University of Birmingham School of Physics and Astronomy seminar 4th Nov. 2015

Rare decays at LHCb:

looking for new physics in b→s $\ell^+ \ell^-$ transitions

Luca Pescatore

Outline

๏ Rare decays: a tool to search for new physics

- ✓ Motivation
- ✓ Theoretical framework
- ✓ Recent results at LHCb
- \odot An analysis of $\Lambda_b \rightarrow \Lambda^0 \mu \mu$ decays
	- ✓ Introduction
	- ✓ Differential Branching fraction measurement
	- ✓ Angular analysis
- \odot Testing lepton universality with $R_{K^{*}0}$ ratio
	- $\sqrt{R_K}$ and R_{K^*}
	- ✓ Measurement description

The SM is a very successful theory!

The SM is a very successful theory!

… but still has its limits …

Flavour: Flavour violation in the SM is ruled by the CKM matrix.

Flavour: Flavour violation in the SM is ruled by the CKM matrix.

First job for LHCb: precision measurement of CKM parameters.

It needs a solid basis to go beyond.

Flavour: Flavour violation in the SM is ruled by the CKM matrix.

Neutrino oscillations?

Indicate flavour violation beyond the SM

… then we need beyond the SM physics (BSM)

Flavour: Flavour violation in the SM is ruled by the CKM matrix.

Neutrino oscillations?

Indicate flavour violation beyond the SM

Why does it have a hierarchical structure?

… then we need beyond the SM physics (BSM)

Flavour: Flavour violation in the SM is ruled by the CKM matrix.

Neutrino oscillations?

Indicate flavour violation beyond the SM

Why does it have a hierarchical structure?

Why are there 3 families of quarks and leptons?

… then we need beyond the SM physics (BSM)

Flavour: Flavour violation in the SM is ruled by the CKM matrix.

FCNCs in the SM

Only charged currents change flavour in the SM: FCNCs are forbidden at tree level … but it could be different in BSM

School of Physics seminar L. Pescatore

4

BSM models often predict different amounts of flavour violation than the SM

BSM models

Can be almost anything as long as compatible with SM \rightarrow need to constrain the parameter space

BSM models often predict different amounts of flavour violation than the SM

BSM models Can be almost anything as long as compatible with SM \rightarrow need to constrain the parameter space MFV models FV only from CKM

Can be constrained

looking at B_d / B_s ratios

BSM models often predict different amounts of flavour violation than the SM

BSM models Simplified models Can be almost anything as long as compatible with SM \rightarrow need to constrain the parameter space MFV models Can be constrained looking at B_d / B_s ratios FV only from CKM

Mid-way model building step: can show the way.

Limited set of parameters $=$ very predictive and easy to compare with measurement

BSM models often predict different amounts of flavour violation than the SM

BSM models

Can be almost anything as long as compatible with SM \rightarrow need to constrain the parameter space

MFV models

FV only from CKM

Can be constrained looking at B_d / B_s ratios

Simplified models

Mid-way model building step: can show the way.

Z' penguins Additional Z' bosons from a U(1) gauge symmetry

School of Physics seminar L. Pescatore 5 Limited set of parameters $=$ very predictive and easy to compare with measurement

BSM models often predict different amounts of flavour violation than the SM

BSM models

Can be almost anything as long as compatible with SM \rightarrow need to constrain the parameter space

MFV models

FV only from CKM

Can be constrained looking at B_d / B_s ratios

Simplified models

Mid-way model building step: can show the way.

Z' penguins Additional Z' bosons from a U(1) gauge symmetry

Leptoquarks

Bosonic particles that carry one lepton and one quark quantum numbers

School of Physics seminar L. Pescatore 5 Limited set of parameters $=$ very predictive and easy to compare with measurement

Rare decays

- Rare decays: processes suppressed in the SM that can happen **only at loop level**.
	- **Elavour Changing Neutral Currents**
		- \rightarrow forbidden at tree level in the SM (e.g $b \rightarrow s$ or $b \rightarrow d$ transitions)
		- \rightarrow branching fractions typically \sim 10⁻⁶ or less
		- → today: mainly dealing with $b \rightarrow s \ell^+ \ell^-$ decays

arXiv:1501.03309

- **New Physics** can enter in the loops
	- ‣ Very sensitive to new physics effects \rightarrow NP enters at the same level as SM
	- ‣ No evidence in direct searches so far → loops can probe **high energy scales**

- $M(b) \ll M(W, Z, top) \Rightarrow$ an effective theory can be built
- Separate aptitude calculations into 2 parts:
	- "**long-distance**": below *b* mass scale (known SM physics)
	- "**short-distance**": above *b* mass scale (Z,W and top + all new physics)
	- An example of effective theory is the Fermi-theory of weak interactions

arXiv:1501.03309

- $M(b) \ll M(W, Z, top) \Rightarrow$ an effective theory can be built
- Separate aptitude calculations into 2 parts:
	- "**long-distance**": below *b* mass scale (known SM physics)
	- "**short-distance**": above *b* mass scale (Z,W and top + all new physics)
	- An example of effective theory is the Fermi-theory of weak interactions

- $M(b) \ll M(W, Z, top) \Rightarrow$ an effective theory can be built
- Separate aptitude calculations into 2 parts:
	- "**long-distance**": below *b* mass scale (known SM physics)
	- "**short-distance**": above *b* mass scale (Z,W and top + all new physics)
	- An example of effective theory is the Fermi-theory of weak interactions

