

Search for Hidden Particles

K. A. Petridis

University of Bristol

April 27, 2016

э

Important questions

why

J

Google

why do we yawn why is the sky blue why am i always tired why do we dream

Press Enter to search.

- What is the origin of dark matter?
- What is the origin of CP violation in the universe?
- What is the origin of neutrino masses
- ▶ Why is there a hierarchy of fermion masses?
- ▶ Why do elements of the CKM matrix have a large spread?

The Standard Model (SM) for all its success has no answers to these

Not clear what the scale of New Physics is and what is the coupling strength of NP to the SM $\,$

A 16 N A 16

How do we search for new physics?

The picture of new physics

 \blacktriangleright Large number of direct searches resulting in no new physics at scales up to $\sim 5\,\text{TeV}$

▶ Notable anomalies in $\gamma\gamma$ excess (maybe) but no smoking gun...

★ 3 > < 3</p>

Image: A matrix and a matrix

The picture of new physics

Even more stringent constraints through indirect flavour measurements SHIP

 ΔF =2 processes scale as 1/ Λ^2 ΔF =2 processes scale as 1/ Λ^2

- Notable anomalies in $b
ightarrow c \ell
u$ and $b
ightarrow s \ell \ell$ but no smoking gun...

A Hidden Sector

New particles are light (rather than heavy) and interact very weakly with SM particles (through portals)

$$\mathcal{L}_{\mathrm{World}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{portal}} + \mathcal{L}_{\mathrm{HS}}$$

- Such particles found in very wide range of theories
 - $\,\vartriangleright\,$ SUSY \rightarrow light neutralino with RPV/light goldstinos associated with symmetry breaking
 - \triangleright Extra-dimensions \rightarrow Axion Like Particles at Fermi Scale
 - $\,\triangleright\,$ Hidden sector models $\rightarrow\,$ New particles at Fermi scale which are singlets of the SM gauge group

In all these models, interactions can be sufficiently weak, evading precision flavour and electroweak constraints

(日) (周) (日) (日)

Examples of portals

New light and weakly interacting particle:

- ► Scalar (via Higgs coupling): $\mathcal{L}_{\text{portal}} = (\lambda_i S_i^2 + g_i S_i) H^{\dagger} H$
- Vector (via mixing with photon): $\mathcal{L}_{\text{portal}} = \epsilon F'_{\mu\nu} F_{\mu\nu}$
- Axion-like (via mixing/coupling with photon/gluon/fermions):

 *L*_{portal} = ∂_μAψ̄γ^μγ⁵ψ,
 ¹/₂ ϵ^{μνρσ} F_{ρσ} F_{μν}A
- Neutrino (νMSM via yukawa coupling):

 *L*_{portal} = F_α (L_α ΦN)

Physics proposal including > 80 theorists

[arXiv:1504.04855]

A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case

Sergey Alekhin,1.2 Wolfgang Altmannshofer,3 Takehiko Asaka,4 Brian Batell,5 Fedor Bezrukov, 6,7 Kyrylo Bondarenko,8 Alexey Boyarsky*,8 Nathaniel Craig,9 Ki-Young Choi,¹⁰ Cristóbal Corral,¹¹ David Curtin,¹² Sacha Davidson,^{13,14} André de Gouvea,¹⁵ Stefano Dell'Oro.16 Patrick deNiverville.17 P. S. Bhupal Dev.18 Herbi Dreiner.19 Marco Drewes,20 Shintaro Eijima,21 Rouven Essig,22 Anthony Fradette,17 Björn Garbrecht,20 Belen Gavela,23 Gian F. Giudice,5 Dmitry Gorbunov,24,25 Stefania Gori,3 Christophe Grojean[§],^{26,27} Mark D. Goodsell,^{28,29} Alberto Guffanti,³⁰ Thomas Hambye,³¹ Steen H. Hansen, 32 Juan Carlos Helo, 11 Pilar Hernandez, 33 Alejandro Ibarra, 26 Artem Ivashko,8,34 Eder Izaguirre,3 Joerg Jaeckel[§],35 Yu Seon Jeong,36 Felix Kahlhoefer,27 Yonatan Kahn,37 Andrey Katz,5,38,39 Choong Sun Kim,36 Sergey Koyalenko,11 Gordan Krnjajc.³ Valery E. Lyubovitskii,^{40,41,42} Simone Marcocci.¹⁶ Matthew Mccullough.⁵ David McKeen,43 Guenakh Mitselmakher,44 Sven-Olaf Moch,45 Rabindra N. Mohapatra,46 David E. Morrissey,47 Maksym Ovchynnikov,34 Emmanuel Paschos,48 Apostolos Pilaftsis,18 Maxim Pospelov[§],^{3,17} Mary Hall Reno,⁴⁹ Andreas Ringwald,²⁷ Adam Ritz,¹⁷ Leszek Roszkowski,50 Valery Rubakov,24 Oleg Ruchavskiv*,21 Jessie Shelton,51 Ingo Schienbein,52 Daniel Schmeier,19 Kai Schmidt-Hoberg,27 Pedro Schwaller,5 Goran Senjanovic, 53,54 Osamu Seto, 55 Mikhail Shaposhnikov*, §, 21 Brian Shuve, 3 Robert Shrock,⁵⁶ Lesya Shchutska[§],⁴⁴ Michael Spannowsky,⁵⁷ Andy Spray,⁵⁸ Florian Staub,⁵ Daniel Stolarski,⁵ Matt Strassler,³⁹ Vladimir Tello,⁵³ Francesco Tramontano[§],^{59,00} Anurag Tripathi,⁵⁹ Sean Tulin,⁶¹ Francesco Vissani,^{16,62} Martin W, Winkler,⁶³ Kathryn M. Zurek^{64,65}

