

Recent results and prospects of quark flavour physics at LHCb

Event 5430585 Run 153537 Wed, 03 Jun 2015 14:33:45

> Marco Gersabeck (The University of Manchester) Particle Physics Seminar, Birmingham, 16/11/2016

Two roads to discovery

New particles = New planets

ESA/Hubble

Direct searches

Reach limited by amount of fuel

ESA/Rosetta/NAVCAM

Indirect searches

Look for subtle deviations in known processes

David A. Aguilar (CfA)

Flavour physics: Fast-tracking discoveries

• $K^0 - \overline{K}^0$ mixing and smallness of $K^0 \rightarrow \mu^+ \mu^-$

GIM mechanism predicts charm quark in 1970

- Kaon CP violation
 - KM mechanism predicts bottom and top quarks in 1973
 - Charm & bottom quarks discovered: 1974+1977
- $B^0 \overline{B}^0$ oscillations discovered in 1987
 - \Rightarrow Requires $m_{top} > 50$ GeV to deactivate GIM cancellation
 - Top quark discovered: 1995

Flavour physics: Fast-tracking discoveries

- $B^0 \overline{B}^0$ oscillations discovered in 1987
 - \Rightarrow Requires $m_{top} > 50$ GeV to deactivate GIM cancellation
 - Top quark discovered: 1995

Indirect searches

- Two routes to success
 - ➡ Rare processes
 - Rare and forbidden decays
 - Small asymmetries
 - High-precision measurements of well-known processes
 - Large asymmetries
 - Symmetry tests: e.g. lepton universality

Small new effects can cause large relative changes

Small new effects can cause large changes w.r.t. precision of prediction

MANCHESTER 1824 The University of Manchester The University of Manchester The University of Manchester

High-energy proton-proton collisions → General purpose flavour experiment

Fixed target rare kaon decay experiments

Outline

- CP violation
 - Selected highlights of small and large asymmetries
- The needles in the haystack
 - ➡ Rare decays
- A brief visit to the particle zoo
 - Other physics areas
- Future directions
 - Upgrade programmes

CKM matrix

• Unitary matrix combining flavour and mass eigenstates

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Unitarity relations lead to triangles in complex plane

CKM matrix

• Unitary matrix combining flavour and mass eigenstates

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Unitarity relations lead to triangles in complex plane

$$\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} + 1 + \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = 0 \qquad \mathsf{B}_{d} \text{ triangle}$$

$$\frac{V_{us}V_{ub}^*}{V_{cs}V_{cb}^*} + 1 + \frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} = 0 \qquad \mathsf{B}_{s} \text{ triangle}$$

$$\frac{V_{ud}V_{cd}^*}{V_{us}V_{cs}^*} + 1 + \frac{V_{ub}V_{cb}^*}{V_{us}V_{cs}^*} = 0 \qquad \mathsf{D} \text{ triangle}$$

$$\frac{V_{ud}V_{cd}^*}{V_{us}V_{cs}^*} + 1 + \frac{V_{ub}V_{cb}^*}{V_{us}V_{cs}^*} = 0 \qquad \mathsf{D} \text{ triangle}$$

CKM and beyond

- A decade of precision measurements
- Huge success for BaBar and Belle

CKM today

- 2010-2020
 Enter LHCb
- Looking for these little ripples caused by particles beyond the standard model

Beauty CP violation

Measuring Y

- $\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$
- Essentially measuring the phase of V_{ub}
- Least well measured CKM angle
- Measure CP violation in $B_{(s)} \rightarrow D_{(s)}hX$ decays
- CP violation requires the interference of two amplitudes

- Many different methods
 - Combinations of B and D decays
 - Time-integrated and time-dependent

CP violation in $B^- \rightarrow D(K^+\pi^-\pi^0)\pi^-$

MANCHESTER 1824 The University of Manchester A multitude of methods

- Methods for $B^{(0,-)} \rightarrow Dh$ (h= π,K,K^*) decays
 - Observables are time-integrated ratios of rates and rate asymmetries
- ADS
 - Measure favoured B decay with doubly Cabibbo-suppressed D decay and vice versa
- GLW
 - Measure favoured/suppressed B decays with D decaying into CP eigenstate
- GGSZ
 - Measure favoured/suppressed B decays with D decaying into multi-body final state including Dalitz analysis
- In addition using $B_s \rightarrow D_s K$ decays
 - Need to perform time-dependent measurement of rates and asymmetries