- $M(b) \ll M(W, Z, top) \Rightarrow$ an effective theory can be built
- Separate aptitude calculations into 2 parts:
	- "**long-distance**": below *b* mass scale (known SM physics)
	- "**short-distance**": above *b* mass scale (Z,W and top + all new physics)
	- An example of effective theory is the Fermi-theory of weak interactions

Effective Hamiltonian for *b→d* and *b→s* transitions

$$
\mathcal{H}_{eff} = \frac{-4G_F}{\sqrt{2}} \left[\lambda_q^t \sum C_i(\mu) \mathcal{O}_i(\mu) + \lambda_q^u \sum C_i(\mu) (\mathcal{O}_i(\mu) - \mathcal{O}_i^u(\mu)) \right]
$$

Phys.Lett. B400 (1997) 206–219

Effective Hamiltonian for *b→d* and *b→s* transitions

Short distance

physics encoded in

the Wilson Coefficients

${\cal H}_{eff} = \frac{-4G_F}{\sqrt{2}}$ $\overline{\sqrt{2}}$ h $\lambda_q^t\sum C_i(\mu)\mathcal{O}_i(\mu) + \lambda_q^u\sum C_i(\mu)(\mathcal{O}_i(\mu) - \mathcal{O}_i^u(\mu))$

Phys.Lett. B400 (1997) 206–219

Effective Hamiltonian for *b→d* and *b→s* transitions

Phys.Lett. B400 (1997) 206–219

Effective Hamiltonian for *b→d* and *b→s* transitions

Effective Hamiltonian for *b→d* and *b→s* transitions

(Z penguin and W-box)

 \overline{S}

Effective Hamiltonian for *b→d* and *b→s* transitions

$$
\frac{C_7^{SM} = -0.3, \quad C_9^{SM} = 4.2, \quad C_{10}^{SM} = -4.2.}{C_i = C_i^{NP} + C_i^{SM}}
$$

Calculating exclusive decay amplitudes

The decay amplitude of an exclusive decay

 \rightarrow expectation value of H_{eff} given the initial and final states

$$
A(M \to F) = \langle M | \mathcal{H}_{eff} | F \rangle =
$$
 Perturbative contribution
=
$$
\frac{G_F}{\sqrt{2}} \sum V_{CKM}^i C_i(\mu) \langle M | \mathcal{O}_i(\mu) | F \rangle
$$

Hadronic matrix elements (**form factors**) describing the hadronization process. Need to be obtained with non perturbative methods e.g. Lattice QCD

Form factors = **main source of uncertainty** in theory predictions

Phenomenology of b→s $\ell^+\ell^-$ decays

Low q2

region of large hadron recoil

• photon pole \rightarrow linked to C₇

- OPE in 1/E_h applies (SCET)
- up to open-charm threshold $2m_c \sim 7 GeV^2/c^4$
- Interval 1-6 GeV²/c⁴ cleanest
	- ✓ Far from photon pole
	- ✓ Far from charm threshold

arXiv:1501.03309

$$
\frac{q^2 = 0 \t E_{K^{*0}} >> \Lambda_{QCD}}{\text{max. recoil}} \frac{F_{K^{*0}} >> \Lambda_{QCD}}{\text{large recoil}} \frac{q^2 \sim m_{J/\psi, \psi(2S)}^2}{\sqrt{C}} \frac{E_{K^{*0}} \sim \Lambda_{QCD}}{\text{low recoil}} \frac{q^2 = (m_B - m_K^{*0})^2}{\text{zero recoil}}
$$

Phenomenology of b→s $\ell^+\ell^-$ decays

High q2 region of low hadron recoil

- can use limit $m_b \rightarrow \infty$
- OPE in 1/m_b applies (HQET)
- potential contribution from charm resonances

$$
q^2 = 0
$$

\n $E_{K^{*0}} >> \Lambda_{QCD}$
\n $q^2 \sim m_{J/\psi, \psi(2S)}^2$
\n $E_{K^{*0}} \sim \Lambda_{QCD}$
\n $q^2 = (m_B - m_K^{*0})^2$
\n $\text{max. recoil} \quad \text{large recoil (SCET)}$
\n $c\bar{c} \text{ resonances}$
\nlow recoil (HQET)
\n zero recoil

Phenomenology of b→s $\ell^+\ell^-$ decays

Central q2

- Dominated by J/ψ and $\psi(2S)$
- Charm resonances through tree level b→scc transitions
- No predictions possible
- Vetoed experimentally

arXiv:1501.03309

Forward geometry optimised for for b and c decays. Fully instrumented in 2 < η < 5 Cleanest LHC events: <Pile-Up> ~ 2 in Run I 3fb-1 collected: 1fb-1 in 2011 at TeV and 2fb-1 in 2012 at 8TeV

JINST 3 (2008) S08005

Silicon tracker → Needed for precise determination of secondary vertices

B mesons travel \sim 1 cm into the detector. VeLo is essential to reconstruct secondary vertices of B and D hadrons.

