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Outline
๏ Rare decays: a tool to search for new physics
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The flavour problem and the need for New Physics

The SM is a very successful theory!
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The flavour problem and the need for New Physics

The SM is a very successful theory!

Dark matter?

Hierarchy problem?
Matter antimatter asymmetry?

… but still has its limits …

Include gravity?
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Flavour violation in the SM is ruled by the CKM matrix.

The flavour problem and the need for New Physics

Flavour:

First job for LHCb:  precision measurement of CKM parameters.	

It needs a solid basis to go beyond.
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… then we need beyond the SM physics (BSM)
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Flavour violation in the SM is ruled by the CKM matrix.

The flavour problem and the need for New Physics

Flavour:

Neutrino oscillations?	

Indicate flavour violation beyond the SM

… then we need beyond the SM physics (BSM)

Why does it have a hierarchical structure?
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Why are there 3 families of quarks and leptons?
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Flavour violation in the SM is ruled by the CKM matrix.

The flavour problem and the need for New Physics

Flavour:

Neutrino oscillations?	

Indicate flavour violation beyond the SM

… then we need beyond the SM physics (BSM)

Why does it have a hierarchical structure?
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Charged currents: exchange of a W boson →

Only charged currents change flavour in the SM: 
FCNCs are forbidden at tree level 
… but it could be different in BSM

← Neutral currents: exchange of a Z/𝛾 boson

4

Flavour violation in the SM is ruled by the CKM matrix.

The flavour problem and the need for New Physics

Flavour:

FCNCs in the SM	
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BSM models often predict different amounts of flavour violation than the SM

5

Flavour and BSM physics

       	

      BSM models
Can be almost anything 

as long as compatible with SM 
→ need to constrain the parameter space
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Flavour and BSM physics

       	

      BSM models
Can be almost anything 

as long as compatible with SM 
→ need to constrain the parameter space

MFV models

Can be constrained	

looking at Bd / Bs ratios

FV only from CKM 
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BSM models often predict different amounts of flavour violation than the SM
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Flavour and BSM physics

       	

      BSM models

Simplified models
Mid-way model building step: can show the way.

Limited set of parameters = very predictive and easy to compare with measurement

Can be almost anything 
as long as compatible with SM 

→ need to constrain the parameter space

MFV models

Can be constrained	

looking at Bd / Bs ratios

FV only from CKM 
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Flavour and BSM physics

       	

      BSM models

Z’ penguins 
Additional Z’ bosons 	

from a U(1) gauge symmetry
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Limited set of parameters = very predictive and easy to compare with measurement
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looking at Bd / Bs ratios
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BSM models often predict different amounts of flavour violation than the SM

5

Flavour and BSM physics

       	

      BSM models

Z’ penguins 
Additional Z’ bosons 	

from a U(1) gauge symmetry

Leptoquarks 
Bosonic particles that carry one lepton 

and one quark quantum numbers

Simplified models
Mid-way model building step: can show the way.

Limited set of parameters = very predictive and easy to compare with measurement

Can be almost anything 
as long as compatible with SM 

→ need to constrain the parameter space

MFV models

Can be constrained	

looking at Bd / Bs ratios

FV only from CKM 
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Rare decays
• Rare decays: processes suppressed in the SM that can happen only at loop level.	

‣  Flavour Changing Neutral Currents                                                                                                
→ forbidden at tree level in the SM (e.g b→s or b→d transitions)                                                                                                  
→ branching fractions typically ~10-6 or less                                                                                          
→ today: mainly dealing with b→s𝓁+𝓁- decays

Penguin  
diagram

W box

arXiv:1501.03309

• New Physics can enter in the loops	

‣ Very sensitive to new physics effects                                                                                   
→ NP enters at the same level as SM 	

‣ No evidence in direct searches so far                                                                                        
→ loops can probe high energy scales
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Theoretical framework:                             
the effective Hamiltonian

7

• M(b) << M(W, Z, top) ⇒ an effective theory can be built	

• Separate aptitude calculations into 2 parts:	

• “long-distance”: below b mass scale (known SM physics)	

• “short-distance”: above b mass scale (Z,W and top + all new physics)                                                              	

• An example of effective theory is the Fermi-theory of weak interactions

Effective theory Phys.Lett. B400 (1997) 206–219	

arXiv:1501.03309
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Theoretical framework:                             
the effective Hamiltonian