MANCHESTER 1824 The University of Manchester Improving V precision

- Combining LHCb measurements of $B_{(s)} \rightarrow DK^{(*)}$ decays
- BaBar average^{*}:
 - ➡ (70±18)°
- Belle average^{*}:
 - ⇒ (73±I4)°
- LHCb improves by factor 2
- All based on tree decays
 - SM measurements
 - → Access to beyond SM particles through loops in γ measurements using B→hh(h) decays

15

*CKMFitter Summer 2014

CP violation in mixing

flavour-specific

 B_q

q

W

q

- Look for $\overline{B} \rightarrow I^+$ decays
 - → Forbidden directly, requires \overline{B} →B oscillation
- Measure asymmetry of $\overline{B} \rightarrow I^+$ and $B \rightarrow I^-$ rates
 - CP violation in mixing
- SM expectation far below current sensitivity
- Can measure this separately for B_d and B_s mesons
 - \rightarrow Separate access to $A_{sl}(B_d) \& A_{sl}(B_s)$
- Alternatively look for same-sign lepton pairs and compare I⁺I⁺ with I⁻I
 - $\Rightarrow Measures combination of A_{sl}(B_d) & A_{sl}(B_S)$

Latest results

- D0 dimuon measurement differs from SM by about 3σ
 - Difficult to motivate by non-SM physics
- Direct measurements of a_{sl}(B_d) & a_{sl}(B_S) show agreement with SM
- Possible differences in SM contribution to observables?
- LHCb has best single measurement of a_{sl}(B_d) and a_{sl}(B_s)
 - ➡ Latest: a_{sl}(B_s)=(0.39±0.26±0.20)% PRL 117 (2016) 061803

Charm CP violation

Charm: hardly a triangle

- Only up-type quark to form weakly decaying hadrons
 - Unique physics access
- Mixing
 - Huge cancellations
 - Theoretically difficult
- CP violation
 - Predictions even smaller
- Need highest precision
- Huge LHCb dataset
 - Blessing and a curse

→ Isidori, Nir, Perez, ARNPS 60 (2010) 355

Need 1000 lifetimes to see a full $D^0 - \overline{D}^0$ oscillation \rightarrow Not enough charm

in the universe!

MANCHESTER 1824 The University of Manchester Mixing-related CP violation

- Measurements based on $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays
- Measure asymmetries of effective lifetimes of decays to CP eigenstates:
 - → $A_{\Gamma} \approx a_{m} y \cos \phi + x \sin \phi = -a_{CP}^{ind}$
- Measures ability of both mass eigenstates to decay to CP eigenstate
- Prompt D^{*+}-tagged, 3 fb⁻¹ [Preliminary, LHCb-CONF-2016-009+010]

⇒ $A_{\Gamma}(KK) = (-0.30 \pm 0.32 \pm 0.14) \times 10^{-3}; A_{\Gamma}(\pi\pi) = (0.46 \pm 0.58 \pm 0.16) \times 10^{-3}$

- D from semi-leptonic B decays, μ^+ -tagged, 3 fb⁻¹ [JHEP 04 (2015) 043]
 - ⇒ $A_{\Gamma}(KK) = (-1.34 \pm 0.77 \pm 0.30) \times 10^{-3}; A_{\Gamma}(\pi\pi) = (-0.92 \pm 1.45 \pm 0.29) \times 10^{-3}$

20

The Δa_{CP} saga^{*}

• What is
$$\Delta a_{CP}$$
?