JINST 3 (2008) S08005

RICH

RICH 1: before magnet for $1 < p < 70$ GeV/c RICH I1: before magnet for $20 < p < 200$ GeV/c

Provide particle ID

Essential to distinguish kinematically similar decays with different final states

JINST 3 (2008) S08005

 0.05

arbitrary scale

e

e

e

c

e

c

e

c

e

e

c

e
 $\frac{1}{2}$

 0.02

 0.01

Calorimeters

PD for charged pions rejection **SPD** for neutral pions rejection **ECAL** fully contains electrons **HCAL** for hadrons ID

Example of e/h discrimination

School of Physics seminar L. Pescatore 14

 $E_{cluster}/p_{track}$

JINST 3 (2008) S08005

Each station has 95% efficiency. Provides good triggering. Only 10 GeV/c muons pass through.

Muon detector

5 tracking station separated by iron layers Drift tubes in the outer region **GEM** in the inner region due to higher track density

Recent results

$B(B_{d/s} \rightarrow \mu^{+}\mu^{-})$

- Highly suppressed in the SM FCNC $+$ CKM $+$ helicity
- Possible tree level BSM contributions \Rightarrow very sensitive
- Leptonic decay (no hadronic uncertainties) \rightarrow Very well predicted $B(B_s \rightarrow \mu\mu) = (3.56 \pm 0.30) \cdot 10^{-9}$
- Combined measurement by LHCb and CMS

$$
\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}
$$

$$
\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}
$$

Compatible with the SM. Highly constrains SUSY.

Observables in B**→**K(*) **μμ** decays

- Decay rates of B→K^(*)µµ decays: sensitive to new physics entering the loops
- Single measurements more precise than current world average!
- All compatible with SM but also all slightly lower.

 $\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = (4.29 \pm 0.07 \text{ (stat)} \pm 0.21 \text{ (syst)}) \times 10^{-7},$ $\mathcal{B}(B^0 \to K^0 \mu^+ \mu^-) = (3.27 \pm 0.34 \text{ (stat)} \pm 0.17 \text{ (syst)}) \times 10^{-7}$, $\mathcal{B}(B^+\to K^{*+}\mu^+\mu^-)=(9.24\pm0.93\,\text{(stat)}\pm0.67\,\text{(syst)})\times10^{-7}.$

Extrapolating below J/ѱ assuming distribution as in

JHEP 06 (2014) 133,

[arXiv:1403.8044]

PRD 61 (2000) 074024

Observables in B**→**K(*) **μμ** decays

- Large uncertainties in B→K^(*) form factors calculations affect predictions
	- to maximise sensitivity measure asymmetries and ratios where the leading form factor cancel: e.g. isospin asymmetry

JHEP 06 (2014) 133, [arXiv:1403.8044]

$$
A_{I} = \frac{{\cal B}(B^0 \to K^{(*)0} \mu^+ \mu^-)- (\tau_0/\tau_+) {\cal B}(B^+ \to K^{(*)} \mu^+ \mu^-)}{{\cal B}(B^0 \to K^{(*)0} \mu^+ \mu^-)+ (\tau_0/\tau_+) {\cal B}(B^+ \to K^{(*)} \mu^+ \mu^-)}
$$

Two ratios are measured for K and K*

B0 over B+ lifetimes ratio

u, d u, d W

- Same quark level transition but charge different light spectator quark
- $A_1 \sim O(1\%)$ in SM ($\neq 0$ for m_q/m_b corrections)

Observables in B**→**K(*) **μμ** decays

- B⁺/B⁰ production asymmetry can bias the result
	- \triangleright B-factories assumed null B⁺/B⁰ production asymmetry
	- ‣ LHCb: J/ѱ modes used for normalisation
	- \rightarrow J/ ψ channels have same final daughters \rightarrow cancellations of systematics
- $A = 0$ tested against simplest alternative: constant different than zero.

School of Physics seminar L. Pescatore 20

 $B \to K^{(*)} \mu^+ \mu^-$

 $B \to K^{(*)}(J/\psi \to \mu^+\mu^-)$
 $B \to V$

B0**→**K*0**μμ** angular analysis

- Angular distributions described by 3 angles: θ_{I} , θ_{K} , ϕ
- Distributions depend on:
	- ✓ Wilson coefficients: sensitive to new physics :-)
	- and form factors :- (
- Measure variables with reduced form factor uncertainties (JHEP, 05, 2013, 137)

$$
P'_{(4,5,6,8)} = \frac{S_{(4,5,7,8)}}{\sqrt{F_L(1 - F_L)}}
$$

 F_L = fraction of longitudinally polarised dimuons Phys. Rev. Lett. 111 (2013) 191801

^p*FL*(1 *^FL*) JHEP 08 (2013) 131, [arXiv:1304.6325]

$$
\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_l d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_l \right. \\ \left. - F_L \cos^2\theta_K \cos 2\theta_l + S_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi \right. \\ \left. + S_5 \sin 2\theta_K \sin\theta_l \cos\phi + S_6 \sin^2\theta_K \cos\theta_l + S_7 \sin 2\theta_K \sin\theta_l \sin\phi \right. \\ \left. + S_8 \sin 2\theta_K \sin 2\theta_l \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \right]
$$

B0**→**K*0**μμ** angular analysis

- Angular distributions described by 3 angles: θ_{I} , θ_{K} , ϕ
- Distributions depend on:
	- ✓ Wilson coefficients: sensitive to new physics :-)

S(4*,*5*,*7*,*8)

and form factors :- (

 $P'_{(4,5,6,8)} =$

• Measure variables with reduced form factor uncertainties (JHEP, 05, 2013, 137)