Mill of these areas

Concrete example: the νMSM

Asaka, Shaposhnikov [PLB620(2005)17]

 Minimally extend the SM by introducing 3 right-handed SM singlet Majorana neutrinos (Heavy Neutral Leptons)

- N_1 can provide a dark matter candidate
- > $N_{1,2,3}$ can provide neutrino masses via the seesaw mechanism
- ▶ $N_{2,3}$ can induce leptogenesis → baryogenesis

Image: Image:

Closer look at $N_{1,2,3}$ of the ν MSM

$$\delta \mathcal{L} = \bar{N}_I i \partial_\mu \gamma^\mu N_I - F_{\alpha I} \, \bar{L}_\alpha N_I \Phi - \frac{M_I}{2} \, \bar{N}_I^c N_I + h.c.$$

▶ Both Dirac $(M_D = F\langle \Phi \rangle)$ and Majorana (M_I) mass terms included and are $\leq M_{\rm EWK}$ No additional energy scale required

• See-saw mechanism for ν masses constrains yukawa coupling (U) and $M_{N_{2,3}}$ since $m_{\nu} = \frac{M_D^2}{M_N} \sim \frac{U^2 \langle H \rangle^2}{M_N}$ \rightarrow Since $M_N \leq M_{\rm EWK}$ have small U in order to satisfy m_{ν}

Closer look at $N_{1,2,3}$ of the uMSM cont'd

- ► N₁ provides DM candidate if sufficiently stable → 1 < M_{N1} < 5keV to satisfy cosmological constraints → very weak mixing parameters with other leptons
 - ightarrow one active neutrino with $m_
 u \sim 10^{-5} {
 m eV}$
- ► Baryogenesis: $M_{N2} \sim M_{N3} = M_N$, CP phases from F_{al} tuned to explain Baryon Asymmetry of Universe
- \blacktriangleright Big Bang Nucleosynthesis: $M_N>1{\rm GeV}$ and $\tau_N<0.1{\rm s}$ to maintain $H1/He4\sim75/25\%$

Closer look at $N_{1,2,3}$ of the ν MSM cont'd

▶ N_1 provides DM candidate if sufficiently stable → $1 < M_{N_1} < 5$ keV to satisfy cosmological constraints → very weak mixing parameters with other leptons → one active neutrino with $m_{\nu} \sim 10^{-5}$ eV

- ▶ Baryogenesis: $M_{N2} \sim M_{N3} = M_N$, CP phases from F_{al} tuned to explain Baryon Asymmetry of Universe
- ▶ Big Bang Nucleosynthesis: $M_N > 1$ GeV and $\tau_N < 0.1$ s to maintain $H1/He4 \sim 75/25\%$

Very small fraction of relevant parameter space has been explored

K.A. Petridis (UoB)

Searching for $N_{2,3}$

- Produce through semileptonic hadron decays $\rightarrow K \rightarrow \mu\nu, D \rightarrow \mu\nu X, B \rightarrow \mu\nu X$
- For $M_N > 1$ GeV need decays of charm and beauty
- ▶ Very weak $N_{2,3} \rightarrow \nu$ mixing $(U^2) \rightarrow N_{2,3}$ very long lived \rightarrow For $M_N \sim 1$ GeV, $c\tau \sim \mathcal{O}(10)$ km

D

•
$$\mathcal{B}(D \to \pi \ell N) : (10^{-12} - 10^{-8})$$

►
$$\mathcal{B}(N \rightarrow \mu/e\pi)$$
 : (0.1 – 50)%

►
$$\mathcal{B}(N \rightarrow \mu/e\rho)$$
 : (0.5 – 20)%

▶
$$\mathcal{B}(N \rightarrow \nu \mu e)$$
 : $(1 - 10)\%$

π

Ή

Experimental requirements

Charm production

- LHC ($\sqrt{s} = 14$ TeV 1ab $^{-1}$): $\sim 2 \times 10^{16}$ in 4π
- ▶ SPS (400GeV fixed target $\sqrt{s} = 27$ GeV 2×10^{20} pot): $\sim 8 \times 10^{17}$

- Heavy Target (Mo+W)
 - \rightarrow Minimise $\pi, {\cal K} \rightarrow \mu \nu_{\mu}$ / Maximise heavy flavour production
- ► Detector placed as close to target as background allows → Maximise signal acceptance / Minimise µ flux
- ▶ Decay vessel in vacuum \rightarrow Avoid ν -interactions
- Magnetic spectrometer \rightarrow Reconstruct HNL mass