 $\Delta a_{CP} \equiv a_{CP}(K^{-}K^{+}) - a_{CP}(\pi^{-}\pi^{+}) = a_{raw}(K^{-}K^{+}) - a_{raw}(\pi^{-}\pi^{+}).$

Interplay of CP violation in decay and mixing

$$\Delta a_{CP} = \Delta a_{CP}^{\text{dir}} \left(1 + y_{CP} \frac{\overline{\langle t \rangle}}{\tau} \right) + \overline{A}_{\Gamma} \frac{\Delta \langle t \rangle}{\tau},$$

Individual asymmetries are expected to have opposite sign due to CKM structure

 $A(\overline{D}{}^{0} \to \pi^{+}\pi^{-}, K^{+}K^{-}) = \mp \frac{1}{2} \left(V_{cs} V_{us}^{*} - V_{cd} V_{ud}^{*} \right) \left(T \pm \delta S \right) - V_{cb} V_{ub}^{*} \left(P \mp \frac{1}{2} \delta P \right),$

^{*}after A. Lenz @ CHARM 2013, arXiv:1311.6447 21

Results

PRL 116 (2016) 191601

π_s+

B.

muon-tagged (2011+12 data)

 $\Delta a_{CP} = (+0.14 \pm 0.16 \,(\text{stat}) \pm 0.08 \,(\text{syst}))\%\,,$

JHEP 07 (2014) 014

CP violation

- World's best precision on charm CP violation
 - ➡ Approaching 10⁻⁴ precision
- LHCb dominating the picture
- Agreement with CP violation hypothesis at 9% level

MANCHESTER 1824 The University of Manchester CP violation in multi-body final states

- An unbinned approach
- Need to compare each event with every other
 - Computationally challenging for O(IM) events
 - Use GPUs to exploit massive parallelisation
 - → Applied to $D^0 \rightarrow \pi^+ \pi^- \pi^0$ decays
- Energy test (M.Williams, PRD 84 (2011) 054015)
 - Test statistic (T) comparing pairwise weighted distances in phase space

 $\begin{array}{l} \hline & Compare \\ D^0 \leftrightarrow D^0 \\ \hline D^0 \leftrightarrow \overline{D}^0 \\ D^0 \leftrightarrow \overline{D}^0 \end{array}$

➡ Expect T~0 (no CPV) or T>0 (CPV)

MANCHESTER 1824 The University of Manchester CP violation in multi-body final states

- An unbinned approach
- Need to compare each event with every other
 - Computationally challenging for O(IM) events
 - Use GPUs to exploit massive parallelisation
 - → Applied to $D^0 \rightarrow \pi^+ \pi^- \pi^0$ decays
- Energy test (M.Williams, PRD 84 (2011) 054015)
 - Test statistic (T) comparing pairwise weighted distances in phase space
 - $\begin{array}{c} \bullet & \text{Compare} \\ D^0 \leftrightarrow D^0 & \bullet \\ \overline{D}^0 \leftrightarrow \overline{D}^0 \\ D^0 \leftrightarrow \overline{D}^0 \end{array}$
 - ➡ Expect T~0 (no CPV) or T>0 (CPV)

MANCHESTER B24 The University of Manchester CP violation in multi-body final states

- An unbinned approach
- Need to compare each event with every other
 - Computationally challenging for O(IM) events
 - Use GPUs to exploit massive parallelisation
 - → Applied to $D^0 \rightarrow \pi^+ \pi^- \pi^0$ decays
- Energy test (M.Williams, PRD 84 (2011) 054015)
 - Test statistic (T) comparing pairwise weighted distances in phase space
 - $\begin{array}{c} \bullet \quad \text{Compare} \\ D^{0} \leftrightarrow D^{0} \\ \overline{D}^{0} \leftrightarrow \overline{D}^{0} \\ D^{0} \leftrightarrow \overline{D}^{0} \end{array} \end{array}$
 - ➡ Expect T~0 (no CPV) or T>0 (CPV)

MANCHESTER B24 The University of Manchester CP violation in multi-body final states

- An unbinned approach
- Need to compare each event with every other
 - Computationally challenging for O(IM) events
 - Use GPUs to exploit massive parallelisation
 - → Applied to $D^0 \rightarrow \pi^+ \pi^- \pi^0$ decays
- Energy test (M.Williams, PRD 84 (2011) 054015)
 - Test statistic (T) comparing pairwise weighted distances in phase space
 - $\begin{array}{c} \bullet \quad \text{Compare} \\ D^{0} \leftrightarrow D^{0} \\ \overline{D}^{0} \leftrightarrow \overline{D}^{0} \\ D^{0} \leftrightarrow \overline{D}^{0} \end{array}$
 - ➡ Expect T~0 (no CPV) or T>0 (CPV)