^p*FL*(1 *^FL*) JHEP 08 (2013) 131, [arXiv:1304.6325] Phys. Rev. Lett. 111 (2013) 191801

$$
\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_l d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \int_{-F_L}^{F_L} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_l
$$

\n
$$
-F_L \cos^2\theta_K \cos 2\theta_l + S_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi_l + S_4 \sin^2\theta_K \sin 2\theta_K \sin 2\theta_l \cos \phi
$$

\n
$$
+ S_5 \sin 2\theta_K \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi_l
$$

B0**→**K*0**μμ** angular analysis

Lepton Universality and R_H

- **Lepton universality**: equality of the EW couplings for leptons
- Idea: test it using suppressed decays, where there is space for new physics

$$
R_H = \frac{\int_{4m_{\mu}^2}^{m_b} \frac{d\mathcal{B}(B \to H\mu^+\mu^-)}{dq^2}}{\int_{4m_{\mu}^2}^{m_b} \frac{d\mathcal{B}(B \to He^+e^-)}{dq^2}} dq^2 \qquad \begin{array}{c} q_{max}^2 \sim m_b^2 \\ q_{max}^2 \sim m_{\mu}^2 \\ H = K, K^{*0}, \phi, ... \end{array}
$$

- Universality $\rightarrow R_K \sim 1$ with $o((m_{\mu}/m_b)^2)$ corrections (JHEP 12 (2007) 040)
- Hadronic uncertainties cancel in the ratio

 \rightarrow precisely predicted: $R_K = 1.0 \pm 0.0001$

PhysRevLett.113.151601

Belle \Rightarrow R_K = 0.74^{+0.46}-0.37 PRL 103 (2009) 171801

 $BaBar \Rightarrow R_K = 1.03 \pm 0.25$ PRD 86 (2012) 032012

The R_K measurement

arXiv:1406.6482

- The *ee* channels are the challenge in this analysis:
	- ‣ **Bremsstrahlung** affects the *e* momentum
		- \rightarrow energy recovered looking at calorimeter hits

 \rightarrow Use events triggered by the electrons, by the hadrons and by other particles in the event

The R_K measurement

← **Kµµ** triggered by muons 1266 ± 41 evts

Kee in 3 categories →

 $172 + 20 + 62$ evts

$$
R_{\rm K}=0.745^{+0.090}_{-0.074}{\rm\,(stat)}~^{+0.036}_{-0.036}{\rm\,(syst)},
$$

2.6 σ **from the SM** arXiv:1406.6482

PhysRevLett.113.151601

The *ee* BR is also reported:

$$
B(B^+ \to K^+e^+e^-) = (1.56^{+0.19}_{-0.15}^{+0.06}_{-0.04}) \times 10^{-7}
$$

Global fits

- Global fits including information from many results combining many observables. [S. Descotes-Genon et al. PRD 88, 074002] [Altmannshofer et al. arxiv:1411.3161] [Beaujean et al. EPJC 74 2897]
	- ‣ A consistent picture can be built putting most results in agreement
	- ▶ Possible explanation with Z' bosons.
	- ‣ Based on assumptions
		- \rightarrow we need more data to be sure

School of Physics seminar L. Pescatore 26

A shift of C9 by -1 is favoured with respect to the SM

The analysis of the rareΛb→Λ⁰μμ decay

Rare decays and **Λb→Λ⁰μμ**

- Λ^b has non-zero spin:
	- \rightarrow complementary wrt B mesons
- Particular hadronic physics (heavy quark + diquark) \rightarrow independent form factors

 Λb→Λ⁰μμ is a FCNC

b→**s** transition: rare decay

T. Gutsche et al., PRD87 (2013) 074031

So why bother?

- Can give complementary results \rightarrow angular analysis
- Can give independent verifications of results in B physics

Reconstructing **Λ⁰** in LHCb

- Decay reconstructed using the $\Lambda^0 \rightarrow p\pi$ mode
- **Λ⁰ is a long-lived** particle and can fly a few meters into the detector
- Can be reconstructed from 2 types of tracks: long and downstream
- Characterised by different resolution and decay kinematics

Reconstructing **Λ⁰** in LHCb

- Decay reconstructed using the $\Lambda^0 \rightarrow p\pi$ mode
- **Λ⁰ is a long-lived** particle and can fly a few meters into the detector
- Can be reconstructed from 2 types of tracks: long and downstream
- Characterised by different resolution and decay kinematics

Reconstructing **Λ⁰** in LHCb

- Decay reconstructed using the $\Lambda^0 \rightarrow p\pi$ mode
- **Λ⁰ is a long-lived** particle and can fly a few meters into the detector
- Can be reconstructed from 2 types of tracks: long and downstream
- Characterised by different resolution and decay kinematics

Neural Network: NeuroBayes Training: signal MC and sideband background

using information from RICH and muon detector

Mass fits: $\Lambda_b \rightarrow \Lambda^0(J/\psi \rightarrow \mu\mu)$

Same signal shape used for rare and resonant channels

Λb→Λ⁰μμ branching fraction

• Already observed at CDF (PRL 107 2011 201802) and LHCb (PLB725 2013 25) but only in the high q^2 region, above $\psi(2S)$

- First measurement of angular observables for this decay
- In $\Lambda_b \rightarrow \Lambda^0 \mu \mu$ the Λ^0 decays weakly (v/s in B \rightarrow K* $\mu \mu$ the K* decays strongly) \rightarrow the hadronic side asymmetry is also interesting
- Fit one-dimensional angular distributions

$$
A_{\text{FB}}^{h}=\frac{1}{2}\alpha_{A}P_{z}^{A}(q^{2})
$$

New!