SHiP layout As implemented in Geant4

- Large decay volume : elliptical (5×10×50 m) vacuum vessel
- Magnetic spectrometer, EM calorimeter and muon detector can all be made with existing technologies
- Design to suppress hidden sector backgrounds to ~zero

K.A.	Petridis	(UoB)

Birmingham seminar 13 / 40

Image: A matrix and a matrix

The SHiP Technical Proposal

- SHip nonths
- ► Technical Proposal and Physics Proposal submitted April 2015 → 9 months review with SPS committee [arXiv:1504.04956]
- ► Collaboration: ~ 250 members from 45 institutes in 14 countries, admission of additional institutes pending
- Very positive response from SPSC

The SPSC has reviewed the proposal for "A Facility to Search for Hidden Particles (SHiP) at the CERN SPS" (Technical Proposal P-350 and Physics case P-350-ADD-1), submitted in April 2015 following an earlier submission of the Expression of Interest EoI-010 in October 2013. The review included several lists of questions sent to the proponents, which were all answered including submission of a proposal addendum P-350-ADD-2 in October 2015.

In the review process the Committee was impressed by the dedication of the SHiP proponents and their responsiveness to the Committee's requests. In particular significant progress has been made since the EoI along the lines of the SPSC112 recommendations, including optimisation of the proton beam dump design, broadening of the physics case and adaptation of the SHiP scheduling to external constraints. The CERN SPS offers a unique opportunity for the proposed programme and the SHiP proponents have the potential strength to build the proposed detector setup.

The main physics motivation of SHIP is to explore the domain of hidden particles, searching in particular for new soals, reternionic and vector particles. These would be produced in a protion beam dump at 400 GeV, either directly or from decays of charm or beauty particles. The experiment would be sensitive to a hitherto unexplored region of parameter space, spanning masses from a few hundred MeV to a few GeV and over two orders of magnitude in squared couplings. The main experimental signal neurical particles. The experiment is also proposed to be equipped with an emulsion target, which would allow for unprecedented tau neutrino and antimutimo measurements and valueble QCD studies. Furthermore it would exclude the indeen sector search to scattering of dark matter particles. The facility could accommodate additional detectors extending the range of dark matter searches. The SPSC supports the motivation for the search for hidden particles, which will explore a domain of interest for many open questions in particle physics and cosmology, and acknowledges the interest of the measurements foreseen in the neutrino sector. SHIP could therefore constitute a key part of the CERN Fixed Target programme in the HL-LHC era.

The SPSC supports the updated SHIP schedule, which takes into account the HL-LHC preparation constraints during 152, and defers any significant civil engineering investments for SHIP to the period following full approval of SHIP. The SPSC notes that, in this updated schedule, the time scale for the SHIP comprehensive design study, required for a final decision, coincides with the expected revision of the EU HEP strategy. The Committee **ation notes** the plans of the incoming CERN Management to set up a working group to prepare the future of the CERN Fixed Target programme after LS2, as input to the next EU strategy update. In this context the SPSC **recommends** that the SHIP proponents proceed with the preparation of a Comprehensive **Design Report** (CDR), and that this preparation be made in close contact with the planned Fixed Target working group.

The fixed target facility

- ▶ Requirements: 400GeV protons $4 \times 10^{13} p$ /spill (1s spill every 7s)
- ► Expect 2 × 10²⁰pot in 5 years of running → 60% of SPS super-cycle (a-la CNGS) compatible with operation of both the LHC and North Area facilities (as currently implemented)
- High intensity demands new dedicated beam line connected to existing TT20 transfer line
- Constraint in the planning: 1.5 years shutdown of North Area operation (best done in LS2 and has been endorsed as fully compatible)

The fixed target facility cont'd

Image: A matrix and a matrix

э

The target

- Detailed engineering design study performed by dedicated CERN task force
- 2.6MJ on target during 1s every 7s (kinetic energy of 100kg at 800km/h)
- Challenges due to radiation and mechanical stresses

 A Remote handling, helium atmosphere and cooling required
- Results of simulations: Molybdenum alloy and tungsten water cooled
- Designed for multi-purpose exchange of target and shielding configurations for alternative uses