$3 \rightarrow 4 \text{ body}$

No-CPV hypothesis from permutations with randomised flavour tags

- $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$
 - ➡ 5-dimensional phase-space
 - ➡ Split D^0 and \overline{D}^0 (P-even)
 - And by sign of decay planes (P-odd)
 - Only marginally compatible with no-CPV hypothesis

More CP violation

MANCHESTER 1824 The University of Manchester CP violation in Baryons

- CP violation has never been measured in baryons
- Study local triple-product asymmetries
 - in bins of phase space
 - in bins of decay-plane angle
- Triple-products are robust against systematic uncertainties
- Angular bins for Λ_b→pπ⁻π⁺π⁻ show 3.3σ deviation from no-CPV hypothesis
- Weaker signals in phase-space binning and smaller $\Lambda_b \rightarrow p \pi^- K^+ K^-$ sample

Strong CP violation

- Look for $\eta^{(,)}$ in $D_{(s)}^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ decays
- BF in SM $\leq 10^{-27}$
- Constraints from nEDM ≤ 10⁻¹⁷
- Achieved world's best limit on η' and comparable to best limit on η
- Based on 2011+12+15 data including reconstruction at trigger level for 2015 data

Rare decays

Precision needle stack physics

 $B_d \rightarrow K^* \mu^+ \mu^-$

- Flavour-changing neutral current decay
 - Particular sensitivity to electromagnetic penguins
- Angular analysis can unravel contributions from different physics processes
 - Forward-backward asymmetry of muons, A_{FB}
 - \Rightarrow Longitudinal polarisation fraction of K^{*}, $F_L \propto \cos^2 \theta_K$
 - ➡ Further angular observables, S_i (i=3,4,5,6)
 - Derived observables with reduced form-factor dependence, P' = S'/√FL(I-FL)

• Some slight surprise in P₅'

- Some slight surprise in P₅'
- Now measured at higher precision

SM prediction from Descotes-Genon, Hofer, Matias, Virto, JHEP 1412 (2014) 125

Theory perspective

Z' still possible within indirect and direct constraints

Descotes-Genon et al., JHEP 06 (2016) 092

- "All [New Physics model] consistency tests^{*} we have done so far are nicely fulfilled with 3 fb⁻¹ showing robustness of data." (Matias @ Moriond EW 2015)
- "q² dependence indicates that (unexpectedly) huge charm effect mimicking $C_9^{NP} < 0$ at intermediate q² could solve the tensions as well." (Straub @ Moriond EW 2015)

* Relevant Observables included: $B \to K^* \mu^+ \mu^-$ ($P_{1,2}$, $P'_{4,5,6,8}$, F_L in all 5 large-recoil + low-recoil), $B^+ \to K^+ \mu^+ \mu^-$ and $B^0 \to K^0 \mu^+ \mu^-$, $\mathcal{B}_{B \to X_s \gamma}$, $\mathcal{B}_{B \to X_s \mu^+ \mu^-}$, $\mathcal{B}_{B_S \to \mu^+ \mu^-}$, $\mathcal{A}_I(B \to K^* \gamma)$, $\mathcal{S}_{K^* \gamma}$

Theory perspective

MANCHESTER

The University of Manchester

* Relevant Observables included: $B \to K^* \mu^+ \mu^-$ ($P_{1,2}$, $P'_{4,5,6,8}$, F_L in all 5 large-recoil + low-recoil), $B^+ \to K^+ \mu^+ \mu^-$ and $B^0 \to K^0 \mu^+ \mu^-$, $\mathcal{B}_{B \to X_s \gamma}$, $\mathcal{B}_{B \to X_s \mu^+ \mu^-}$, $\mathcal{B}_{B_S \to \mu^+ \mu^-}$, $A_I(B \to K^* \gamma)$, $S_{K^* \gamma}$

Many more LHCb results adding to the picture!