Differential rates
\nas a function of the angles
\n
$$
\frac{d\Gamma}{dq^2 d \cos \theta_h} \propto (1 + 2A_{FB}^h \cos \theta_h)
$$
\n
$$
\frac{d\Gamma}{dq^2 d \cos \theta_\ell} \propto \frac{3}{8} (1 + \cos \theta_\ell)(1 - f_L) + A_{FB}^\ell \cos \theta_\ell + \frac{3}{4} f_L \sin^2 \theta_\ell
$$

JHEP 1506 (2015) 115, [arXiv:1503.07138]

- First measurement of angular observables for this decay
- In $\Lambda_b \rightarrow \Lambda^0 \mu \mu$ the Λ^0 decays weakly (v/s in B \rightarrow K* $\mu \mu$ the K* decays strongly) \rightarrow the hadronic side asymmetry is also interesting
- Fit one-dimensional angular distributions

$$
A_{\text{FB}}^{h}=\frac{1}{2}\alpha_{A}P_{z}^{A}(q^{2})
$$

New!

JHEP 1506 (2015) 115, [arXiv:1503.07138]

- First measurement of angular observables for this decay
- In $\Lambda_b \rightarrow \Lambda^0 \mu \mu$ the Λ^0 decays weakly (v/s in B \rightarrow K* $\mu \mu$ the K* decays strongly) \rightarrow the hadronic side asymmetry is also interesting
- Fit one-dimensional angular distributions

$$
A_{\text{FB}}^{h}=\frac{1}{2}\alpha_{A}P_{z}^{A}(q^{2})
$$

New!

JHEP 1506 (2015) 115, [arXiv:1503.07138]

- First measurement of angular observables for this decay
- In $\Lambda_b \rightarrow \Lambda^0 \mu \mu$ the Λ^0 decays weakly (v/s in B \rightarrow K* $\mu \mu$ the K* decays strongly) \rightarrow the hadronic side asymmetry is also interesting
- Fit one-dimensional angular distributions

$$
A_{\text{FB}}^{h}=\frac{1}{2}\alpha_{A}P_{z}^{A}(q^{2})
$$

New!

JHEP 1506 (2015) 115, [arXiv:1503.07138]

- First measurement of angular observables for this decay
- In $\Lambda_b \rightarrow \Lambda^0 \mu \mu$ the Λ^0 decays weakly (v/s in B \rightarrow K* $\mu \mu$ the K* decays strongly) \rightarrow the hadronic side asymmetry is also interesting
- Fit one-dimensional angular distributions

 $PDF^{tot}(\cos \theta_i) = [f^{theory}(\cos \theta_i) + f^{bkg}(\cos \theta_i)] \times \varepsilon(\cos \theta_i)$

Angular analysis: results **New!**

- Only where the signal significance is above 3σ
- Physical boundaries in the parameter-space:
	- \rightarrow using Feldman-Cousins inspired "plug-in" method

- A^hFB is in good agreement with SM prediction
- A^IFB is compatible within 2 sigma but consistently above the prediction
	- \rightarrow Could be due large $c\bar{c}$ contributions.

Testing lepton universality: R_K*

R_{K^*} : making R_K stronger and more

$$
R_H = \frac{\int_{4m_{\mu}^2}^{m_b} \frac{d\mathcal{B}(B \to H\mu^+\mu^-)}{dq^2}}{\int_{4m_{\mu}^2}^{m_b} \frac{d\mathcal{B}(B \to He^+e^-)}{dq^2}} dq^2 \qquad H = K^{*0}
$$

- Amplitudes for different $\mathsf{B}\rightarrow \mathsf{H}\ell\ell$ are described by different combinations of left- and right-handed (C and C') Wilson coefficients
- Therefore sensitive to different kind of new physics

JHEP 1502 (2015) 055 [arXiv:1411.4773]

$$
C + C' : K, K_{\perp}^*, ...
$$

$$
C - C' : K_0(1430), K_{0,\parallel}^*, ...
$$

R_K and R_K^{*} give complementary information!

⇤0

, , ...

Selection for R_K*

- Neural Network (similarly to $\Lambda_b \rightarrow \Lambda^0 \mu \mu$)
- **PID** from variables combining information from RICH, calorimeters, muon detector and tracking

Kaon ID efficiency: ~ 95 % for ~ 5 % π \rightarrow K mis-id probability Muon ID efficiency: ~ 97 % for 1-3 % π \rightarrow µ mis-id probability

- $\cdot (1 \text{Probability})$ \bullet K: ProbNNk $) > 0.05;$
- $\cdot (1 \text{Probability}) \cdot (1 \text{Probability})$ \bullet π : ProbNNpi
- \bullet μ : ProbNNmu > 0.2 ;
- $> 0.2.$ $e: ProblemNe$

Cuts on combinations of correct ID and mis-ID variables to exploit the full PID power.