7

• M(b) << M(W, Z, top) ⇒ an effective theory can be built	

• Separate aptitude calculations into 2 parts:	

• “long-distance”: below b mass scale (known SM physics)	

• “short-distance”: above b mass scale (Z,W and top + all new physics)                                                              	

• An example of effective theory is the Fermi-theory of weak interactions

Full theory Effective theory Phys.Lett. B400 (1997) 206–219	

arXiv:1501.03309

Short distance 
contribution 
associated         

with GF
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Theoretical framework:                             
the effective Hamiltonian

8

Heff =
�4GFp

2

h
�t
q

X
Ci(µ)Oi(µ) + �u

q

X
Ci(µ)(Oi(µ)�Ou

i (µ))
i

Effective Hamiltonian for b→d and b→s transitions

Phys.Lett. B400 (1997) 206–219	
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Theoretical framework:                             
the effective Hamiltonian

8

Heff =
�4GFp

2

h
�t
q

X
Ci(µ)Oi(µ) + �u

q

X
Ci(µ)(Oi(µ)�Ou

i (µ))
i

Long-distance 
described by a finite  

set of operators

Short distance 
physics encoded in  

the Wilson Coefficients

CKM factors:         �q0

q = Vq0bV
⇤
q0q

For b→s transitions Vus << Vts  

⇒ the second term can be neglected  

Effective Hamiltonian for b→d and b→s transitions

Phys.Lett. B400 (1997) 206–219	
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Theoretical framework:                             
the effective Hamiltonian

8

Long-distance 
described by a finite  

set of operators

Short distance 
physics encoded in  

the Wilson Coefficients

Effective Hamiltonian for b→d and b→s transitions

Contributions to b→s𝓁+𝓁-:	

✓O7 : radiative penguin	

✓O9,10 : semileptonic decays 	

	 (Z penguin and W-box)

Heff =
�4GFp

2

h
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Left-handed and right-handed

Heff =
4GFp

2
VtbV

⇤
ts
↵e

4⇡

10X

i=1

[CiOi + C 0
iO0

i]

In the SM: C’ ~ ms/mb C
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Theoretical framework:                             
the effective Hamiltonian
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Long-distance 
described by a finite  
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Calculating exclusive decay amplitudes

A(M ! F ) = hM |Heff |F i =

=
GFp
2

X
V i
CKMCi(µ)hM |Oi(µ)|F i

The decay amplitude of an exclusive decay 	

→ expectation value of Heff given the initial and final states

Perturbative contribution

Hadronic matrix elements (form factors) 
describing the hadronization process. 

Need to be obtained with non perturbative  
methods e.g. Lattice QCD

Form factors = main source of uncertainty in theory predictions
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Low q2  
region of large hadron recoil 

!
• photon pole → linked to C7 

!
!
!

• OPE in 1/Eh applies (SCET) 
• up to open-charm threshold            

2mc ~ 7GeV2/c4 

• Interval 1-6 GeV2/c4 cleanest 
✓ Far from photon pole                      
✓ Far from charm threshold

]4c/2 [GeV2q
0 5 10 15 20

OPEQCDF

resonances
ccbroad 

resonances
ccnarrow 

pole
photon

interference
90 - 70

 [GeV]*KE 012

10

Phenomenology of b→s𝓁+𝓁- decays

arXiv:1501.03309

q2 = m(𝓁+𝓁-)2  [GeV2/c2]
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High q2  
region of low hadron recoil 

!
• can use limit mb→∞ 
• OPE in 1/mb applies (HQET) 
• potential contribution from charm 

resonances
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Phenomenology of b→s𝓁+𝓁- decays

arXiv:1501.03309

q2 = m(𝓁+𝓁-)2  [GeV2/c2]
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Central q2  
!

• Dominated by J/ѱ and ѱ(2S) 
• Charm resonances through tree 

level b→scc transitions 

• No predictions possible 
• Vetoed experimentally

]4c/2 [GeV2q
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OPEQCDF

resonances
ccbroad 

resonances
ccnarrow 
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photon
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90 - 70

 [GeV]*KE 012

10

Phenomenology of b→s𝓁+𝓁- decays

arXiv:1501.03309

b c̄

W+
c

d̄/s̄

} J/ѱ
q2 = m(𝓁+𝓁-)2  [GeV2/c2]
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The LHCb detector

Forward geometry optimised for for b and c decays. 
Fully instrumented in 2 < η < 5 

Cleanest LHC events: <Pile-Up> ~ 2 in Run I 
3fb-1 collected: 1fb-1 in 2011 at TeV and 2fb-1 in 2012 at 8TeV

JINST 3 (2008) S08005	
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The LHCb detector

VeLo

Silicon tracker → Needed for precise determination of secondary vertices

B mesons travel ~1cm into the detector.	
VeLo is essential to reconstruct secondary 

vertices of B and D hadrons.