Target material W-alloy Cu (variable (n) TZM + pure W Momentum (GeV/c) 800 400 400 Intensity 0.8*1013 1.3*1013 4*1013 Puise length (s) 20 22*104 1 Rep. rate (s) 60 -10 7 Beam energy (k) 1020 830 2560 Arg. beam power (s01) (kW) 17 66 355 POT Few 1017 Few 1018 2*10 ⁴ SS180.4 Fred 101* 2*10 ⁴ 2*10 ⁴	Momentum (GeV/c) 800 400 400 Intensity 0.810/3 1.310/3 410/3 Public length (s) 20 2210/3 1 Rep. rate (s) 60 -10 7.2 Beam energy (k.) 102 830 2560 Arg. beam power (SC) (AW) 51 3.4107 (ftsh) 2560 POT Few 10/7 Few 10/8 2410/8 SS316.41 Few 10/7 Few 10/8 2410/8 VGg Few 10/7 Few 10/7 2410/8 Monto team Ferror team 400 400		DONUT 1)	CHARM 2)	SHIP				
Intensity 0.81013 1.31013 41013 Pulse length (s) 20 2310.4 1 Rep. rate (s) 60 ~10 7.2 Beam energy (k.) 1020 830 2560 Arg beam power (SC) (xW) 17 69 355 POT Few 1017 Few 1018 2109 SS316.N Few 1017 Few 1018 2109 Proton team From team 1000 1000 Month He lent atmosphere From team 1000	Intensity 0.81013 1.31013 41013 Pluse length (s) 20 2310.4 1 Rep. rate (s) 60 ~10 7.2 Beam energy (kJ) 1020 830 2560 Arg beam power (SC) (xW) 17 69 355 POT Few 1017 Few 1018 2109 SS316.N Few 1017 Few 1018 2109 Poton learn Froton learn 1000 1000 Model He lent almosphere 150 cm 150 cm	Target material	W-alloy	Cu (variable p)	TZM + pure W				
Pulse length (s) 20 23*10* 1 Rep. rate (s) 8010 7.2 Beam energy (kJ) 1020 830 2580 Avg. beam power (spil) (kV) 51 3.4*10*(fast) 2580 Avg. beam power (spil) (kV) 51 3.4*10*(fast) 2580 Pot Few 101* Few 101* 2*10* Pot Deam energy (kJ) 81 3.4*10*(fast) 2580 Pot Status (kJ) 81 3.4*10*(Pulse length (s) 20 23*10-4 1 Rep. rate (s) 8010 7.2 Beam energy (cl) 1020 830 2560 Avg. beam power (SC) (AVK) 1 1 3.34*10' (fast) 2560 Avg. beam power (SC) (AVK) 17 69 355 POT Few 101' Few 101' 2*10 ²⁹ SS3164 He lent atmosphere -35 cm	Momentum (GeV/c)	800	400	400				
State 60 ~10 7.2 Beam energy (kJ) 1020 3.4*10*(frast) 2560 Avg, beam power (spiii) (kW) 51 3.4*10*(frast) 2560 Avg, beam power (spiii) (kW) 17 69 355 POT Few 101* Pew 101* 2*10** State Few 101* 2*10** 1000 Proton beam window Proton beam window 1000 1000 1000 He linet atmosphere He linet atmosphere 1000 1000 1000 1000	State 60 ~10 7.2 Beam energy (kJ) 1020 830 2560 Avg, beam power (spiii) (kW) 51 3.4 (4)° (frast) 2560 Avg, beam power (spiii) (kW) 17 69 355 POT Few 1017 Few 1018 2*1974 Station Few 1017 Few 1018 2*1974 Poto Few 1017 Few 1018 2*1974 He linet almosphere 150 cm 150 cm 150 cm	Intensity	0.8*1013	1.3*1013	4*10 ¹³				
Beam energy (k/) 1020 830 2560 Avg, Deam power (S0) (WV) 51 3.4*10*(tast) 2580 Way, Deam power (S0) (WV) 17 69 355 POT Few 10 ¹⁰ Few 10 ¹⁰ 210 ²⁰ SS316.N H ₂ O Beam surdow 1000 1000 Portion beam Portion beam 1000 1000 1000 1000 Model He bent atmosphere He bent atmosphere 10000 1000 10000	Beam energy (k/) 1020 830 2560 Avg, Deam power (spill) (WY) 51 3.4*10*(tast) 2580 May, Deam power (spill) (WY) Few 101* Few 101* 210** POT Few 101* Few 101* 210** Pot Target matural (WMA) Few 10** 210** Pot target matural (WMA) Few 10** Few 10** 10** Ho target matural (WMA) Few 10** Few 10** 10** May He test atmosphere 150 cm 10**	Pulse length (s)	20	23*10-6	1				
Avg beam power (splii) (kW) S1 3.4*10*(tast) 2550 Avg. beam power (SD) (kW) 17 89 355 POT Few 10** 2*10** SS11E.N +0.0 Bern window 2*10** Proton beam	Avg Deam power (split) (vit) S1 S14101 (tast) 2550 Avg beam power (SC) (vit) 17 60 355 Pot Thew 101' Pew 101' 210's SS116U Few 101' Pew 101' 210's Pot Target material (WMo) Few 101' 210's Poton beam Poton beam Few 101' Few 101's He lest atmosphere 150 cm 150 cm 150 cm	Rep. rate (s)	60	~10	7.2				
Arg beam power (SC) (kW) 17 69 355 PDT Few 10 ¹⁷ Pew 10 ¹⁸ 2*10 ¹⁸ SS316LN Few 10 ¹⁷ Pew 10 ¹⁸ 2*10 ¹⁸ Figure matural (W/Mo) Potton team Figure matural (W/Mo) Figure matural (W/Mo) Potton team Figure matural (W/Mo) Figure matural (W/Mo) Figure matural (W/Mo) Figure matural (W/Mo)	Arg beam power (SC) (kW) 17 69 355 PDT Few 10 ¹⁷ Few 10 ¹⁸ 2*10 ¹⁸ SS316LN Few 10 ¹⁷ Few 10 ¹⁸ 2*10 ¹⁸ Target matural (W/Mo) Proton beam Few 10 ¹⁹ 2*0 ¹⁹ Proton beam Proton beam 100 mm 100 mm	Beam energy (kJ)	1020	830	2560				
POT Pew 10 ¹⁷ Pew 10 ¹⁸ 2*0 ²⁰ S31641 %0 Bern window For the second s	POT SS3164/ MOT SS3164/ MOT SS3164/ MOT SS3164/ MOT SS3164/ MOT Poton basin Poton basin Poton basin Poton basin Poton basin SS3164/ Poton basin Poton basin SS3164/ Poton basin SS3164/ Poton basin SS3164/ Poton basin SS3164/ Poton basin SS3164/ S	Avg. beam power (spill) (kW)	51	3.4*107 (fast)	2560				
SS316A1 HO Target material (WMo) Proton beam He lent almosphere	SS316A1 HO Target material (WMo) Proton beam He inet atmosphere 150 cm	Avg. beam power (SC) (kW)	17	69	355				
Ho Bern window Treper material (WMA) Proton beam He lent almosphere	H ₀ Bern window Treper material (WMA) Proton base He inet atmosphere 150 on	РОТ	Few 1017	Few 1018	2*1020				
		Targer material (WMA) Proton beam He let atmosphere							

