

DUNE: The Deep Underground Neutrino Experiment

Mark Thomson

University of Cambridge & co-spokesperson of DUNE

Birmingham HEP Seminar: 4th May 2016

DEEP UNDERGROUND NEUTRINO EXPERIMENT

	Торіс	Slides
1:	Context: The 2012 Revolution	1
2:	Why are neutrinos so important	2
3:	Neutrinos – known unknowns	4
4:	How to Detect CPV with Neutrinos?	4
5:	LBNF/DUNE	6
	5.1: DUNE Science Strategy	5
6:	DUNE Neutrino Physics	5
7:	LBNF	2
8:	The DUNE Far Detector	5
9:	The DUNE Near Detector	1
10:	Political Context	1
11:	Opportunities on DUNE	1
12:	Summary	1
	Total	38

1: Context

The 2012 Revolution

★ Two major discoveries in particle physics

- A SM-like Higgs boson (ATLAS, CMS)
 - The key to EWSB and a possible window to the BSM world
- $\theta_{13} \sim 10^{\circ}$ (T2K, MINOS, Daya Bay, RENO)
 - about as large as it could have been !
 - The door to CP Violation in the leptonic sector

The 2012 Revolution

★ Two major discoveries in particle physics

- A SM-like Higgs boson (ATLAS, CMS)
 - The key to EWSB and a possible window to the BSM world
- $\theta_{13} \sim 10^{\circ}$ (T2K, MINOS, Daya Bay, RENO)
 - about as large as it could have been !
 - The door to CP Violation in the leptonic sector

Now standard textbook physics*

Iaunch the next steps

*apologies for gratuitous plug

2. Why are Neutrinos so Important?

a connection to BSM physics

***** Neutrino masses are anomalously small

Why is this the case ... BSM physics !

Dirac mass terms, Higgs coupling together L- and R-handed chiral fermionic fields

$$\frac{Y_{\rm f}}{\sqrt{2}}v\left(\overline{{\rm f}}_L{\rm f}_R+\overline{{\rm f}}_R{\rm f}_L\right)$$

- This could be the origin of neutrino masses
 - Existence of RH neutrino a rather minimal extension to the SM?
- But a RH neutrino is a gauge singlet
 - Can now add "by hand" a new Majorana mass term to the SM Lagrangian, involving only the RH field (and conjugate)

$$\sim M \overline{\nu_R^c} \nu_R \qquad \nu_R$$

This additional freedom might explain why neutrino masses are "different"

M

 ν_L

a connection to BSM physics

★ Is there a connection to the GUT scale?

If both Dirac and Majorana mass terms are present

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

The seesaw mechanism: the physical "mass eigenstates" are those in the basis where the mass matrix is diagonal

$$\implies$$
 Light LH neutrino $m_v \approx \frac{m_D^2}{M}$ + heavy RH neutrino $m_N \approx M$

• With $m_D \sim m_\ell$ to get to right range of small neutrino masses: $M \sim 10^{12} - 10^{16} \, {
m GeV}$

3: Neutrinos – known unknowns

The Standard 3-Flavour Paradigm

 Neutrino flavor oscillations now a well established physical phenomenon

The Standard 3-Flavour Paradigm

★ Unitary PNMS matrix ⇒ mixing described by:

- three "Euler angles": $(\theta_{12}, \theta_{13}, \theta_{23})$
- and one complex phase: δ_{τ}

$$U_{\text{PMNS}} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

with
$$s_{ij} = \sin \theta_{ij}$$
; $c_{ij} = \cos \theta_{ij}$

- ★ If $\delta \neq \{0, \pi\}$ then SM leptonic sector \Rightarrow CP violation (CPV)
 - CPV effects $\propto \sin \theta_{13}$
 - now know that θ_{13} is relatively large

 \Box CPV is observable with conventional v beams

The Known Unknowns

- **★** We now know a lot about the neutrino sector
- ***** But still many profound questions
 - Why are neutrino masses so small ?
 - Is there a connection to the GUT scale?
 - Are there **light** sterile neutrino states ?
 - No clear theoretical guidance on mass scale, M, ...
 - What is the neutrino mass hierarchy ?
 - An important question in flavor physics, e.g. CKM vs. PNMS

- Is CP violated in the leptonic sector ?
 - Are vs key to understanding the matter-antimatter asymmetry?