JINST 3 (2008) S08005	
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The LHCb detector
RICH

RICH 1: before magnet	
for 1 < p < 70 GeV/c 	

RICH I1: before magnet	
for 20 < p < 200 GeV/c 

Essential to distinguish kinematically similar decays with different final states 	

JINST 3 (2008) S08005	

Provide particle ID 
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The LHCb detector
Calorimeters

Example of e/h	
discrimination

PD for charged pions rejection	
SPD for neutral pions rejection	
ECAL fully contains electrons	

HCAL for hadrons ID 

JINST 3 (2008) S08005	
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The LHCb detector
Muon detector

5 tracking station separated 	
by iron layers	

Drift tubes in the outer region	
GEM in the inner region              

due to higher track density

Each station has 95% efficiency.	
Provides good triggering.	

Only 10 GeV/c muons pass through. 

JINST 3 (2008) S08005	
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Recent results
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B(Bd/s→μ+μ-)
• Highly suppressed in the SM FCNC + CKM + helicity	
• Possible tree level BSM contributions ⇒ very sensitive	

• Leptonic decay (no hadronic uncertainties)	
→ Very well predicted B(Bs→μμ) = (3.56±0.30)ᐧ10-9                         	

• Combined measurement by LHCb and CMS
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Compatible with the SM.	
Highly constrains SUSY.

Nature 522 (2015) 68–72, [arXiv:1411.4413].	
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• Decay rates of B→K(*)μμ decays: sensitive to new physics entering the loops                                  	
• Single measurements more precise than current world average!	

• All compatible with SM but also all slightly lower.

Extrapolating below J/ѱ 
assuming distribution as in 

PRD 61 (2000) 074024

Observables in B→K(*)μμ decays

JHEP 06 (2014) 133,	
[arXiv:1403.8044]	
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Observables in B→K(*)μμ decays
• Large uncertainties in B→K(*)  form factors calculations affect predictions	

➡ to maximise sensitivity measure asymmetries and ratios where the leading form 
factor cancel: e.g. isospin asymmetry	

!
!

!

!

!

!

• Same quark level transition but                                                                  
charge different light spectator quark                                                                                     	

• AI ~ O(1%) in SM (≠0 for mq/mb corrections)

B0 over B+ lifetimes ratio
Two ratios are measured for K and K*

JHEP 06 (2014) 133,	
[arXiv:1403.8044]	
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Observables in B→K(*)μμ decays

• B+/B0 production asymmetry can bias the result	

‣ B-factories assumed null B+/B0 production asymmetry	

‣ LHCb: J/ѱ modes used for normalisation 	

‣ J/ѱ channels have same final daughters → cancellations of systematics	

• A = 0 tested against simplest alternative: constant different than zero.

JHEP 06 (2014) 133,	
[arXiv:1403.8044]	

Compatible with 
SM within 1.5σ

B ! K(⇤)µ+µ�

B ! K(⇤)(J/ ! µ+µ�)
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B0→K*0μμ angular analysis

• Angular distributions described by 3 angles: θl, θK, ϕ	
• Distributions depend on:	

✓ Wilson coefficients: sensitive to new physics :-)	
✓ and form factors :-(	

• Measure variables with reduced form factor 
uncertainties (JHEP, 05, 2013, 137)

21

1

d�/dq2
d4�

d cos ✓ld cos ✓Kd�dq2
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9

32⇡
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(4,5,6,8) =
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JHEP 08 (2013) 131, [arXiv:1304.6325]	
Phys. Rev. Lett. 111 (2013) 191801FL = fraction of longitudinally polarised dimuons
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B0→K*0μμ angular analysis

Many observables found to be in 
agreement with the SM predictions 

BUT

Local 3.7σ deviation on P’5 
found on 2011 data and 

confirmed on 2012.