 $) > 0.1;$
Peaking backgrounds

Other decays may mimic the decays of interest:

 $\sqrt{B^+}$ \rightarrow K⁺ $\mu\mu$ plus a random pion

 $\sqrt{B_s}$ \rightarrow ϕ μμ with ϕ \rightarrow KK and a K misidentified as a π

 $\sqrt{\Lambda_b}$ decays with misidentified or misreconstructed particles

‣ Not peaking: need to be modelled in the fit

Peaking backgrounds

Other decays may mimic the decays of interest:

- $\sqrt{B^+}$ \rightarrow K⁺ $\mu\mu$ plus a random pion
- $\sqrt{B_s}$ \rightarrow ϕ μμ with ϕ \rightarrow KK and a K misidentified as a π
- ✓ Λb decays with misidentified or misreconstructed particles
	- ‣ Not peaking: need to be modelled in the fit

We give the identify of a K to the pion and recalculate the mass. A peak is present in a limited region of the plane

The HOP cut for electrons

Correct electron momentum assuming the energy is lost due to bremsstrahlung

 $p_{x,y,x}^{corr} =$ $\left(p_T^{K^{*0}} \right)$ p_T^{ee} ! $p_{x,y,z}^{meas}$ $p_T^{K^{*0}} = -p_T^{ee}$

then recompute the 4-body mass

3992

4598

8.401
421.3
1.429

Backgrounds have low values of corrected masses which allows to separate the signal.

Charmonium channels

• Charmonium channels $B\rightarrow K^*(J/\psi\rightarrow \ell\ell)$ peak in the q² spectrum.

• Naturally distinguished from the rare channels by the q^2 binning

 $[0.1,1,1,2,4,6,8] -$ J/ Ψ - [11,12.5] - $\Psi(2S)$ - [15,16,18,20]

Resonant samples used as high statistics control samples.

Mass fits: B0→K*0(J/ѱ→μμ)

• Resonant and rare samples fit simultaneously \rightarrow some shape parameters shared

Bs→K*μμ: same shape as signal but shifted in mass

• A kinematic fit is used to constrain the Jpsi mass improving the B0 mass resolution

Electron channels: trigger

• The trigger categories (with different mass shapes and efficiencies) \sqrt{LOE} \Rightarrow triggered by the electron

 \sqrt{L} L0H \Rightarrow triggered by the hadron and not the electron

 $\sqrt{2}$ L0I \Rightarrow triggered by other particles in the event (and not the first two)

• Yields parameterised as a function of a common parameter:

$$
N_{\ell\ell}=N_{J/\psi(\ell\ell)}\cdot\frac{\varepsilon^{\ell\ell}}{\varepsilon^{J/\psi(\ell\ell)}}\cdot R_{\ell\ell},
$$

Simultaneous fit to the three trigger categories

 \rightarrow Allows to get a combined result directly out of the fit

■ More stable fit as it gathers information form 3 samples at once

Electron channels: signal description

• Mass shapes depend on how many bremsstrahlung photons are recovered

✓ Fit simulation split in brem categories

 $\sqrt{\ }$ Take from simulated fractions of 0, 1 and 2 γ

✓ Build a combined PDF

Electron channels: background description

- Combinatorial: exponential
- Background from higher hadronic and leptonic resonances
- Leak of the J/ψ and ψ (2S) tails into the rare intervals

$$
B \rightarrow (Y \rightarrow K\pi X)(J/\psi \rightarrow ee) \qquad B \rightarrow (K^* \rightarrow K\pi)(Y \rightarrow J/\psi \rightarrow ee)
$$

Modelled with simulated distributions

Mass fits: B0→K*0(J/ѱ→ee)

Simultaneous fit to the three trigger categories, resonant and rate samples: shape parameters are shared.

Fitting also $\psi(2S)$ events as $\psi(S)$ events as they can leak into the high q^2 rare interval.

J/ѱ sanity check

No new physics expected in the resonant channels

 \rightarrow Ratio between them corrected for efficiency should be 1

$$
R_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))} = \frac{N_{J/\psi(\mu\mu)}}{N_{J/\psi(ee)}} \cdot \frac{\varepsilon_{J/\psi(ee)}}{\varepsilon_{J/\psi(\mu\mu)}}
$$

Good agreement is found \rightarrow almost ready to get the results out!

Result and systematics

Result as a double ratio over the resonant channels

 \rightarrow similar kinematics cancels systematic uncertainties in efficiency determination

$$
R_{K^*} = \frac{R_{ee}}{R_{\mu\mu}} = \frac{N_{ee}}{N_{J/\psi (ee)}} \cdot \frac{N_{J/\psi (\mu\mu)}}{N_{\mu\mu}} \cdot \frac{\varepsilon_{J/\psi (ee)}}{\varepsilon_{ee}} \cdot \frac{\varepsilon_{\mu\mu}}{\varepsilon_{J/\psi (\mu\mu)}}.
$$

Results not approved yet, but soon!

Systematics

- Choice of signal and background PDFs
- **Bin migration modelling**

• …

Summary

- Many interesting results from the RD group at LHCb
- Updated $B(\Lambda_b \rightarrow \Lambda^0 \mu \mu)$: uncertainties improved by a factor of ~3
- First evidence of signal al low q^2
- First measurement of angular observables
- Testing Lepton Universality with RK*
- Results coming soon!

Thank you for listening!