The Known Unknowns

- Next generation Long-Baseline experiments (such as DUNE) can address three of these questions:
 - Why are neutrino masses so small ?
 - Is there a connection to the GUT scale?
 - Are there light sterile neutrino states ?
 - No clear theoretical guidance on mass scale, M, ...
 - What is the neutrino mass hierarchy ?
 - An important question in flavor physics, e.g. CKM vs. PNMS

- Is CP violated in the leptonic sector ?
 - Are vs key to understanding the matter-antimatter asymmetry?

Breaks 3-flavo

The Key Question (my personal bias)

Is CP violated in the neutrino sector ?

- **the answer is YES the answer is YES**
 - If yes, would provide support* for the hypothesis of Leptogenesis as the mechanism for generating the matter-antimatter asymmetry in the universe
- Strong motivation to aim for a definitive observation for CPV in the v sector
 - Ideally want "precise" measurement of CP phase

*not proof, since still need to connect low-scale v CPV physics to the high-scale N CPV physics

4: How to Detect CPV with vs

In principle, it is straightforward * CPV \Rightarrow different oscillation rates for $\forall s$ and $\overline{\forall} s$ $P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = 4s_{12}s_{13}c_{13}^{2}s_{23}c_{23}\sin\delta$ $\times \left[\sin\left(\frac{\Delta m_{21}^{2}}{2E}\right) + \sin\left(\frac{\Delta m_{23}^{2}}{2E}\right) + \sin\left(\frac{\Delta m_{31}^{2}}{2E}\right)\right]$

★ Requires $\{\theta_{12}, \theta_{13}, \theta_{23}\} \neq \{0, \pi\}$

- now know that this is true, $\theta_{13} \approx 9^{\circ}$
- but, despite hints, don't yet know "much" about δ
- ★ So "just" measure $P(\nu_{\mu} \rightarrow \nu_{e}) P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$? ★ Not quite, there is a complication...

Matter Effects

★ Even in the absence of CPV

$$P(v_{\mu} \rightarrow v_{e}) - P(\overline{v}_{\mu} \rightarrow \overline{v}_{e}) = 0$$

Neutrinos travel through material that is not CP symmetric, i.e. matter not antimatter

- ★ In vacuum, the mass eigenstates v_1 , v_2 , v_3 correspond to the eigenstates of the Hamiltonian:
 - they propagate independently (with appropriate phases)
- In matter, there is an effective potential due to the forward weak scattering processes:

Neutrino Oscillations in Matter

★ Accounting for this potential term, gives a Hamiltonian that is not diagonal in the basis of the mass eigenstates

$$\mathcal{H}\begin{pmatrix} |\mathbf{v}_1\rangle\\ |\mathbf{v}_2\rangle\\ |\mathbf{v}_3\rangle \end{pmatrix} = i\frac{\mathrm{d}}{\mathrm{d}t}\begin{pmatrix} |\mathbf{v}_1\rangle\\ |\mathbf{v}_2\rangle\\ |\mathbf{v}_3\rangle \end{pmatrix} = \begin{pmatrix} E_1 & 0 & 0\\ 0 & E_2 & 0\\ 0 & 0 & E_3 \end{pmatrix} \begin{pmatrix} |\mathbf{v}_1\rangle\\ |\mathbf{v}_2\rangle\\ |\mathbf{v}_3\rangle \end{pmatrix} + V|\mathbf{v}_e\rangle \longleftarrow \mathbb{NE}$$

★ Complicates the simple picture !!!!

$$P(v_{\mu} \rightarrow v_{e}) - P(\bar{v}_{\mu} \rightarrow \bar{v}_{e}) =$$

$$ME \left[\frac{16A}{\Delta m_{31}^{2}} \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E} \right) c_{13}^{2} s_{13}^{2} s_{23}^{2} (1 - 2s_{13}^{2}) \right]$$

$$ME \left[-\frac{2AL}{E} \sin \left(\frac{\Delta m_{31}^{2}L}{4E} \right) c_{13}^{2} s_{13}^{2} s_{23}^{2} (1 - 2s_{13}^{2}) \right]$$

$$CPV \left[-8 \frac{\Delta m_{21}^{2}L}{2E} \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E} \right) \sin \delta \right] s_{13} c_{13}^{2} c_{23} s_{23} c_{12} s_{12} s_{12} s_{12} s_{12} s_{13} s_{23} c_{23} s_{23} c_{12} s_{12} s_{12} s_{13} s_{13} s_{23} c_{23} s_{23} c_{12} s_{12} s_{12} s_{13} s_{13} s_{23} s_{2$$