JHEP 08 (2013) 131, [arXiv:1304.6325]	
LHCb-CONF-2015-002
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Lepton Universality and RH

• Lepton universality: equality of the EW couplings for leptons	

• Idea: test it using suppressed decays, where there is space for new physics

q2
max

⇠ m2
b

q2
min

⇠ 4m2
µ

• Universality → RK ~ 1 with o((mμ/mb)2) corrections (JHEP 12 (2007) 040)	

• Hadronic uncertainties cancel in the ratio 	

➡ precisely predicted: RK = 1.0 ± 0.0001 

Belle    ⇒ RK = 0.74+0.46-0.37 

BaBar  ⇒ RK = 1.03 ± 0.25 

PRL 103 (2009) 171801	

PRD 86 (2012) 032012	

PhysRevLett.113.151601	
arXiv:1406.6482

RH =

Rmb

4m2
µ

dB(B!Hµ+µ�)
dq2

Rmb

4m2
µ

dB(B!He+e�)
dq2

dq2
H = K,K⇤0,�, ...
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The RK measurement

• The ee channels are the challenge in this analysis:	

‣ Bremsstrahlung affects the e momentum                                                          

→ energy recovered looking at calorimeter hits	

!

!

!

!

!

!

‣ Low trigger efficiency                                                     
→ Use events triggered by the electrons, by the 
hadrons and by other particles in the event 

PhysRevLett.113.151601	
arXiv:1406.6482

trigger 
by electron

trigger 
by hadron

trigger 
by other b
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The ee BR is also reported:

trigger 
by electron

trigger 
by hadron

trigger 
by other b

← Kµµ triggered by muons 

1266 ± 41 evts

Kee in 3 categories →

172 + 20 + 62 evts

PhysRevLett.113.151601	
arXiv:1406.64822.6σ from the SM

The RK measurement
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Global fits

• Global fits including information from many results combining many observables.	
[S. Descotes-Genon et al. PRD 88, 074002] [Altmannshofer et al. arxiv:1411.3161] [Beaujean et al. EPJC 74 2897] 	

‣ A consistent picture can be built putting most results in agreement	

‣ Possible explanation with Z’ bosons.	

‣ Based on assumptions                                                                                
→ we need more data to be sure
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Presented at moriond 2015



L. PescatoreSchool of Physics seminar 27

The analysis of the 

rareΛb→Λ0μμ decay
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Rare decays and Λb→Λ0μμ

T. Gutsche et al., PRD87 (2013) 074031

• Λb has non-zero spin:                                           
→ complementary wrt B mesons	

• Particular hadronic physics (heavy quark + diquark)     
→ independent form factors	

!
   Λb→Λ0μμ is a FCNC 

b→s transition: rare decay

So why bother?	

• Can give complementary results → angular analysis	

• Can give independent verifications of results in B physics	
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Reconstructing Λ0 in LHCb
!

• Decay reconstructed using the Λ0 →pπ mode 	

• Λ0 is a long-lived particle and can fly a few meters into the detector	

• Can be reconstructed from 2 types of tracks: long and downstream	

• Characterised by different resolution and decay kinematics	
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Reconstructing Λ0 in LHCb
!

• Decay reconstructed using the Λ0 →pπ mode 	

• Λ0 is a long-lived particle and can fly a few meters into the detector	

• Can be reconstructed from 2 types of tracks: long and downstream	

• Characterised by different resolution and decay kinematics	

✓ Downstream tracks 
without hits in the VELO

✓ Long tracks 
with hits in the VELO



L. PescatoreSchool of Physics seminar 30

Selection
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Selection

DecayTreeFitter:!
χ2  of a kinematically 

constrained refit"
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Selection

PID!
using information 
from RICH and 
muon detector"
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Selection
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Selection

Neural Network: NeuroBayes"
Training: signal MC and 
sideband background
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Selection

Neural Network: NeuroBayes"
Training: signal MC and 
sideband background
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Selection

Neural Network: NeuroBayes"
Training: signal MC and 
sideband background
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Mass fits:Λb→Λ0(J/ѱ→μμ)

31
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Λb→Λ0μμ branching fraction

32

• Already observed at CDF (PRL 107 2011 201802) and LHCb (PLB725 2013 25)                                    
but only in the high q2 region, above ѱ(2S)	

• Analysis on 3fb-1: ~300 observed events
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Angular analysis
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JHEP 1506 (2015) 115, [arXiv:1503.07138]	

• First measurement of angular observables for this decay	

• In Λb→Λ0μμ the Λ0 decays weakly (v/s in B→K*μμ the K* decays strongly)                                                                    
→ the hadronic side asymmetry is also interesting	

• Fit one-dimensional angular distributions 
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• First measurement of angular observables for this decay	

• In Λb→Λ0μμ the Λ0 decays weakly (v/s in B→K*μμ the K* decays strongly)                                                                    
→ the hadronic side asymmetry is also interesting	

• Fit one-dimensional angular distributions 
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35

• Only where the signal significance is above 3σ	

• Physical boundaries in the parameter-space:                                                          
→ using Feldman-Cousins inspired “plug-in” method	

!
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• AhFB is in good agreement with SM prediction	

• AlFB is compatible within 2 sigma but consistently	
       above the prediction	

       → Could be due large      contributions. cc

Physical 
region

New!

