

The ATLAS Inner Tracker detector for the High-Luminosity LHC upgrade

Outline

- The HL-LHC upgrade & challenges for detectors
- The ATLAS Inner Tracker (ITk) design and performance
- ITk detector modules
 - Sensor development
 - Readout electronics design
- Lightweight services
- ITk production
- Conclusion

LHC and ATLAS

The High-Luminosity LHC

CERN Accelerating science

About CERN		Students & Educators	Scientists	CERN community	
Updates	Opinion	Official communications	Announcements	Events	Staff Association

Ground-breaking ceremony for the High-Luminosity LHC

by Corinne Pralavorio

Posted by Corinne Pralavorio on 26 Jun 2018. Last updated 26 Jun 2018, 16.21. *Voir en français*

L. Gonella | Particle Physics Seminar, University of Birmingham | 10 October 2018

Sign in Directory

English Français

GOT A STORY FOR THE CERN WEBSITE?

To submit your story or event to the editorial team please click here.

UPDATES

LHC Report: Investing in the future 26 Jun 2018

Successfully switching careers as a scientist 26 Jun 2018

Broadening access to STEM 26 Jun 2018

Presidential visits to CERN 26 Jun 2018

Computer security: Scaling out intrusion detection 25 Jun 2018

more >

Search this site Search

L

The High-Luminosity LHC

- Higher energy and luminosity benefit searches for new particles, precision measurements and study of rare processes but pose severe challenges to the detectors
- The vertex and tracking detectors, being the closest to the IP, will need significant upgrade

L. Gonella | Particle Physics Seminar, University of Birmingham | 10 October 2018

00

Particle density and data rate

With an instantaneous peak luminosity up to 7.5 x 10³⁴ cm⁻²s⁻¹ the mean number of interactions per bunch crossing (i.e. every 25 ns) is 200 (pile-up) → high particle density and data rate

 Finely segmented detectors and fast readout electronics are needed to keep low hit occupancy [hits/cm²/sec]

Radiation levels

- The integrated luminosity of 4000 fb⁻¹ results in x10 radiation damage with respect to LHC
 - Fluence up to 1.3 x 10¹⁶ 1 MeV n_{eq}/cm^2
 - Total Ionising Dose up to 10MGy = 1 Grad

Radiation hard technologies for sensor and electronics

More challenges

Material budget

- Multiple scattering and nuclear interactions in tracker material limit tracker and calorimeter performance
- Dominant source of material are services and support structures

- Hermeticity and sufficient number of hits over large angular acceptance
 - Particles originating from within the 30cm-long beam spot should hit a sensor in each layer they traverse
 - A high number of hits is needed for good tracking efficiency but a tradeoff with the amount of material has to be found
- Cost should be minimised
- All these challenges have to be met while keeping the same tracking performance of the current ATLAS tracking detector

ATLAS tracker upgrade

- The current ATLAS Inner Detector (ID) needs to be replaced for the HL-LHC
 - Severe radiation damage to all components
 - TRT technology cannot cope with hit occupancy
- ATLAS is planning a new all-silicon Inner Tracker (ITk) using state-of-the-art silicon technologies and optimised design of all detector components

ITk layout

- Pixel detector
 - Cover to $\eta = 4.0$
 - 13 m² of silicon sensors
 - Design optimised to **improve hit coverage with less material**
 - Inclined modules
 - Endcap-ring system
 - Two innermost layers designed to be replaceable to cope with radiation environment

ITk layout

- Strip detector
 - Cover to η = 2.7
 - 165 m² of silicon sensors
 - 4 barrel layers and 6 endcap
 - Modules loaded on both side of support structure with small stereo angle giving the second coordinate measurement

ITk material budget

- The material of the ITk is significantly less than for the ID at almost all η
- The main drivers for the improvement are
 - Thinner silicon
 - Innovative power distribution schemes
 - Optimized routing of services
 - Rigid mechanical structure with lightweight carbon foam core

ITk track parameters resolution

- Longitudinal impact parameter resolution (pile-up rejection)
 - Improved by pixel finer segmentation in z (50 μm instead of 250 μm)
- Transverse impact parameter resolution (btagging)
 - Worse resolution at high p_T due to larger radius of inner pixel layer (39mm instead of 33.5mm; radiation and data rate prohibitive at smaller radii)
- Transverse momentum resolution
 - Improved by almost a factor 2 thanks for the higher precision of the strip detector wrt. TRT
- Lower material benefits all track parameters resolution

ITk detector modules

Silicon detector technologies for the ITk

Hybrid pixel detector concept

Flex

- Developed for operation at the LHC
- Baseline concept for ITk pixel detector

Sensor

Optimised sensor design

FEIx

- New CMOS technology for the readout chip
- Sensor and readout electronics are separate entities connected via fine pitch bump bonds