UNIVERSITY OF CAMBRIDGE

Neutrino Oscillations in Matter

★ Accounting for this potential term, gives a Hamiltonian that is not diagonal in the basis of the mass eigenstates

$$\mathcal{H}\begin{pmatrix} |\mathbf{v}_1\rangle \\ |\mathbf{v}_2\rangle \\ |\mathbf{v}_3\rangle \end{pmatrix} = i\frac{\mathrm{d}}{\mathrm{d}t}\begin{pmatrix} |\mathbf{v}_1\rangle \\ |\mathbf{v}_2\rangle \\ |\mathbf{v}_3\rangle \end{pmatrix} = \begin{pmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{pmatrix} \begin{pmatrix} |\mathbf{v}_1\rangle \\ |\mathbf{v}_2\rangle \\ |\mathbf{v}_3\rangle \end{pmatrix} + V|\mathbf{v}_e\rangle \longleftarrow \mathbb{NE}$$

★ Complicates the simple picture !!!!

EXPERIMENTAL Strategy

★ Keep L small (~200 km): so that matter effects are insignificant

• First oscillation maximum:

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\nu} < 1 \, \text{GeV}$$

• Want high flux at oscillation maximum

Off-axis beam: narrow range of neutrino energies

OR:

★ Make L large (>1000 km): measure the matter effects (i.e. MH)

• First oscillation maximum:

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\nu} > 2 \,\mathrm{GeV}$$

Unfold CPV from Matter Effects through E dependence
 On-axis beam: wide range of neutrino energies

EXPERIMENTAL Strategy

★ Keep L small (~200 km): so that matter effort re insignificant

- First oscillation maximum: ^Δm²₃₁L/4E ~ π/4E ~ π/4
 - $\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2}$ Unfold CPV from M
 is through E dependence
 is On-axis beam: wide range of neutrino energies

5. DUNE

DUNE in a Nutshell

- ★ Intense beam of ν_{μ} or $\overline{\nu}_{\mu}$ fired 1300 km at a large detector ★ Compare $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillations
- ★ Probe fundamental differences between matter & antimatter

DUNE in a Larger Nutshell

★LBNF/DUNE

- Muon neutrinos/anti-antineutrinos from high-power proton beam
 - 1.2 MW from day one
 - upgradable to **2.4 MW**
- Large underground LAr detector at Sanford Underground Research Facility (SURF) in South Dakota
 - 4 Cavern(s) for \geq 40 kt total fiducial far detector mass
 - 10 20 kt fiducial LAr Far Detector (from day one)
 - 40 kt as early as possible
- Highly-capable Near Detector system
 - Using one or more technologies

LBNF/DUNE – Fermilab in 2025

LBNF/DUNE – Fermilab in 2025

Origins of DUNE

P5 strategic review of US HEP

- Called for the formation of "LBNF":
 - as a international collaboration bringing together the international neutrino community
 - ambitious scientific goals with discovery potential for:
 - Leptonic CP violation
 - Proton decay
 - Supernova burst neutrinos

Resulted in the formation of the DUNE collaboration with strong representation from:

- LBNE (mostly US)
- LBNO (mostly Europe)
- Other interested institutes_

DUNE: rapid progress

Things are moving very fast...

- First formal collaboration meeting April 16th-18th 2015
 - Over 200 people attended in person
- Conceptual Design Report in June (foundations from LBNE/LBNO)
- Passed DOE CD-1 Review in July
- Second collaboration meeting September 2nd-5th 2015
- Successful CD-3a Review in December 2015
 - paves the way to approval of excavation in FY17

DUNE

has strong support from:

- Fermilab and US DOE:
 - This is *the* future flagship project for Fermilab "no plan B"
- CERN
 - Very significant agreements on CERN US collaboration
- + Strong international interest: Brazil, India, Italy, Switzerland, UK, ...

