam for Hyper-K

- * Upgraded JPARC beam
- * At least 750 kW expected at start of experiment
	- Physics studies assume 7.5x10⁷ MW.s exposure
		- i.e. 10 years at 750 kW
		- or 5 years at 1.5 MW
	- Beam sharing between neutrinos: antineutrinos = 1 : 3
- *** Hyper-K** is off-axis
	- Narrow-band beam, centered on first oscillation maximum
	- Baseline = 295 km \implies matter effects are small

Hyper-K Science Goals

Focus on fundamental open questions in particle physics and astro-particle physics:

- **1) Neutrino Oscillations**
	- CPV from J-PARC neutrino beam
	- Mass Hierarchy from Atmospheric Neutrinos
	- Solar neutrinos
- **2) Search for Proton Decay**
	- Particularly strong for decays with $\,\pi^0$
- **3) Supernova burst physics & astrophysics**
	- Galactic core collapse supernova

Hyper-K Science Goals

Focus on fundamental open questions in particle physics and astro-particle physics:

- **1) Neutrino Oscillations**
	- CPV from J-PARC neutrino beam matter effects are small
	- Mass Hierarchy from Atmospheric Neutrinos
	- Solar neutrinos
- **2) Search for Proton Decay**
	- Particularly strong for decays with $\,\pi^0$
- **3) Supernova burst physics & astrophysics**
	- Galactic core collapse supernova, sensitivity to v_{e}

★ Significant complementarity with DUNE physics

Hyper-Kamiokande Physics*

\star High-statistics for v_e/\overline{v}_e appearance

Appearance ν mode

Appearance ∇ mode

*here focus only on neutrino oscillations

CPV Sensitivity

\star CPV sensitivity from event counts

§ + some shape information

Hyper-K δ **_{CP} Sensitivity**

★ CPV sensitivity based on:

- \blacksquare 10 years @ 750 kW or 5 years at 1.5 MW
- **EXTERGH MH is already known**