Stave surface

- Each pixel is connected to one readout channel in the FE chip

Wire-bond

- Expensive, non-commercial hybridization process
- Electrical interface, flex, glued on sensor backside
 - Hosts passive components and auxiliary chips (i.e. for data aggregation and transmission)

DMAPS in commercial CMOS technology

- Monolithic active pixels sensors (MAPS)
 - Sensor and readout electronics in the same substrate
 - Originally developed for low rate applications (STAR and ALICE ITS)
- Recent development with commercial CMOS technologies improve radiation-hardness and high rate capability
 → Depleted MAPS
- No hybridisation and advantages of commercial fabrication process
 → low cost and ease of construction
- Candidate technology for pixel outermost layer

Strip detector module

- Hybrid concept with separated sensor and readout electronics
- Two electrical interfaces, hybrid flex and power board, glued on the sensor front-side
- Readout ASICs and data aggregator chip are glued on the hybrid flex and wire bonded to the sensor
 - Each strip is connected to one readout channel in the FE chip
- Power distribution is provided via the power board

Module types in the ITk

- To provide hermetic coverage, different module configurations are need resulting in a large number of different sensors and hybrid/flex flavours
- Pixel modules can be single, dual, or quad depending on whether the sensor is bump bonded to one, two, or four FE chips
- Strips

Sensor development

Radiation tolerant silicon sensors

- High energy particles introduce complex lattice defects in the silicon bulk, i.e. energy levels in the silicon band gap
- Increased leakage current
 - Shot noise
 - Temperature increase → higher leakage current → need to cool sensors to avoid thermal runaway
- Change in effective doping concentration
 - Change in charge collection volume
- Charge trapping
 - Smaller sensor signal

	Max fluence [1 MeV n _{eq} /cm ²]
Pixel	1.3 x 10 ¹⁶
Strip	1.2 x 10 ¹⁵

To mitigate these effects charge should be collected by drift

Drift based silicon sensors

- Drift based silicon sensors work as a reverse biased pn-junction
- Low doped, i.e. high resistivity, silicon bulk with highly doped collection electrodes
 - The segmentation (pitch, d) of the contacts defines the **spatial resolution** (σ)
- High (reverse) bias voltage (V_{bias})
 - Depletion grows into the substrate
 - Electric field
- Traversing charged particles create e-/h+ pairs
- Movement of charges (i.e. drift in electric field) towards the electrodes generates a signal
 - Large collected charge, fast charge collection, radiation-hard

Cross section of a silicon sensor

Planar pixel and strip sensors

- **n-in-p** configuration for both strips and pixels
 - In the ID strips are p-in-n and pixels n-in-n
 - Signal from electrons faster than holes
 - One sided process, simpler and cheaper than n-in-n
- Optimised design of bias structure and edge region to obtain uniform electric field
- Pixel pitch 50 x 50 or 25 x 250 μm², thickness 100-150 μm
- Strip pitch 75 μm x 25-50 mm, thickness 300-320 μm

3D sensors

- Alternative geometry for pixel sensors that provides higher radiation tolerance by design: drift path decoupled from particle path
 - First application in the IBL detector
- Electrodes penetrate vertically in the sensor bulk
 - Shorter charge collection distance \rightarrow less charge trapping
 - High field with low voltage → lower power, i.e. heat, after irradiation
- Technology of choice for pixel inner layer

	IBL	HL-LHC	
Pixel size [µm ²]	50 x 250	50 x 50	25 x 100
Electrode config	2E	1E	2E
Electrode spacing [µm]	67	35	27
Thickness [µm]	230	230	
Rad-hard [1MeV n _{eq} /cm ²]	9 x 10 ¹⁵	1.4 x 10 ¹⁵	

CMOS sensors

- Recently commercial CMOS technologies have become available with HV capability on HR substrate
 - Imaging sensors market
- CMOS sensors investigated as a possible replacement of traditional silicon sensors for hybrid pixels or to develop DMAPS detectors for the pixel outmost layer
 - Significant advantages in terms of cost and large area production
 - Demonstrated adequate radiation tolerance

Readout electronics design

Readout electronics

- Basic functionality
 - The signal from pixel and strip sensors is integrated, amplified and digitized by the FE chip
 - The FE chips stores the hit information and sends it to the detector data acquisition system upon arrival of the trigger signal
 - Different readout architectures are developed based on the rate and radiation levels
- To cope with the high hit rate, fast readout with high logic density (i.e. memory) is needed
- Smaller feature size CMOS technologies are used for the ITk
 - **65 nm** CMOS for the pixel FE (130 and 250 nm in ID pixel)
 - 130 nm CMOS for the strip FE (250 nm in ID strip)