The DUNE Collaboration

As of today:

856 Collaborators

from

149 Institutes

USA USA UK India Italy Other India UK UK Other Italy Brazil Switzerland Spain France France Americas Brazil Poland Americas Switzerland Poland Spain Czech Republic Czech Republic

DUNE has broad international support

5.1 DUNE Science Strategy

Unprecedented precision utilizing a massive Liquid Argon TPC

DUNE Primary Science Program

Focus on fundamental open questions in particle physics and astroparticle physics:

1) Neutrino Oscillation Physics

- Precision Oscillation Physics:
 - e.g. parameter measurement, θ_{23} octant, testing the 3-flavor paradigm
- 2) Nucleon Decay
 - e.g. targeting SUSY-favored modes, $p \rightarrow K^+ \overline{\nu}$
- 3) Supernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to v_e

DUNE Primary Science Program

the main discoveries Focus on fundamental open questions in partic physics and astroparticle physics:

- **1) Neutrino Oscillation Physics**
 - **Discover CP Violation in the**
 - leptonic sector
 - Mass Hierarchy
 - **Precision Osci**
 - e.g. par
- INO cav ing SUSY-favored modes, $p \rightarrow K^+ \overline{\nu}$
- upernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to v_e

 $\Rightarrow \Delta m_{12}^2$

 $|\Delta m_{32}^2|$

Long Baseline (LBL) Oscillations

Measure neutrino spectra at 1300 km in a wide-band beam

- Near Detector at Fermilab: measurements of v_{μ} unoscillated beam
- Far Detector at SURF: measure oscillated v_{μ} & v_{e} neutrino spectra

Long Baseline (LBL) Oscillations

... then repeat for antineutrinos

- Compare oscillations of neutrinos and antineutrinos
- Direct probe of CPV in the neutrino sector

- Near Detector at Fermilab: measurements of $\overline{\mathbf{v}}_{\mu}$ unoscillated beam
- Far Detector at SURF: measure oscillated \bar{v}_{μ} & \bar{v}_{e} neutrino spectra

3.2 Proton Decay

Proton decay is expected in most new physics models

- But lifetime is very long, experimentally $\tau > 10^{33}$ years
- Watch many protons with the capability to see a single decay
- Can do this in a liquid argon TPC
 - For example, look for kaons from SUSY-inspired GUT p-decay

modes such as $\,p \to K^+ \overline{\nu}$

Proton Decay

Proton decay is expected in most new physics models

- But lifetime is very long, experimentally $\tau > 10^{33}$ years
- Watch many protons with the capability to see a single decay
- Can do this in a liquid argon TPC
 - For example, look for kaons from SUSY-inspired GUTp-decay

modes such as $\,p \to K^+ \overline{\nu}$

Clean signature

Decay Mode	Water Cherenkov		Liquid Argon TPC	
	Efficiency	Background	Efficiency	Background
$p ightarrow K^+ \overline{ u}$	19%	4	97%	
$p ightarrow K^0 \mu^+$	10%	8	47%	< 2
$p ightarrow K^+ \mu^- \pi^+$			97%	1
$n ightarrow K^+ e^-$	10%	3	96%	< 2
$n o e^+ \pi^-$	19%	2	44%	0.8
		1 Mt.yr		\bigcirc

Supernova vs

A core collapse supernova produces an incredibly intense burst of neutrinos

- Measure energies and times of neutrinos from galactic supernova bursts
 - In argon (uniquely) the largest sensitivity is to $\nu_{\rm e}$

$$v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$$

Physics Highlights include:

- Possibility to "see" neutron star formation stage
- Even the potential to see black hole formation !

6: DUNE Neutrino Physics

DUNE Oscillation Strategy

Measure neutrino spectra at 1300 km in a wide-band beam

- Determine MH and θ_{23} octant, probe CPV, test 3-flavor paradigm and search for BSM effects (e.g. NSI) in a single experiment
 - Long baseline:
 - Matter effects are large ~ 40%
 - Wide-band beam:

- Measure v_e appearance and v_{μ} disappearance over range of energies
- MH & CPV effects are separable

MH Sensitivity

- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ
 - Beam spectrum, ...