K.A. Petridis (UoB)

18 / 40

▲ @ ▶ < ∃ ▶</p>

æ

Muon shield

The problem: Muons can interact with surroundings and produce V^{0} 's decaying to pair of displaced charged tracks mimicking signal.

- Monumental rate of muons even after target/hadron absorber
- Hidden particles from D and B decays have significant p_T
 - \rightarrow Detector as close as possible to target
 - \rightarrow Need compact, efficient and cost effective way to shield against these muons
- Aim: reduce muon induced V⁰ production at level less than the neutrino induced background

Solution: Magnetic sweeping of muons

Active muon shield

Sweep away muons with momenta up to 350GeV

 \rightarrow Require 30Tm to deflect 350GeV muons

Cost effective: Dipole magnets with saturated iron $B_{\rm max} = 1.8 T$ in a special arrangement

- Detailed engineering design performed at RAL
 - \rightarrow Using grain oriented steel
 - \rightarrow Field strength and configuration not an issue

▶ Left with $\sim 5 \times 10^4$ muons per spill with large $p_{\rm T}$ e.g from J/ψ and Y_{\pm}

æ

Hidden sector decay volume

- Minimise neutrino interactions in decay volume
 - \rightarrow Decay volume at 10^{-6}bar pressure
 - $\rightarrow < 1$ neutrino interaction in 5 years

 \rightarrow Pressure requirements could be relaxed in the future as can use topology of interaction products to reject background

- Decay volume: Elliptical 10m×5m×60m
- Following optimisation procedure maximising acceptance while allocating necessary space for sweeping magnet
- Veto detectors in front and surrounding the volume
- Tracking stations inside the vacuum
- Dipole magnet 0.65Tm

▲ @ ▶ < ∃ ▶</p>

э

Hidden sector spectrometer

- Dipole magnet of length 5m with 0.65Tm, similar to LHCb design
- Aperture 50m², power dissipation \sim 1MW (3× less than LHCb)
- Field computations performed with Opera-3d

 Two tracking stations in front and two behind

Hidden sector spectrometer cont'd

- Straw tracker: Similar technology to NA62 but instead 5m straws at 1µb (cf 2m at 0.01µb)
- ▶ 0.5% X/X₀ with 120µm spatial resolution
- Demonstrated to work in vacuum

 Implemented in simulation and R&D is ongoing

Momentum resolution in simulation

Electromagnetic calorimeter

▶ $6.3 \times 7.8 \text{ m}^2$

- For $N \to \mu^+ \rho^-(\pi^- \pi^0(\gamma \gamma))$,

・ロト ・聞ト ・ヨト ・ヨト ・ヨー の

K.A. Petridis (UoB)

SHiF

Courtesy T. Ruf

Veto systems

- Residual backgrounds arising from muons surviving shield, cosmic muons, neutrino interactions reduced by a set of veto counters
- 1 Upstream Veto Tagger in front of the vacuum vessel
 - \triangleright Plastic scintillator bars ϵ 99.9%
- 2 Straw Veto Tagger 5m from the entrance window
 - Same technology as tracking systems
- 3 Surround Background Tagger around the decay volume
 - Liquid scintillator 120m³+1800 Wavelength-shifting Optical Modules (IceCube)

Estimating backgrounds

SHiP Such for Eleteration

Or lack thereof...