Radiation hardness of CMOS technologies

- Total ionising dose effects
 - Charge trapping in thick isolation oxides and at the oxide-silicon interfaces lead to degradation of the performance of MOSFETs transistors
 - Dependent on dose rate and temperature history of the FE (annealing)
- Single Event Effects, **SEE**
 - Local ionisation effects that change the status of memory cells
- Deep submicron CMOS technologies provide adequate radiation tolerance provided mitigation strategies are put in place
 - Pixel innermost layers will be replaced after 2000 fb⁻¹
 - Strip detector operational T profile devised to reduce the effects of TID
 - Triplicated logic and reset schemes to protect against SEE

	TID [Mrad]		
Pixel	10 ³		
Strip	50		

Readout for HL-LHC innermost layers

- Very innovative design based on a new readout architecture
- Analog "islands" in a digital synthesized "sea"
- Collection of large digital cores containing many regions
 - Complex functionality in the pixel matrix
 - Resources shared among many pixels
- 2 dimensional digital connectivity
- Smart clustering in the pixel matrix to send most information with least bandwidth (5.12 Gbps/chip)

Strip FE readout chip: ABCStar

- 256 readout channels with binary readout
- Design compatible with multi-level trigger scheme (increased buffering per channel)
 - Single Level- 0 trigger (L0) at 1 MHz with a maximum latency of 10 μ s
 - L0-L1 trigger: information from ITk used as input for a second level L1 trigger signal combined with calo and muon data
 - L0 readout at 1 MHz for 10% of the modules belonging to the Region of Interest (RoI) identified at L0, followed by full read-out at L1 at 400 kHz
- LCB protocol
 - L0, commands, and bunch crossing ID sent in one encoded data stream designed to allow triggering on 4 consecutive bunch crossings
- L0 tag
 - The L0ID is generated by the DAQ and attached as a tag to the L0
 - Modules receive the L0ID and send back data with this identifier
 - Errors affect only one frame (i.e. 4 triggers)
 - No need for synchronized counters in chip and DAQ

Strip FE TID characterization

- Low temperature, low dose rate irradiations show a current evolution with TID compatible with the radiation induced narrow channel effect typical of 130 nm CMOS technology node
 - Current increase due to positive charge trapped in the later STI
 - Current decrease due to later built-up of negative interface states
 - Effect well characterised, model available to predict current peak at different T and dose rate
- FE noise increase with TID mitigated by the use of enclosed layout transistors

Lightweight services

A A A

Power distribution

 Tracking detectors for high rate environments are power hungry devices → high current consumption

- Traditional tracking detectors power distribution scheme
 - Each module is powered independently with a constant voltage
 - High number of long cables with large cross section
 - At the LHC cable channels are saturated, services dominate the material budget, power efficiency is below 50%
- Readout electronics design for the HL-LHC optimises power consumption against rate requirements but given the larger number of detector channels, the power consumption will be higher than then ID → New powering schemes are needed to reduce the transmitted current
 - Serial powering for the pixel detector
 - DC-DC conversion for the strip detector

Serial powering for pixels

- Current based powering scheme
 - N nodules are powered in series by a constant current = current for one module
 - Voltages are generated by regulators on-chip
- Wrt. a conventional voltage based powering scheme the transmitted current scales of a factor N: I → I/N
 - Smaller cable cross section
 - Reduced power losses on the cables
- Number of modules in the chain is a trade-off between redundancy, quality of data transmission, and amount of cables
- Dedicated developments
 - Integrated regulator to convert input current to stable voltage for FE chips, Shunt-LDO
 - Bypass chip to disconnect faulty modules from the chain
 - Both need to meet the radiation requirements

DC-DC conversion

- Power transmitted at high voltage and low current to the modules
- x2 DC-DC buck converter on module
 - Radiation-hard tolerant converter development by CERN PH-ESE group
- Optimised integration of regulator and coil on power board to shield module from EMI
 - Solenoidal flat coil geometry to fit into available space
 - Shield made of a mix of aluminium and copper
 - Demonstrated electric and magnetic fields shielding whilst still maintaining a target efficiency of 75% at the nominal load of 2 A

ITk production

- And

Production of a 200m² silicon tracker

- The production of the ATLAS ITk is a challenge as much as the R&D to identify the right technologies and design for the components
- Quality control and quality assurance
 - Assure component reliability in extreme experimental conditions
 - Monitor rate and quality of production to detect problems that may arise and stop production
- Industrialised production flow
 - Common tooling development and assembly procedures
- Database
 - Store information from all detector elements QC and QA during production
 - Track the geographic location and utilisation of all parts during construction
 - Debugging of faulty conditions during operation

Conclusion

- To benefit from the physical potential of the HL-LHC the ATLAS experiment is preparing the replacement of its inner tracking system
- The new, all-silicon Inner Tracker (ITk) maintains and in some cases improves the tracking performance of the ATLAS detector while coping with 200 pile-up events per collision
- Radiation tolerant sensor and readout electronics prototypes have demonstrated the required functionality
- Production is due to start in 2020 for the strip detector and in 2021 for the pixel detector. The 200m² ITk detector will be produced in three years.