MH Sensitivity

- **★** Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ

MH and CPV Sensitivities

- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ
 - Beam spectrum, ...

MH and CPV Sensitivities

- **★** Sensitivities depend on multiple factors:

Beyond discovery: measurement of δ

★ CPV "coverage" is just one way of looking at sensitivity... ★ Can also express in terms of the uncertainty on δ

UNIVERSITY OF CAMBRIDGE

Timescales: year zero = 2025

Rapidly reach scientifically interesting sensitivities:

- e.g. in best-case scenario for Mass Hierarchy :
 - Reach 5σ MH sensitivity with 20 30 kt.MW.year

~3-4 years

~6-7 years

- e.g. in best-case scenario for CPV ($\delta_{CP} = +\pi/2$) :
 - Reach 3σ CPV sensitivity with 60 70 kt.MW.year

Strong evidence

• Reach 5σ CPV sensitivity with 210 – 280 kt.MW.year

Discovery

★ Genuine potential for early physics discovery

DUNE Science Summary

DUNE physics:

48

- Game-changing program in Neutrino Physics
 - Definitive 5σ determination of MH
 - Probe leptonic CPV
 - Precisely test 3-flavor oscillation paradigm
- Potential for major discoveries in astroparticle physics
 - Extend sensitivity to nucleon decay
 - Unique measurements of supernova neutrinos (if one should occur in lifetime of experiment)

7. LBNF – a MW-scale facility 8. The DUNE Far Detector 9. The DUNE Near Detector

7. LBNF – a MW-scale facility

LBNF and PIP-II

★ In beam-based long-baseline neutrino physics:

beam power drives the sensitivity

★ LBNF: the world's most intense high-energy v beam

- 1.2 MW from day one
 - NuMI (MINOS) <400 kW
 - NuMI (NOVA) 600 700 kW
- upgradable to 2.4 MW
- **Requires PIP-II** (proton-improvement plan)
 - \$0.5B upgrade of FNAL accelerator infrastructure
 - Replace existing 400 MeV LINAC with 800 MeV SC LINAC

The LBNF Neutrino Beam

- i) Start with an intense (MW) proton beam from PIP-II
- ii) Point towards South Dakota
- iii) Smash high-energy (~80 GeV) protons into a target in hadrons
- iv) Focus positive pions/kaons
- v) Allow them to decay $\pi^+
 ightarrow \mu^+
 u_\mu$
- vi) Absorb remaining charged particles in rock
- vii) Left with a "collimated" u_{μ} beam

The LBNF Neutrino Beam

- Start with an intense (MW) proton beam from PIP-II i)
- ii) Point towards South Dakota

53

ns

8. The DUNE Far Detector

Staged Approach to 40 kt

Cavern Layout at the Sanford Underground Research Facility based on four independent caverns

- Four identical caverns hosting four independent 10-kt FD modules
 - Allows for staged construction of FD
 - Gives flexibility for evolution of LArTPC technology design
 - Assume four identical cryostats
 - But, assume that the four 10-kt modules will be similar but **not necessarily identical**

Going underground...

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850 level (~ 1 mile underground) •

Far Detector Basics

A modular implementation of Single-Phase TPC

Record ionization using three wire planes \Rightarrow 3D image •

Far Detector Basics

A modular implementation of Single-Phase TPC

Record ionization using three wire planes ⇒ 3D image

First 17-kt detector

Modular implementation of Single-Phase TPC

- Active volume: 12m x 14m x 58m
- 150 Anode Plane Assemblies
 - 6m high x 2.3m wide -
- 200 Cathode Plane Assemblies
 - Cathode @ -180 kV for 3.5m drift

Second & subsequent far detector modules

- Not assumed to be exactly the same, could be:
 - Evolution of single-phase design
 - Dual-phase readout potential benefits

Far Detector Development e.g. single-phase APA/CPA LAr-TPC:

- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (run ended 03/2016) tests of basic design

Far Detector Development

e.g. single-phase APA/CPA LAr-TPC:

- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (run ended 03/2016) tests of basic design
 - MicroBooNE (operational since 2015)
 - SBND (aiming for operation in 2018)