Backup

q2 spectrum DNA

Blake, Gershon & Hiller: arXiv:1501.03309v1

L. Pescatore Rare decays at LHCb HEPFT, 2014

51

Angular analysis: uncertainties

پ

0.6

0.8

1

Statistical uncertainties treated with likelihood ordering method

- Lepton side PDF has physical boundaries \rightarrow can bias the uncertainties
- Nuisance parameters treated with the plug-in method (arXiv:1109.0714)
	- **Based on toy experiments**
	- Well defined frequentist coverage

Dark area: region of the parameter space where the PDF is positive.

Systematics:

- Effect of a non-flat efficiency on the integration of the full 5D angular PDF
- Data-MC discrepancies (MC used for most of the efficiencies)
- Particular choice of background parameterisation
- Effect of finite angular resolution \rightarrow asymmetric bin migration

Feldman-Cousins method arXiv:physics/9711021

- Feldman-Cousins method plug-in method to extract confidence bands
	- ‣ Choose Parameters of Interest (PoI) and fit data with PoI free and fixed
	- ‣ Generate toys with PoI fixed to tested values and nuisance parameters (all other parameters) from fixed fit on data.
	- ‣ Fit toys with free and fixed PoI
	- ‣ Look how may times log likelihood ratio in data is smaller than MC
	- ‣ Scan values to look for 68%, 95% etc.

 $\left(\frac{logL_{free}}{logL_{fixed}}\right)_{data} < \left(\frac{logL_{free}}{logL_{fixed}}\right)_{MC}$

```
 Statistica Sinica 19 (2009) 301 
   arXiv:1109.0714v1
```


- Starts to be widely used in LHCb
- Allows to consider nuisance parameters: no confidence belt
- Guarantees full coverage
- Returns 2-side intervals and upper limits in a unified approach

53

Bin migration

- Events generated in a q^2 can be reconstructed in an other.
- E.g. Due to bremsstrahlung
- Can cause bias is the migration of events is asymmetric
- We generate events with different models to verify how much we are sensitive to this

HOP cut effect

Combinatorial background for high q²

In the high q^2 region - above $\psi(2S)$ - due to threshold effect the combinatorial is not exponential

By inverting the MVA cut one selects only combinatorial background!

The flavour problem and the need for New Physics

Flavour:

Assumed to be conserved in all SM interactions due to experimental evidence

Wilson coefficients

The effective theory matched with the full SM calculation at the EW scale (μ_W)

$$
C_7^{SM} = -0.3
$$
, $C_9^{SM} = 4.2$, $C_{10}^{SM} = -4.2$.

Renormalization equations allow to evolve to different scales.

Any particle above the *b* mass, including Z, W and t, affects at least one coefficient.

New physics enters into Wilson coefficients as additive factors.

$$
C_i = C_i^{NP} + C_i^{SM}
$$

hep-ph/9806471.

Operators

Separating left-handed and right-handed components:

$$
\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum_{i=1}^{10} \left[C_i \mathcal{O}_i + C'_i \mathcal{O}'_i \right] \underbrace{\qquad \qquad \text{Suppressed}}_{\text{C ams/mb C}}
$$

A complete basis is given by:

✓O1,2 : tree level

 $\sqrt{O_{3-6}}$ and O_8 : mediated by gluons

- ✓O7 : radiative penguin
- ✓O9,10 : semileptonic decays

(Z penguin and W-box)

$$
\mathcal{O}_7 = \frac{m_b}{e} (\bar{s} \sigma^{\mu \nu} P_R b) F_{\mu \nu}
$$

\n
$$
\mathcal{O}_9 = (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell),
$$

\n
$$
\mathcal{O}_{10} = (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma_5 \ell)
$$

 \boldsymbol{b} \overline{b} \mathcal{S}_{0} \mathcal{S}

arXiv:1501.03309

Right-handed operators can be obtained swapping PR and PL

Operators

Separating left-handed and right-handed components:

$$
\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum_{i=1}^{10} \left[C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right] \underbrace{\qquad \qquad \text{Suppressed}}_{\text{C ams/mb C}}
$$

A complete basis is given by:

✓O1,2 : tree level

 $\sqrt{O_{3-6}}$ and O_8 : mediated by gluons

✓O7 : radiative penguin

✓O9,10 : semileptonic decays

(Z penguin and W-box)

$$
\mathcal{O}_7 = \frac{m_b}{e} (\bar{s} \sigma^{\mu \nu} P_R b) F_{\mu \nu}
$$

\n
$$
\mathcal{O}_9 = (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell),
$$

\n
$$
\mathcal{O}_{10} = (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma_5 \ell)
$$

Right-handed operators can be obtained swapping PR and PL

School of Physics seminar L. Pescatore 59

arXiv:1501.03309

Operators

Separating left-handed and right-handed components:

$$
\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum_{i=1}^{10} \left[C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right] \underbrace{\qquad \qquad \mathcal{C} \sim m_s/m_b \mathcal{C}}_{}
$$

A complete basis is given by:

✓O1,2 : tree level

 $\sqrt{O_{3-6}}$ and O_8 : mediated by gluons

- ✓O7 : radiative penguin
- ✓O9,10 : semileptonic decays

(Z penguin and W-box)

arXiv:1501.03309

$$
\begin{aligned}\n\mathcal{O}_7 &= \frac{m_b}{\varepsilon} (\bar{s} \sigma^{\mu \nu} P_B b) F_{\mu \nu} \\
\mathcal{O}_9 &= (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell), \\
\mathcal{O}_{10} &= (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma_5 \ell)\n\end{aligned}
$$