Cimentum	Dhuning	Re aliene da	_		
Signature	Physics	Backgrounds	_		
$\pi^-\mu^+, K^-\mu^+$	HNL,NEU	RDM, $K_L^0 ightarrow \pi^- \mu^+ u_\mu$			
	$HNL(o ho^-\mu^+)$	$K^0_L o \pi^- \mu^+ u_\mu (+\pi^0)$, $K^0_L o \pi^- \pi^+ \pi^0$		_	
$\pi^- e^+$, $K^- e^+$	HNL, NEU	$K_L^0 \to \pi^- e^+ \nu_e$		Sor	
$\pi^-\pi^0 e^+$	$HNL(ightarrow ho^- e^+)$	$K_L^0 ightarrow \pi^- e^+ u_e, \ K_L^0 ightarrow \pi^- \pi^+ \pi^0$		å	ц.
$\mu^- e^+ + p^{miss}$	HNL, Higgs Portal (HP)($\rightarrow \tau \tau$)	$K^0_L o \pi^- \mu^+ u_\mu$, $K^0_L o \pi^- e^+ u_e$		Goldston Boson	e B
$\mu^-\mu^+ + p^{miss}$	HNL, HP($\rightarrow \tau \tau$)	RDM, $K_L^0 \rightarrow \pi^- \mu^+ \nu_\mu$		sto	tal
$\mu^{-}\mu^{+}$	DP,PNGB,HP	RDM, $K_L^0 \rightarrow \pi^- \mu^+ \nu_\mu$	0	등	he
$\mu^{-}\mu^{+}\gamma$	Chern-Simons	$K_L^0 \to \pi^- \pi^+ \pi^0, \ K_L^0 \to \pi^- \mu^+ \nu_\mu (+\pi^0)$	lii	G	ц З
$e^-e^+ + p^{miss}$	HNL,HP	$K_L^0 \to \pi^- e^+ \nu_e$	rt.	ηρ	ĿQ
e^-e^+	DP,PNGB,HP	$K_L^0 o \pi^- e^+ \nu_e$	nei	Van	. su
$\pi^{-}\pi^{+}$	DP,PNGB,HP	$\begin{split} K_L^0 &\to \pi^- \mu^+ \nu_\mu \ , \ K_L^0 \to \pi^- e^+ \nu_e, \\ K_L^0 &\to \pi^- \pi^+ \pi^0, K_L^0 \to \pi^- \pi^+ \end{split}$	NEU=neutralino	l-obi	onu
$\pi^{-}\pi^{+}+p^{miss}$	DP,PNGB, HP($ ightarrow au au$), HSU,HNL($ ightarrow ho^0 u$)	$ \begin{array}{cccc} K_L & \rightarrow \pi^- \pi^+ \nu_\mu, K_L \rightarrow \pi^- e^+ \nu_e, K_L \rightarrow \pi^- \pi^+ \pi^0, \\ K_L & \rightarrow \pi^- \pi^+, K_S \rightarrow \pi^- \pi^+, \Lambda \rightarrow p\pi \\ K_L^0 & \rightarrow \pi^- \mu^+ \nu_\mu, K_L \rightarrow \pi^- e^+ \nu_e K_L^0 \rightarrow \pi^- \pi^+ \pi^0, \end{array} $	HNL=Heavy Neutral Lepton, NI	DP=Dark Photon, PNGB=Pseudo-Nambu	RDM=random di-muons from the target
K^+K^-	DP,PNGB, HP	$\begin{array}{c} K_L^0 \to \pi^- \mu^+ \nu_\mu \ , \ K_L^0 \to \pi^- e^+ \nu_e K_L^0 \to \pi^- \pi^+ \pi^0, \\ K_L^0 \to \pi^- \pi^+ \ K_L^0 \to \pi^- \pi^+ \Lambda \to n\pi \end{array}$	Lep	NGE	and
$\pi^+\pi^-\pi^0$	DP,PNGB,HP, HNL($\eta\nu$)	$ \begin{array}{l} K_L^{\vec{0}} \rightarrow \pi^- \pi^+, K_S^0 \rightarrow \pi^- \pi^+, \Lambda \rightarrow p\pi \\ K_L^0 \rightarrow \pi^- \pi^+ \pi^0 \end{array} $	ra	Ē	Ē
$\pi^+\pi^-\pi^0\pi^0$	DP,PNGB,HP	$K_L^{0} \to \pi^- \pi^+ \pi^0 (+\pi^0)$	eut	on	ā
$\pi^+\pi^-\pi^0\pi^0\pi^0$	$PNGB(\to \pi\pi\eta)$	=	Š	þ	2
$\pi^+\pi^-\gamma\gamma$	$PNGB(\to \pi\pi\eta)$	$K_L^0 o \pi^- \pi^+ \pi^0$	م) عر	٩	pu
$\pi^+\pi^-\pi^+\pi^-$	DP,PNGB,HP	-	μ	ark	rou
$\pi^+\pi^-\mu^+\mu^-$	Hidden Susy (HSU)	-			Background:
$\pi^+\pi^-e^+e^-$	Hidden Susy	-	Ę	Ë	Sac
$\mu^+\mu^-\mu^+\mu^-$	Hidden Susy	-	-		ш
$\mu^+\mu^-e^+e^-$	Hidden Susy		•	æ	\$

K.A. Petridis (UoB)

29 / 40

Background suppression

Goal: Zero background experiment over 5 year lifetime Background sources:

- $1~~\mu$ interactions in decay volume or surrounding material
- $2~\nu$ interactions in decay volume or surrounding material
- 3 Combination of μ from different *p*-Target interactions (pile-up)

Tools:

- Muon shield
 - \rightarrow 10^{6} rejection
- ► Veto detectors including timing information with $3\sigma = 340$ ps $\rightarrow 10^2$ rejection per muon, 10^4 rejection for pile-up muons
- Decay volume in vacuum
 - \rightarrow 10^{6} rejection
- Decay topology e.g vertexing and pointing to p-target
 - $\rightarrow \geq 10^4$ rejection for ν and pile-up muons

Background suppression cont'd

Left: Impact parameter extrapolated 100m to target (example plot of decay topology info) Right: Background yields after all selections

- As rate calculations and choice of cuts using Pythia8+Geant4, use CHARM geometry and compare to CHARM measured rates as cross-check
- More sophisticated optimisation underway

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Physics reach: ν MSM

Sensitivity to 5 benchmarks depending on couplings to SM lepton flavours.