Two-dimensional 	
68% CL region

JHEP 1506 (2015) 115, [arXiv:1503.07138]	
Theory: arXiv:1401.2685
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Testing lepton universality: RK*
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RK*: making RK stronger and more

• Amplitudes for different B→H𝓁𝓁 are described by different 

combinations of left- and right-handed (C and C’) Wilson coefficients	

• Therefore sensitive to different kind of new physics

RK and RK* give complementary information!

RH =

Rmb

4m2
µ

dB(B!Hµ+µ�)
dq2

Rmb

4m2
µ

dB(B!He+e�)
dq2

dq2 H = K,K⇤0,�, ...H = K,K⇤0,�, ...

JHEP 1502 (2015) 055	
[arXiv:1411.4773]	
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Selection for RK*
• Neural Network (similarly to Λb→Λ0μμ) 	

• PID from variables combining information from RICH, calorimeters, 
muon detector and tracking	

Cuts on combinations of 
correct ID and mis-ID 

variables to exploit the full 
PID power.

Kaon ID efficiency:	
~ 95 % for ~ 5 % π→K mis-id probability	
Muon ID efficiency:	
~ 97 % for 1-3 % π→μ mis-id probability
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Peaking backgrounds
Other decays may mimic the decays of interest:	

✓ B+→K+μμ plus a random pion	

✓ Bs→ϕμμ with ϕ→KK and a K misidentified as a π	

✓ Λb decays with misidentified or misreconstructed particles	

‣ Not peaking: need to be modelled in the fit

3-body Kμμ invariant mass	

shows a narrow B+ peak	

easy to remove
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Peaking backgrounds
Other decays may mimic the decays of interest:	

✓ B+→K+μμ plus a random pion	

✓ Bs→ϕμμ with ϕ→KK and a K misidentified as a π	

✓ Λb decays with misidentified or misreconstructed particles	

‣ Not peaking: need to be modelled in the fit

We give the identify of a K	

to the pion and recalculate	

the mass.  A peak is present	

in a limited region of the plane
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The HOP cut for electrons
Correct electron momentum assuming the energy is lost due to bremsstrahlung

pcorr
x,y,x

=

 
pK

⇤0

T

pee
T

!
pmeas

x,y,z

pK
⇤0

T = �peeT

then recompute the 4-body mass

Backgrounds have low 
values of corrected 
masses which allows 

to separate the signal.
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Charmonium channels
• Charmonium channels B→K*(J/ѱ→𝓁𝓁) peak in the q2 spectrum.	

• Naturally distinguished from the rare channels by the q2 binning	

[0.1,1,1,2,4,6,8] - J/ѱ - [11,12.5] - ѱ(2S) - [15,16,18,20]

µµ ee

Resonant samples used as high statistics control samples. 



L. PescatoreSchool of Physics seminar 42

Mass fits: B0→K*0(J/ѱ→μμ)
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• Resonant and rare samples fit simultaneously → some shape parameters shared

Signal: 	
sum of two 	

Crystal Ball functions

Λb decays:	
modelled with	

a simulated shape

Bs→K*μμ:	
same shape as signal	
but shifted in mass

Combinatorial:	
exponential	

• A kinematic fit is used to constrain the Jpsi 
mass improving the B0 mass resolution	
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Electron channels: trigger

Simultaneous fit to the three trigger categories

• The trigger categories (with different mass shapes and efficiencies)	

✓ L0E ⇒ triggered by the electron	

✓ L0H ⇒ triggered by the hadron and not the electron 	

✓ L0I  ⇒ triggered by other particles in the event (and not the first two)	

• Yields parameterised as a function of a common parameter:

➡  Allows to get a combined result directly out of the fit
➡  More stable fit as it gathers information form 3 samples at once
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Electron channels: signal description