Far Detector Development

e.g. single-phase APA/CPA LAr-TPC:

- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (run ended 03/2016) tests of basic design
 - MicroBooNE (operational since 2015)
 - SBND (aiming for operation in 2018)
- 2 "Full-scale" prototypes (protoDUNE) at the CERN Neutrino Platform
 - Single-Phase & Dual-Phase -
 - Engineering prototypes, e.g. SP:
 - 6 full-sized drift cells c.f. 150 in the far det.
 - Aiming for operation in 2018

Far Detector Development

e.g. single-phase APA/CPA LAr-TPC:

- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (run ended 03/2016) tests of basic design
 - MicroBooNE (operational since 2015)
 - SBND (aiming for operation in 2018)
- 2 "Full-scale" prototypes (protoDUNE) at the CERN Neutrino Platform
 - Single-Phase & Dual-Phase
 - Engineering prototypes, e.g. <u>SP</u>:
 - 6 full-sized drift cells c.f. 150 in the far det.
 - Aiming for operation in 2018

9. The DUNE Near Detector

DUNE ND (in brief)

CDR design is the the NOMAD-inspired FGT

- It consists of:
 - Central straw-tube tracking system
 - Lead-scintillator sampling ECAL
 - RPC-based muon tracking systems
- Other options being studied
- The Near Detector provides:

- Constraints on cross sections and the neutrino flux
- A rich self-contained non-oscillation neutrino physics program

Will result in unprecedented samples of v interactions

- **>100 million** interactions over a wide range of energies:
 - strong constraints on systematics
 - the ND samples will represent a huge scientific opportunity

10. Political Context

★ LBNF/DUNE will be:

- The first international "mega-science" project hosted by the US
 - "do for the Neutrinos, what the LHC did for the Higgs"
- The first U.S. project run as an international collaboration
 - Organization follows the LHC model

★ LBNF/DUNE will be:

- The first international "mega-science" project hosted by the US
 - "do for the Neutrinos, what the LHC did for the Higgs"
- The first U.S. project run as an international collaboration
 - Organization follows the LHC model

★ The U.S. is serious:

- LBNF/DUNE is Fermilab's future flagship project
- Very strong support from Fermilab & the U.S. DOE
- CD3a in December funding request for excavation in FY17 currently with DOE

★ LBNF/DUNE will be:

- The first international "mega-science" project hosted by the US
 - "do for the Neutrinos, what the LHC did for the Higgs"
- The first U.S. project run as an international collaboration
 - Organization follows the LHC model

★ The U.S. is serious:

- LBNF/DUNE is Fermilab's future flagship project
- Very strong support from Fermilab & the U.S. DOE
- CD3a in December funding request for excavation in FY17 currently with DOE

★ A game-changer for CERN and the U.S.

- Historic agreement between U.S. and CERN
- US contributes to LHC upgrade (high-field magnets)
- CERN contributes to Far site infrastructure

★ LBNF/DUNE will be:

- The first international "mega-science" project hosted by the US
 - "do for the Neutrinos, what the LHC did for the Higgs"
- The first U.S. project run as an international collaboration
 - Organization follows the LHC model

★ The U.S. is serious:

- LBNF/DUNE is Fermilab's future flagship project
- Very strong support from Fermilab & the U.S. DOE
- CD3a in December funding request for excavation in FY17 currently with DOE

★ A game-changer for CERN and the U.S.

- Historic agreement between U.S. and CERN
- US contributes to LHC upgrade (high-field magnets)
- CERN contributes to Far site infrastructure
- **★** First truly global neutrino experiment

mation on the verse of in Da be optimistic that we are now interverse of in Da be optimistic that we are now interverse of intervention to be optimistic that in now interverse of the the new high thing in now interverse of the new high Even reason to be optimistic in particle physics twen reason to per big thing in particle physics big the next big thing the grades the physics of the next big thing the grades the physics the next big the grades the physics the physi

First truly global neutrino experiment

11. Opportunities on DUNE

Opportunities in DUNE DUNE is moving rapidly

- Excavation starts in 2017
- ProtoDUNE @ CERN in 2018
- Far Detector construction in 2019
- Far Detector installation in 2021