Physics reach: ν MSM

Considering other facilities

- LBNF performance assumes five year program fully devoted to Hidden sector searches with optimised detector
- ▶ JPARC 5×10^{-3} less charm produced
- FCC offers complementary reach

Physics reach: Dark Photons

- ▶ Hidden vector particle mixing with photon (vector portal)
- $\blacktriangleright~{\rm Produce}>10^{20}~{\rm brem}~\gamma$ at 1 GeV for dark photon to mix with
- $\blacktriangleright\,$ Dark photon decays to $\ell^+\ell^-$, $\pi^+\pi^-$ etc

- SHiP probes unique parameter space
- Assuming LBNF dedicated to HS searches, similar dark photon yield for 0 background
- JPARC similar sensitivity to dark photons

Physics reach: SUSY

Example RPV Neutralinos (many more in Physics proposal)

- Benchmark models to study sensitivity of SHiP from de Vries, Dreiner, Scheier [arXiv:1511.07436]
- Model used previously to explain the NuTeV dimuon event excess through neutralino production from *B*-meson decays Dedes, Dreiner, Richardson [arXiv:hep-ph/0106199]
- ► Complementary to LHC SUSY searches as such models allow to probe sfermion masses up to O(10)TeV

FIG. 1. Relevant Feynman Diagrams for $D^+ \rightarrow \tilde{\chi}_1^0 + \ell^+$

• Production and decay similar to ν MSM

イロト イヨト イヨト イヨト

Physics reach: SUSY

Example RPV Neutralinos (many more in Physics proposal)

- Benchmark models to study sensitivity of SHiP from de Vries, Dreiner, Scheier [arXiv:1511.07436]
- Model used previously to explain the NuTeV dimuon event excess through neutralino production from *B*-meson decays Dedes, Dreiner, Richardson [arXiv:hep-ph/0106199]
- \blacktriangleright Complementary to LHC SUSY searches as such models allow to probe sfermion masses up to $\mathcal{O}(10) {\rm TeV}$

< 17 ►

э

Tau neutrino physics

- ▶ Large flux of ν_{τ} produced from *p*-target (decays of τ s and D_s s)
- Expect ${\sim}6700~({\sim}3400)~
 u_{ au}~(ar
 u_{ au})$ interactions of donut 9, opera 5 candidates
- Observe $\overline{\nu}_{\tau}$ for the first time and measure production cross-sections of ν_{τ} , $\overline{\nu}_{\tau}$ (access to additional structure functions)

- Pb/Emulsion: $\sim 10k, \ 340k, \ 2.4M$ CC $\nu_{\tau}, \ \nu_{e}, \ \nu_{\mu}$ interactions \rightarrow rich ν -physics program.
- B-field in emulsion and muon-filters in $\mu\text{-spectrometer:}$ distinguish ν_τ from $\bar{\nu_\tau}.$
- Emulsion+muon spectrometer enable τ decay vertex reconstruction and separation of ν_{τ} over ν_{e} and ν_{μ} interactions

Schedule

Takes into accound latest understanding of shutdowns, allows request for significant funds from CERN to be delayed by 2020

3

< □ > < □ > < □ > < □ > < □ > < □ >

SHiP UK

- \blacktriangleright UK physicists initiated the SHiP project
 - \rightarrow Significant influence and leadership
 - Spokesperson
 - Convener of muon-shield group

- UK activities focused on muon-shield:
 - Simulation of particles in target (Warwick)
 - Design of shield, magnetic modelling (Bristol/ICL/RAL)
 - Residual muon studies (Bristol/ICL)
 - Consequences for DAQ/trigger (UCL)
- PPAP roadmap 2015: "There is considerable UK leadership and emerging interest in SHiP, which potentially has high physics reward. This should be evaluated further and be reviewed should the project go ahead internationally"

(日) (周) (日) (日)

Conclusions

- The SHiP experiment will explore the unknown territory of very weakly interacting long-lived particles
 - Well motivated particularly given ATLAS/CMS and flavour measurements
 - \triangleright Offer answers to DM, BAU, m_{ν}
- Also offers unique opportunity to perform ν_{τ} -physics
- Major technological and engineering challenges of the SHiP facility have been addressed (help from CERN departments)
 - > Including beam-line, target, infrastructure, muon-shield etc
- SHiP Detector design relies on existing technologies
- Technical Proposal reviewed by SPSC and received positive response. Work has started towards a Comprehensive Design Report
- ► First civil engineering planned in LS2 (2019-2020)
- First data taking 2026

Backup

Ξ.