• Mass shapes depend on how many bremsstrahlung photons are recovered	

✓ Fit simulation split in brem categories	

✓ Take from simulated fractions of 0, 1 and 2 𝛾	

✓ Build a combined PDF 

]2ee) [MeV/cπm(K
4800 5000 5200 5400 5600 5800 6000 6200

2
C

an
di

dt
at

es
 p

er
 2

0 
M

eV
/c

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
 0.004± = 0.145 KstJPsEE_0g_L0E

α

  1.1± = 5247.0 KstJPsEE_0g_L0Em

  0.6± = 25.1 KstJPsEE_0g_L0Eσ

Chi2/NDF =  64.37 / 37.00

Sig. KstJPsEE

4800 5000 5200 5400 5600 5800 6000

Pu
lls

5−

0

5

]2ee) [MeV/cπm(K
4800 5000 5200 5400 5600 5800 6000 6200

2
C

an
di

dt
at

es
 p

er
 2

0 
M

eV
/c

0

500

1000

1500

2000

2500

3000

3500

4000

 0.03± = 0.39 KstJPsEE_1g_L0E
α

 0.04± = 0.88 KstJPsEE_1g_L0E
gaussf

  1.7± = 5246.2 KstJPsEE_1g_L0Em

 31.0± = 5314.4 KstJPsEE_1g_L0E
gaussm

  2.3± = 46.0 KstJPsEE_1g_L0Eσ

  8.1± = 99.1 KstJPsEE_1g_L0E
gaussσ

Chi2/NDF =  6309.06 / 47.00

Sig. KstJPsEE

4800 5000 5200 5400 5600 5800 6000

Pu
lls

5−

0

5

]2ee) [MeV/cπm(K
4800 5000 5200 5400 5600 5800 6000 6200

2
C

an
di

dt
at

es
 p

er
 2

0 
M

eV
/c

0

200

400

600

800

1000

1200

1400

1600

1800

  0.1± =  0.6 KstJPsEE_2g_L0E
α

  0.1± =  0.7 KstJPsEE_2g_L0E
gaussf

  1.5± = 5258.3 KstJPsEE_2g_L0Em

 38.4± = 5345.7 KstJPsEE_2g_L0E
gaussm

  5.7± = 50.5 KstJPsEE_2g_L0Eσ

 10.2± = 85.4 KstJPsEE_2g_L0E
gaussσ

Chi2/NDF =  52.76 / 45.00

Sig. KstJPsEE

4800 5000 5200 5400 5600 5800 6000

Pu
lls

5−

0

5

0𝛾: simple CB    1𝛾: CB+gauss    2𝛾: CB+gauss  
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Electron channels: background description 

• Combinatorial: exponential	

• Background from higher hadronic and leptonic resonances      	

• Leak of the J/ѱ and ѱ(2S) tails into the rare intervals

Modelled with simulated distributions

Only 	
resonant 	
channel

        B→(Y→KπX)(J/ѱ→ee)        B→(K*→Kπ)(Y->J/ѱ→ee)
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Mass fits: B0→K*0(J/ѱ→ee)

Simultaneous fit to the three 
trigger categories, resonant 

and rate samples: shape 
parameters are shared.
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J/ѱ sanity check

No new physics expected in the resonant channels     

Good agreement is found → almost ready to get the results out!

→  Ratio between them corrected for efficiency should be 1
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Result and systematics
Result as a double ratio over the resonant channels

→  similar kinematics cancels systematic 	
uncertainties in efficiency determination

Systematics

Results not 
approved yet, 

but soon!

• Choice of signal and background PDFs	

•  Bin migration modelling	

•  …



L. PescatoreSchool of Physics seminar 49

Thank you for listening!

• Many interesting results from the RD group at LHCb


!

• Updated B(Λb→Λ0μμ): uncertainties improved by a factor of ~3


• First evidence of signal al low q2


• First measurement of angular observables


!

• Testing Lepton Universality with RK*


• Results coming soon!

Summary
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Backup

50



L. Pescatore HEPFT, 2014Rare decays at LHCb

q2 spectrum DNA

51

Blake, Gershon & Hiller: arXiv:1501.03309v1 
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!
- Lepton side PDF has physical boundaries → can bias the uncertainties	

- Nuisance parameters treated with the plug-in method (arXiv:1109.0714)	

✓ Based on toy experiments	

✓ Well defined frequentist coverage	

!
!
!
Systematics: 

- Effect of a non-flat efficiency on the integration of the full 5D angular PDF	

- Data-MC discrepancies (MC used for most of the efficiencies)	

- Particular choice of background parameterisation	

- Effect of finite angular resolution → asymmetric bin migration

52

Angular analysis: uncertainties
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space where the PDF is positive.