Right-handed operators can be obtained swapping PR and PL

… and a lot more from RDWG

Analysis semileptonic B_s decays e.g. $B_s \rightarrow \varphi \mu \mu$

JHEP 07 (2013) 084, [arXiv:1305.2168] arXiv:1506.08777

Majorana neutrino and PRL 112 (2014) 131802 lepton flavour violation searches

PRL 111 (2013) 141801 PRL. 111 (2013) 141801

The LHCb detector

JINST 3 (2008) S08005

Magnet

Power: 4 Tm Polarity periodically reversed to reduce systematics

Tracking system

 $TT \rightarrow$ before magnet $OT \rightarrow$ after magnet

Precision: 0.4% at 5 GeV/c 1% at 200 GeV/c

Silicon strip and drift chambers

IP2 and DIRA

L. Pescatore Rare decays at LHCb HEPFT, 2014

62

Global fit results

Using J/ѱΛ for cross-check

L. Pescatore **Rare decays at LHCb** HEPFT, 2014

Angular acceptances

In LHCb long-lived particles, like Λ^0 , can be reconstructed with hits in the VELO (log) or without hits in the VELO (downstream).

- Up- and down-stream events are characterised by different efficiency and resolution
- A simultaneous fit is performed on the two categories

L. Pescatore **Rare decays at LHCb** HEPFT, 2014

65

Results tables

Table 6: Measured values of leptonic and hadronic angular observables. The first uncertainties are statistical and the second systematic. The statistical uncertainties on A_{FB}^{ℓ} and f_{L} are also reported in Fig. 12, evaluated as two-dimensional 68% confidence level regions. The uncertainties reported in this table are estimates obtained using the Feldman-Cousins method where only one of the two observables is treated as parameter of interest at a time.

LHCB-PAPER-2015-009

L. Pescatore **Rare decays at LHCb** HEPFT, 2014

Confidence regions

L. Pescatore Rare decays at LHCb HEPFT, 2014

67

fL values

LHCB-PAPER-2015-009

Progress with **Λb**

- Young but growing sector. Recent measurements at LHCb:
	- ‣ Lifetime: 1.482 ± 0.021 ps (PRL 111 (2013) 102003)
	- ‣ Polarisation: 0.06 ± 0.09 (PLB 724 (2013) 27)
	- ‣ Mass: 5619.44 ± 0.51 (PRL 110 (2013) 182001)
	- ‣ Hadronization fraction: (PRD 85 (2012) 032008) $f_\text{A}/f_\text{d} = (0.387 \pm 0.043) + (0.067 \pm 0.017)(\eta - 3,198)$

Angular analysis

- In $\Lambda_b \rightarrow \Lambda^0 \mu \mu$ the Λ^0 decays weakly \rightarrow unlike for B decays the hadronic side asymmetry is also interesting
- Measure two forward-backward asymmetries: in dimuon and Λ^0 system
- Selection based on a Neural Network using the NeuroBayes package
- Fit one-dimensional angular distributions

$$
PDF^{tot}(\cos \theta_i) = [f^{theory}(\cos \theta_i) + f^{bkg}(\cos \theta_i)] \times \varepsilon(\cos \theta_i)
$$

Angular analysis

- In $\Lambda_b \rightarrow \Lambda^0 \mu \mu$ the Λ^0 decays weakly \rightarrow unlike for B decays the hadronic side asymmetry is also interesting
- Measure two forward-backward asymmetries: in dimuon and Λ^0 system
- Selection based on a Neural Network using the NeuroBayes package
- Fit one-dimensional angular distributions

$$
PDF^{tot}(\cos \theta_i) = [f^{theory}(\cos \theta_i) + f^{bkg}(\cos \theta_i)] \times \varepsilon(\cos \theta_i)
$$

Λb→Λ0µµ branching ratio

- Already observed at CDF (PRL 107 2011 201802) and LHCb (PLB725 2013 25) but only in the low q^2 region
- Reconstructed using the $\Lambda \rightarrow p\pi$ mode
- J/ѱΛ as normalisation to limit systematics
- Analysis on 3fb⁻¹: ~300 observed events
- Peaking background from $B \rightarrow K_S$ decays modelled in fit. \mathcal{C}^2 200

LHCB-PAPER-2015-009 to be submitted to JHEP

Branching ratio:

5400

LHCb

preliminary

Candidates per 30.0 MeV/

Candidates per 30.0

Relative branching fraction

School of Physics seminar L. Pescatore

Λb→Λ0µµ branching ratio

- Already observed at CDF (PRL 107 2011 201802) and LHCb (PLB725 2013 25) but only in the low q^2 region
- Reconstructed using the $\Lambda \rightarrow p\pi$ mode
- J/ѱΛ as normalisation to limit systematics
- Analysis on 3fb⁻¹: ~300 observed events
- Peaking background from $B \rightarrow K_S$ decays modelled in fit. \mathcal{C}^2 200

LHCB-PAPER-2015-009 to be submitted to JHEP

Branching ratio:

5400

 $160 \rightarrow$ preliminary 180 **LHCb**

Candidates per 30.0 MeV/

Absolute branching fraction

Outer error: including normalisation (dominant)

School of Physics seminar L. Pescatore

 $M(Λμμ)$ [MeV/ c^2]

Selection