$B_{(s)} \rightarrow \mu^+ \mu^-$

 \overline{b}

 X^+

 W^{-}

- Very rare decays
 - Precise SM predictions and high sensitivity to BSM physics

 μ^{-}

- Joint analysis by CMS and LHCb
- First observation of $B_s \rightarrow \mu^{T} \mu^{T}$
- First evidence for $B_d \rightarrow \mu^{+} \mu^{-}$
- No disagreement with SM
- Now measure B_d/B_s ratio, lifetime, ...
 - Need much more data

${\cal B}(B^0_s\to \mu^+\mu^-)$	=	$(2.8^{+0.7}_{-0.6}) \times 10^{-9}$
${\cal B}(B^0\to\mu^+\mu^-)$	=	$(3.9^{+1.6}_{-1.4}) \times 10^{-10}$

 μ

 \overline{b}

S

 μ^+

 μ^{-}

 X^0

- $B_{(s)} \rightarrow \tau^+ \tau^-$ can be enhanced w.r.t. $\mu^+\mu^-$ due to greater masses
- No existing limit for B_s
- Use $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ decays
- $B(B_s \rightarrow \tau^+ \tau^-) < 2.4 \times 10^{-3}$ $B(B_d \rightarrow \tau^+ \tau^-) < 1.0 \times 10^{-3}$
- at 90% CL

$K_s \rightarrow \mu^+ \mu^-$

- Updated limit based on
 2011+12 data
- Factor ~50 improvement over previous 40-year old limit
 - ➡ 5.8×10⁻⁹ at 90% CL
- Headline result of a growing programme of strange physics at LHCb

A brief visit to the particle zoo

Other physics areas

Some examples

MANCHESTER 1824 The University of Manchester Technologies Technologies

Charm production

- Latest addition: 5 TeV
- Complements measurements at 7 TeV and 13 TeV
- Powerful constraints of gluon
 PDF at low x

Also improves atmospheric neutrino background prediction at very high energies

Gauld, Rojo, arXiv:1610.09373

Top production

- New measurement of $t\bar{t}$ production in forward region
- Based on μ + b-jet reconstruction
- b and c jet tagging

→ 2 BDTs, secondary vertex detection, corrected mass JINST 10 P06013

- Combined with W+b,c production (asymmetry) measurement
- Uncertainties comparable to theory

Higgs production

- Can LHCb see the Higgs?
 - One day maybe
- Searches in decays to $b\overline{b}$ and $c\overline{C}$
 - bb has potential with LHCb upgrade
 - cC in SM will be challenging
 - Still good chances for non-SM rates

Future directions

Upgrading flavour experiments

MANCHESTER 1824 The University of Manchester The University of Manchester

Plus lots of activity on charged lepton flavour
 MEG, mu3e, mu2e, COMET, g-2, ...

LHCb upgrade

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024-26 2027

- With increased luminosity hadron channels would saturate
 - Limited by hardware trigger
- Upgrade to allow full detector readout at 40 MHz and increased luminosity: collect ~8fb⁻¹ per year

UNDER CONSTRUCTION

- Requires several new detectors (all tracking plus RICH) and new readout electronics otherwise
- Full software trigger

MANCHESTER

The University of Manchester

- Massively improved trigger efficiencies
- Offline quality reconstruction in trigger
- Major construction project
 - Vertex Locator and RICH built in UK
- Maintain/improve current level of detector performance
- Phase-Ib consolidation and Phase-II upgrade planned in LS3 and LS4

Conclusion

- LHC(b) now taken over leading role in flavour physics
- No smoking gun signal for physics beyond the SM
 - Several hints demand more precise and complementary measurements as well as advances on the theoretical side
- Good chance that strong signals will emerge with run-2
 - Stay tuned for latest updates at CKM
- Need LHCb upgrade to probe to Standard Model level precision
- Next decade will be flavourful
 - Belle II, BESIII, COMET, g-2, LHCb run-2, LHCb upgrade(s), MEG, mu2e, mu3e, NA62

- LHC(b) now taken over leading role in flavour physics
- No smoking gun signal for physics beyond the SM
 - Several hints demand more precise and complementary measurements as well as advances on the theoretical side
- Good chance that strong signals will emerge with run-2
 - Stay tuned for latest updates at CKM
- Need LHCb upgrade to probe to Standard Model level precision
- Next decade will be flavourful
 - Belle II, BESIII, COMET, g-2, LHCb run-2, LHCb upgrade(s), MEG, mu2e, mu3e, NA62