Statistical uncertainties treated with likelihood ordering method
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Feldman-Cousins method
• Feldman-Cousins method plug-in method to extract confidence bands	

‣  Choose Parameters of Interest (PoI) and fit data with PoI free and fixed	

‣  Generate toys with PoI fixed to tested values and nuisance parameters (all other parameters) 
from fixed fit on data.	

‣  Fit toys with free and fixed PoI	

‣  Look how may times log likelihood ratio                                                                                                    
in data is smaller than MC	

‣  Scan values to look for 68%, 95% etc.

53

	 Statistica Sinica 19 (2009) 301   

• Starts to be widely used in LHCb	

• Allows to consider nuisance parameters: no confidence belt	

• Guarantees full coverage	

• Returns 2-side intervals and upper limits in a unified approach

arXiv:1109.0714v1

arXiv:physics/9711021
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• Events generated in a q2 can be 
reconstructed in an other.	

• E.g. Due to bremsstrahlung 	

• Can cause bias is the migration 
of events is asymmetric	

• We generate events with 
different models to verify how 
much we are sensitive to this

54
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In the high q2 region - above ѱ(2S) - due to threshold effect the combinatorial is not 
exponential 

56

Combinatorial background for high q2 
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By inverting the MVA cut one selects only combinatorial background!
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The flavour problem and the need for New Physics

Assumed to be conserved in all SM 	

interactions due to experimental evidence

μ→eee	
BR < 	1.2 × 10-11	

Nucl.Phys. B299 (1988) 1	
μ→e𝛾	

BR < 	1.0 × 10-12	
Phys.Rev. D65 (2002) 112002	

[hep-ex/0111030]	

Ann.Rev.Nucl.Part.Sci. 58 (2008) 315–341	

Flavour:
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Wilson coefficients

58

The effective theory matched with the full SM calculation at the EW scale (µW) 

Renormalization equations allow to evolve to different scales. 
Any particle above the b mass, including Z, W and t, affects at least one coefficient. 

!
!

 New physics enters into Wilson coefficients as additive factors.

CSM
7 = �0.3, CSM

9 = 4.2, CSM
10 = �4.2.

Ci = CNP
i + CSM

i

hep-ph/9806471.	
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Operators

A complete basis is given by:	

✓O1,2 : tree level	

✓O3-6 and O8 : mediated by gluons	

✓O7 : radiative penguin	

✓O9,10 : semileptonic decays 	

	 (Z penguin and W-box)	

O7 = mb
e (s̄�µ⌫PRb)Fµ⌫

O9 = (s̄�µPLb)(¯̀�µ`),
O10 = (s̄�µPLb)(¯̀�µ�5`)

Separating left-handed and right-handed components:

Right-handed operators 
can be obtained swapping 
PR and PL

Heff =
4GFp

2
VtbV

⇤
ts
↵e

4⇡

10X

i=1

[CiOi + C 0
iO0

i]
Suppressed 

C’ ~ ms/mb C

arXiv:1501.03309



L. PescatoreSchool of Physics seminar 59

Operators

A complete basis is given by:	

✓O1,2 : tree level	

✓O3-6 and O8 : mediated by gluons	

✓O7 : radiative penguin	

✓O9,10 : semileptonic decays 	

	 (Z penguin and W-box)	

O7 = mb
e (s̄�µ⌫PRb)Fµ⌫

O9 = (s̄�µPLb)(¯̀�µ`),
O10 = (s̄�µPLb)(¯̀�µ�5`)

Separating left-handed and right-handed components:

Right-handed operators 
can be obtained swapping 
PR and PL

Heff =
4GFp

2
VtbV

⇤
ts
↵e

4⇡

10X

i=1

[CiOi + C 0
iO0

i]
Suppressed 

C’ ~ ms/mb C

arXiv:1501.03309



L. PescatoreSchool of Physics seminar 59

Operators

A complete basis is given by:	

✓O1,2 : tree level	

✓O3-6 and O8 : mediated by gluons	

✓O7 : radiative penguin	

✓O9,10 : semileptonic decays 	

	 (Z penguin and W-box)	