DUNE: the next large global Particle Physics project

- Actively seeking new collaborators
 - many synergies with collider experiments
- Immediate Focus in Europe will be ProtoDUNE @ CERN
- Many Opportunities:
 - Hardware: e.g. photon detection system (scintillator + SiPMs)
 - DAQ/Computing: continuous readout = high-data rates
 - Software: LAr-TPC reconstruction

Opportunities in DUNE DUNE is moving rapidly

- Excavation starts in 2017
- ProtoDUNE @ CERN in 2018
- Far Detector construction in 2019
- Far Detector installation in 202

DUNE: the next large glob

- Actively seeking p
 - many syne
 - Immedia ope will be ProtoDUNE @ CERN
 - e: e.g. photon detection system (scintillator + SiPMs)

experiments

- Q/Computing: continuous readout = high-data rates
- Software: LAr-TPC reconstruction

res:

12. Summary

Summary

★DUNE will
Probe leptonic CPV with unprecedented position
Definitively determine the MH to greater than 5 σ
Test the three-flavor hypothesis
 Significantly advance the discovery potential for proton decay
(With luck) provide a wealth of information on Supernova bursts
neutrino physics and astrophysics

Summary

 DUNE will Probe leptonic CPV with unprecedented position Definitively determine the MH to greater than 5 σ Test the three-flavor hypothesis Significantly advance the discovery potential for proton decay (With luck) provide a wealth of information on Supernova bursts neutrino physics and astrophysics 						
 This is an exciting time DUNE is now ballistic The timescales are not long: DUNE/LBNF aims to start excavation in 2017 The large-scale DUNE prototype will operate at CERN in 2018 						

Summary

DUNE will Probe leptonic CPV with unprecedented position Definitively determine the MH to greater than 5 σ Test the three-flavor hypothesis Significantly advance the discovery potential for proton decay (With luck) provide a wealth of information on Supernova bursts neutrino physics and astrophysics **★** This is an exciting time **DUNE** is now ballistic The timescales are not long: DUNE/LBNF aims to start excavation in 2017 • The large-scale DUNE prototype will operate at CERN in 2018 • An international community is forming – including CERN LBNF/DUNE represents a **major** new scientific opportunity for particle physics

Thank you for your attention

Backup Slides

Parameter Resolutions δ_{CP} & θ₂₃

• As a function of exposure

PDK p → K ν

DUNE for various staging assumptions

Beam Optimization

Beam Optimization

Following LBNO approach, genetic algorithm used to optimize horn design – increase neutrino flux at lower energies

Reconstruction

LAr-TPC Reconstruction

Real progress in last year – driven by 35-t & MicroBooNE

• Full DUNE simulation/reconstruction now in reach

Schedule

Indicative schedule

Indicative schedule

Calculating Sensitivies

Determining Physics Sensitivities

For Conceptual Design Report

- Full detector simulation/reconstruction not available
 - See later in talk for plans
- For Far Detector response
 - Use parameterized single-particle response based on achieved/expected performance (with ICARUS and elsewhere)
- Systematic constraints from Near Detector + ...
 - Based on current understanding of cross section/hadro-production uncertainties
 - + Expected constraints from near detector
 - in part, evaluated using fast Monte Carlo

Evaluating DUNE Sensitivities I

Many inputs calculation (implemented in GLoBeS):

- Reference Beam Flux
 - 80 GeV protons
 - 204m x 4m He-filled decay pipe
 - 1.07 MW
 - NuMI-style two horn system
- Optimized Beam Flux
 - Horn system optimized for lower energies
- Expected Detector Performance
 - Based on previous experience (ICARUS, ArgoNEUT, ...)