イロト イヨト イヨト イヨト

Detector

Item	Cost (MCHF)
Tau neutrino detector		11.6
Active neutrino target	6.8	
Fibre tracker	2.5	
Muon magnetic spectrometer	2.3	
Hidden Sector detector		46.8
HS vacuum vessel	11.7	
Surround background tagger	2.1	
Upstream veto tagger	0.1	
Straw veto tagger	0.8	
Spectrometer straw tracker	6.4	
Spectrometer magnet	5.3	
Spectrometer timing detector	0.5	
Electromagnetic calorimeter	10.2	
Hadronic calorimeter	4.8	
Muon detector	2.5	
Muon iron filter	2.3	
Computing and online system		0.2
Total detectors		58.7

Facility

Item	Cost (MCHF)
Facility		135.8
Civil engineering	57.4	
Infrastructure and services	22.0	
Extraction and beamline	21.0	
Target and target complex	24.0	
Muon shield	11.4	
Detector		58.7
Tau neutrino detector	11.6	
Hidden Sector detector	46.8	
Computing and online system	0.2	
Grand total		194.5

- CERN manpower for preparation of entire facility and installation: 103 FTEs Fellows (6.3 MCHF) included in cost
- CERN resource requirements for TDR phase (3years) excluding integration and CE : ~3.2 MCHF and 12.5 FTEs
- CE preparatory cost (integration, design, EIA, permit, tendering, 2.5 years) \rightarrow 2.5 MCHF and 12.5 FTEs

3

(日) (同) (三) (三)

HS tracking system

NA62-like straw detector

Parameter	Value
Straw	
Length of a straw	5 m
Outer straw diameter	9.83 mm
Straw wall (PET, Cu, Au)	
PET foil thickness	$36 \mu m$
Cu coating thickness	50 nm
Au coating thickness	20 nm
Wire (Au-plated Tungsten)	
diameter	$30 \ \mu m$
Straw arrangement	
Number of straws in one layer	568
Number of layers per plane	2
Straw pitch in one layer	17.6 mm
Y extent of one plane	$\sim 10 \text{ m}$
Y offset between straws of layer 1&2	8.8 mm
Z shift from layer 1 to 2	11 mm
Number of planes per view	2
Y offset between plane 1&2	4.4 mm
Z shift from plane 1 to 2	26 mm
Z shift from view to view	100 mm
Straw station	
Number of views per station	4 (Y-U-V-Y)
Stereo angle of layers in a view Y,U,V	0, 5, -5 degrees
Z envelope of one station	$\sim 34 \text{ cm}$
Number of straws in one station	9088
Straw tracker	
Number of stations	4
Z shift from station 1 to 2 (3 to 4)	2 m
Z shift from station 2 to 3	5 m
Number of straws in total	36352

Straws in test beam 2016

- · Study sagging effects and compensation
- · Read out of signal, attenuation / two-sided readout
- Upstream straw veto may be based on same technology

Seminar at TUM, Munich, Germany, February 5, 2016

Horizontal orientation of 5m straws

First production of 5m straws at JINR

JINR Dubna (NA62, SHiP): Straws St Petersburg (CMS, SHiP): Infra

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

R. Jacobsson (CERN)

K.A. Petridis (UoB)

K.A. Petridis (UoB)

PID: MUON

• Critical tasks: μ and π identification with high efficiency

- Challenge
 - → Tough as pions decay in flight before PID system
 - 20% of the pions at 2GeV, 10% at 5GeV, 4% at 30GeV

4 stations based on x-y plans of scintillating bars with WLS fibres and SiPM readout

<u>MUON design</u>		
Bar dimensions	5 x 300 x 2 cm ³	
Number of bars	3840	
WLS length	23 km	
Overall dimension (TP)	W:6m x H:12m	
 Iron filter weight 	~1000 tonnes	INR (y-physics, SHiP): MUON
→ 2876 modules and 11504 cells (readout channels)		INK (V-PHYSICS, SHIP). MOON
Seminar at TUM, Munich, Germany, Febru	ary 5, 2016	R. Jacobsson (CERN) 55

< AP

Trigger and Online System

- Trigger-less readout system: sub-detectors are continuously readout
- No radiation issues, can use commercial solutions for the network
- Event building of zero-suppressed data executed on small computer farm
 - Control system: ECS
 - Fast Control (TFC): generates clock
 - Data transmitted via Ethernet
 - Event Filter Farm (EFF): selects interesting events and sends to storage

Thomas Ruf CERN

Seminar Bonn June 2015

$0\nu\beta\beta$ comparison

▶ Under the assumption that seesaw generated through mechanism other than HNL as ν and N contributions cancel

Figure 4.13: Bounds on the mixing between the electron neutrino and a single heavy neutrino from the combination of bounds obtained with Ge 0.96 perceiments [108] using the representation introduced in [599]. This limit is not suif do seasone HNAs because of the different cancellations discussed in Sec. 4.5.2. The bands correspond to the uncertainties discussed in the text. The dashed contours indicate the mass regions excluded by some of the accelerator experiments considered in [313]: CHAM1 (096; C. L., [587]), DELPHI (95%; C. L., [551]), PS 191 (09%; C. L., [578]), TRIUMF (096; C. L., [42, 544]).

[1504.04855]