O7 = mb
e (s̄�µ⌫PRb)Fµ⌫

O9 = (s̄�µPLb)(¯̀�µ`),
O10 = (s̄�µPLb)(¯̀�µ�5`)

Separating left-handed and right-handed components:

Right-handed operators 
can be obtained swapping 
PR and PL

Heff =
4GFp

2
VtbV

⇤
ts
↵e

4⇡

10X

i=1

[CiOi + C 0
iO0

i]
Suppressed 

C’ ~ ms/mb C

arXiv:1501.03309



L. PescatoreSchool of Physics seminar 60

… and a lot more from RDWG

Analysis semileptonic Bs decays e.g. Bs→ϕμμ
JHEP 07 (2013) 084, [arXiv:1305.2168]	

Majorana neutrino and
PRL 112 (2014) 131802 lepton flavour violation searches

PRL 111 (2013) 141801 PRL. 111 (2013) 141801	

arXiv:1506.08777
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The LHCb detector
Tracking system

TT → before magnet	
OT → after magnet	
!
Precision:	
0.4% at 5 GeV/c	
1% at 200 GeV/c	
!
Silicon strip and drift chambers	

Magnet

Power: 4 Tm	
Polarity periodically reversed	
to reduce systematics

JINST 3 (2008) S08005	
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IP𝛘2 and DIRA

62
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Global fit results
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Using J/ѱΛ for cross-check

64
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Angular acceptances
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LHCB-PAPER-2015-009

In LHCb long-lived particles, like Λ0, can be reconstructed with hits in the VELO (log)         
or without hits in the VELO (downstream). 

- Up- and down-stream events are characterised by different efficiency and resolution 

- A simultaneous fit is performed on the two categories

Long

Long

Downstream

Downstream
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Results tables

66

LHCB-PAPER-2015-009
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Confidence regions
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fL values

68
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!
• Young but growing sector. Recent measurements at LHCb: 

‣ Lifetime: 1.482 ± 0.021 ps (PRL 111 (2013) 102003) 

‣ Polarisation: 0.06 ± 0.09 (PLB 724 (2013) 27)  

‣ Mass: 5619.44 ± 0.51 (PRL 110 (2013) 182001) 

‣ Hadronization fraction: (PRD 85 (2012) 032008)                                                                                                            
fΛ/fd = (0.387 ± 0.043) + (0.067 ± 0.017)(η - 3,198)

Progress with Λb
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Angular analysis

70

New!
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• In Λb→Λ0µµ the Λ0 decays weakly                                                                     
→ unlike for B decays the hadronic side asymmetry is also interesting 

• Measure two forward-backward asymmetries: in dimuon and Λ0 system 

• Selection based on a Neural Network using the NeuroBayes package 

• Fit one-dimensional angular distributions 
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Angular analysis

70

New!

LHCB-PAPER-2015-009
Λθcos

-1 -0.5 0 0.5 1

Ca
nd

id
at

es
 p

er
 0

.2

0

10

20

30

40

50

60

70

80
LHCb

Preliminary

15 < q2 < 20 GeV2/c4

PDF tot

(cos ✓
i

) = [f theory

(cos ✓
i

) + f bkg

(cos ✓
i

)]⇥ "(cos ✓
i

)

• In Λb→Λ0µµ the Λ0 decays weakly                                                                     
→ unlike for B decays the hadronic side asymmetry is also interesting 

• Measure two forward-backward asymmetries: in dimuon and Λ0 system 

• Selection based on a Neural Network using the NeuroBayes package 

• Fit one-dimensional angular distributions 



L. PescatoreSchool of Physics seminar

Λb→Λ0µµ branching ratio

71

• Already observed at CDF (PRL 107 2011 201802) and LHCb (PLB725 2013 25)                            but only 
in the low q2 region	

• Reconstructed using the Λ→pπ mode 	

• J/ѱΛ as normalisation to limit systematics	

• Analysis on 3fb-1: ~300 observed events	

• Peaking background from B→KS decays                                                                                     
modelled in fit.

LHCB-PAPER-2015-009 

to be submitted to JHEP
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PID!
using information 
from RICH and 
muon detector!

DIRA!

DecayTreeFitter:!
χ2  of a kinematically 

constrained refit!

MVA cut
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sig = 5.893062e+00
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Training: signal MC and 
sideband background

Maximised :!
• Significance at high q2!
• Punzi FoM at low q2         

(best for unobserved 
signals)
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