- Cross sections
 - GENIE 2.8.4
 - CC & NC
 - all (anti)neutrino flavors

Exclusive v-nucleon cross sections

Evaluating DUNE Sensitivities II

- Assumed* Particle response/thresholds
 - Parameterized detector response for individual final-state particles

Particle Type	Threshold (KE)	Energy/momentum Resolution	Angular Resolution
μ^{\pm}	30 MeV	Contained: from track length Exiting: 30 %	1 °
π^{\pm}	100 MeV	MIP-like: from track length Contained π-like track: 5% Showering/Exiting: 30 %	1 °
e±/γ	30 MeV	2% ⊕ 15 %/√(E/GeV)	1 °
р	50 MeV	p < 400 MeV: 10 % p > 400 MeV: 5% ⊕ 30%/√(E/GeV)	5°
n	50 MeV	440%/√(E/GeV)	5°
other	50 MeV	5% ⊕ 30%/√(E/GeV)	5°

*current assumptions to be addressed by FD Task Force

Evaluating DUNE Sensitivities III

Efficiencies & Energy Reconstruction

- Generate neutrino interactions using GENIE
- **Fast MC** smears response at generated final-state particle level
 - "Reconstructed" neutrino energy
 - kNN-based MV technique used for v_e "event selection", parameterized as efficiencies
- Used as inputs to GLoBES —

Evaluating DUNE Sensitivities IV

Systematic Uncertainties

- Anticipated uncertainties based on MINOS/T2K experience
- Supported by preliminary fast simulation studies of ND

Source	MINOS	T2K	DUNE	
	$ u_{e} $	$ \nu_{e} $	ν_{e}	
Flux after N/F extrapolation	0.3 %	3.2 %	2 %	
Interaction Model	2.7 %	5.3 %	~2 %	
Energy Scale (v_{μ})	3.5 %	Inc. above	(2 %)	
Energy Scale (v_e)	2.7 %	2 %	2 %	
Fiducial Volume	2.4 %	1 %	1 %	
Total	5.7 %	6.8 %	3.6 %	

- DUNE goal for v_e appearance < 4 %
 - For sensitivities used: $5 \% \oplus 2 \%$
 - where 5 % is correlated with v_{μ} & 2 % is uncorrelated v_{e} only

5: Hyper-Kamiokande

Far Detector

Hyper-K is the proposed third generation large water Cherenkov detector in the Kamioka mine

- Inner detector volume = 0.74 Mton
- Fiducial volume = 0.56 Mton
- Photomultiplier tubes: 99,000 20" inner detector & 25,000 8" outer detector

JPARC Beam for Hyper-K

- ★ Upgraded JPARC beam
- ★ At least 750 kW expected at start of experiment
 - Physics studies assume 7.5x10⁷ MW.s exposure
 - i.e. 10 years at 750 kW
 - or 5 years at 1.5 MW
 - Beam sharing between neutrinos:antineutrinos = 1:3
- **Hyper-K is off-axis**
 - Narrow-band beam, centered on first oscillation maximum
 - Baseline = 295 km important matter effects are small

Hyper-K Science Goals

Focus on fundamental open questions in particle physics and astro-particle physics:

- 1) Neutrino Oscillations
 - CPV from J-PARC neutrino beam
 - Mass Hierarchy from Atmospheric Neutrinos
 - Solar neutrinos
- 2) Search for Proton Decay
 - Particularly strong for decays with π^0
- 3) Supernova burst physics & astrophysics
 - Galactic core collapse supernova

Hyper-K Science Goals

Focus on fundamental open questions in particle physics and astro-particle physics:

- 1) Neutrino Oscillations
 - CPV from J-PARC neutrino beam matter effects are small
 - Mass Hierarchy from Atmospheric Neutrinos
 - Solar neutrinos
- 2) Search for Proton Decay
 - Particularly strong for decays with π^0
- 3) Supernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to $\overline{\nu}_e$

★ Significant complementarity with DUNE physics

Hyper-Kamiokande Physics*

★ High-statistics for v_e/\overline{v}_e appearance

Beam	am Signal			Background				Total
mode	$\nu_{\mu} \rightarrow \nu_{e}$	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	$ u_{\mu}$	$\overline{ u}_{\mu}$	ve	$\overline{\nu}_{e}$	NC	
\mathbf{v}_{μ}	3016	28	11	0	503	20	172	3750
$\overline{\mathbf{v}}_{\mu}$	396	2110	4	5	222	265	265	3397

Appearance v mode

Appearance ∇ mode

*here focus only on neutrino oscillations

CPV Sensitivity

★ CPV sensitivity from event counts

+ some shape information

Hyper-K δ_{CP} Sensitivity

★ CPV sensitivity based on:

- 10 years @ 750 kW or 5 years at 1.5 MW
- Assume MH is already known

